
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: 0883-9514 (Print) 1087-6545 (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Problem Specific Variable Selection Rules for
Constraint Programming: A Type II Mixed Model
Assembly Line Balancing Problem Case

Hacı Mehmet Alakaş & Bilal Toklu

To cite this article: Hacı Mehmet Alakaş & Bilal Toklu (2020) Problem Specific Variable Selection
Rules for Constraint Programming: A Type II Mixed Model Assembly Line Balancing Problem Case,
Applied Artificial Intelligence, 34:7, 564-584, DOI: 10.1080/08839514.2020.1731782

To link to this article: https://doi.org/10.1080/08839514.2020.1731782

Published online: 26 Feb 2020.

Submit your article to this journal

Article views: 416

View related articles

View Crossmark data

Citing articles: 7 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2020.1731782
https://doi.org/10.1080/08839514.2020.1731782
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2020.1731782
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2020.1731782
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2020.1731782&domain=pdf&date_stamp=2020-02-26
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2020.1731782&domain=pdf&date_stamp=2020-02-26
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2020.1731782#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2020.1731782#tabModule

Problem Specific Variable Selection Rules for Constraint
Programming: A Type II Mixed Model Assembly Line
Balancing Problem Case
Hacı Mehmet Alakaş a and Bilal Toklu b

aFaculty of Engineering, Department of Industrial Engineering, Kırıkkale University, Yahşihan/Kırıkkale,
Turkey; bFaculty of Engineering, Department of Industrial Engineering, Gazi University, Ankara, Turkey

ABSRACT
The main idea of constraint programming (CP) is to deter-
mine a solution (or solutions) of a problem assigning values
to decision variables satisfying all constraints. Two sub pro-
cesses, an enumeration strategy and a consistency, run
under the constraint programming main algorithm. The enu-
meration strategy which is managing the order of variables
and values to build a search tree and possible solutions is
crucial process in CP. In this study problem-based specific
variable selection rules are studied on a mixed model assem-
bly line balancing problem. The 18 variable selection rules
are generated in three main categories by considering the
problem input parameters. These rules are tested with
benchmark problems in the literature and experimental
results are compared with the results of mathematical
model and standard CP algorithm. Also, benchmark pro-
blems are run with two CP rules to compare experimental
results. In conclusion, experimental results are shown that
the outperform rules are listed and also their specifications
are defined to guide to researchers who solve optimization
problems with CP.

Introduction

Constraint programming (CP) is widely used for solving constraint satis-
faction and optimization problems. Researchers have successfully achieved
the solution of various problems with CP such as scheduling (Sel et al. 2015;
Serra, Nishioka, and Marcellino 2012), manufacturing (Banaszak, Zaremba,
and Muszyński 2009; Soto et al. 2012), supply chains (Lee and Lee 2013;
Rodrigues and Leandro 2007), rostering (He and Qu 2012; Qu and He
2009), vehicle rooting (Ozfirat and Ozkarahan 2010) and allocation (Bui,
Pham, and Deville 2013). Mainly, related problems in CP are modeled and
solved as constraint satisfaction problems (CSP). The CSP consists of an
n-tuple of variables which are related to their domain di and m-tuple of
constraints. The CSP has a solution when all variables take value in their

CONTACT Hacı Mehmet Alakaş hmalagas@kku.edu.tr Faculty of Engineering, Department of Industrial
Engineering, Kırıkkale University, Ankara Yolu 7. Km, Yahşihan/Kırıkkale, 71451

APPLIED ARTIFICIAL INTELLIGENCE
2020, VOL. 34, NO. 7, 564–584
https://doi.org/10.1080/08839514.2020.1731782

© 2020 Taylor & Francis

http://orcid.org/0000-0002-9874-7588
http://orcid.org/0000-0001-5094-1501
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2020.1731782&domain=pdf&date_stamp=2020-04-07

domains. The values must satisfy all constraints. Backtracking, branch, and
bound algorithm or local searches are generally used to explore and obtain
the CSP problem’s solution. Two main phases are processed to explore the
solution. First one is an enumeration strategy which composed of variable
and value selections. The second one is the propagation which is used to
filter the variable domains by eliminating the inconsistent values.

As mentioned by Soto et al. (2015), determining of “which variable selec-
tion strategy combined with which value selection strategy” is a hard and
crucial phase in constraint programming. Instead of using default constraint
programming variable or value selection rules, problem-specific rules may be
more effective than default rules. Based on this hypothesis, answer the
following questions are examined in this study:

(1) Are the variable selection rules based on problem specifications more
efficient than CP method rules?

(2) Which types of rules are more efficient in solving the problem?
(3) What are the main characteristics of effective rules?

In this study, problem-based variable selection rules are investigated for type
2 mixed-model assembly line balancing problem (MMALBP). The problem is
modeled as the constraint optimization problem and 18 specific variable
selection rules that are classified into three main generated categories. The
solutions of these models are compared with solutions of a mathematical
model, the constraint programming model with the default rule, the con-
straint programming model with the minimum domain rule and the con-
straint programming model with the maximum domain rule. Consequently,
effective rules that reach a better solution in a shorter time are determined to
answer the research questions mentioned above.

The rest of the paper is organized as follows; after the introduction, the
constraint programming algorithm is presented in Sect. 2. In Sect. 3, the
mixed model assembly line problem is introduced, and variable selection
rules of MMALBP are given and explained in Sect.4. Numerical experiments
and discussions about experiments are presented in Sect. 4. Conclusions and
suggestions for future studies are summarized in Sect. 5.

Background: Constraint Programming (CP)

Constraint programming is an alternative programming technique generated by
combining effectiveness in achieving the optimal solution of linear program-
ming and easy definition of logical expressions of computer programming

APPLIED ARTIFICIAL INTELLIGENCE 565

methods. In constraint programming, difficult definable constraints in linear
programming are defined easily using logical expressions. (Apt 2003)

The constraint programming model is defined as a triple notation
ðX;D;CÞ where X is a tuple of variables X ¼ ðX1;X2;X3; ::::;XnÞ, D is
a tuple of the domain D ¼ ðD1;D2;D3; ::::;DnÞ and C is a tuple of con-
straints C ¼ ðC1;C2;C3; ::::;CnÞ. Solving a CSP ðX;D;CÞinvolves assigning
values to variables in such a way that all constraints are satisfied. The
solution involves a tuple set of variables and their
values A ¼ ðX1;V1Þ; ðX2;V2Þ; ðX3;V3Þ; :::::; ðXn;VnÞ.

Constraint Solving

CP problems are generally solved by backtracking based algorithms. The
solution procedure is given in Algorithm 1 that includes three main steps,
variable selection, value selection, and propagation. In the variable selection
step, which variable is selected first to assign a determined value. In the next
step of the value selection, the value that is assigned to the selected variable is
determined. When a decision variable is assigned as a value, the algorithm re-
computes the possible value sets of all its dependent variables in the propa-
gation step.

Algorithm 1. Solve (X; D; C)
While (success) or (failure) do

Variable Selection ();
Value Selection ();
PropagateC ();
If empty domain in future variable then

Shallow Backtrack ();
End if
If empty domain in current variable then

Backtrack ();
End if

End while

Variable selection and value selection in the search algorithm are two key
processes to improve the search performance. These two steps are named as
an enumeration strategy in common. Actually, if we could develop an
efficient enumeration strategy, it can be possible to achieve the best solution
for performing fewer backtracks and requiring a shorter solving time. On the
other hand, the main problem in the CSP solving is to decide which strategy
is better depending on the problem types (Soto et al. 2015).

In recent years, researchers proposed various approaches about enumera-
tion strategies for solving several combinatorial problems. As an example,

566 H. M. ALAKAŞ AND B. TOKLU

Christodoulou and Stamatopoulos (2002) studied crew assignment problem
which is a subproblem of crew scheduling problem. They have modelled the
problem as a constraint programming and used the rule of selecting the
highest flight time of flight first as a variable selection strategy. In the value
selection, the crew member was selected that had the smallest flight time
until that time. Rousseau et al. (2004) dealt with vehicle routing problem
with a time window. They found routes with constraint programming and
used problem-based variable selection and value selection rules. Qu and He
(2009) proposed constraint programming method that had specific variable
and value selection strategy for nurse scheduling. Nurses with heavier work-
load were selected first in variable selection strategy and nurses were assigned
night shift firstly. Siala, Hebrard, and Huguet (2015) modeled a constraint
programming model for a car sequencing problem and suggested an enu-
meration search strategy. They determined rules for variable and value
selection in four main categories. These were branching, searching, selecting
and combining. Researchers have developed problem-based specific enu-
meration strategies in these mentioned studies. Some researchers have pro-
posed enumeration strategies to improve constraint programming search
procedure (Balafoutis and Stergiou 2010; Crawford et al. 2011; Grimes and
Wallace 2007; Soto et al. 2013, 2015; Wallace and Grimes 2008). Based on the
literature research about the enumeration strategies generally, researchers
study about CP-based rules to improve the solution efficiency. In this
study, the variable selection rules that consider problem specifications are
investigated in addition to CP model-based rules.

Mixed Model Assembly Line Balancing Problem

Assembly line is a manufacturing process which subparts of products
assembled to produce the final products. Workers should perform specified
tasks to produce the final products in a series of stations which are connected
together by material handling system. Assignment of the given tasks with
a set of precedence relations to the stations for optimizing a performance
measure is defined as the Assembly Line Balancing problem (ALBP) (Özcan
and Toklu 2009). Assembly line balancing problem is classified in terms of
the layout, objectives, variability of the task times, etc. ALBP can be classified
into four types in terms of the objective functions: Type 1 is the minimiza-
tion of the number of stations for a given cycle time, Type 2 is the mini-
mization of the cycle time for a given number of stations, Type
E (Effectiveness) is the maximization of the effectiveness value, and Type
F (Feasible) is the absence of any objective function.

APPLIED ARTIFICIAL INTELLIGENCE 567

In the early times of assembly lines in production systems, a single model
was produced due to high demand and line balancing was relatively easy.
Because of diversified customer demands, establishing separate assembly
lines for each model are no longer economical. For this reason, different
models are produced on the same assembly line and several new situations
have emerged. When lot sizes of models are equal to one, this type of
assembly line is named as a mixed model line. If lot sizes of models are
greater than one, this type of assembly line is named as multi-model line
(Figure 1) (Scholl 1999).

The mixed-model assembly line is a type of assembly line that
similarly m models are assembled simultaneously on the same line. Each
model has its own precedence diagram, but these diagrams can be combined
into only one precedence diagram with N tasks. The tasks have processing
times that can vary between models. In the combined precedence diagram, if
the task time is equal to zero for a model, this task is not processed for this
model. The problem place in the ALBPs literature is given in Figure 2.
Assumptions about to the problem are as follows:

● Each task must be assigned to a station.
● Serial assembly line layout.
● Task duration is deterministic and known.
● Tasks are not divisible.
● A number of station is fixed and known.
● The models are produced on the line simultaneously.

Figure 1. a) Multi model assembly line b) mixed model assembly line.

568 H. M. ALAKAŞ AND B. TOKLU

● Precedence constraints are known and must be stable on task-station
assignments.

● At least one task must be assigned to each station.

The literature research about MMALBP is restricted by serial, multi/mixed
model and one-sided types, although there are numerous studies about the
simple ALBPs. Arcus (1965) has firstly addressed the MMALBP. In this
study, he proposed the COMSOAL method as a solution and aimed to
minimize the station number. He used a cycle time which is weighted by
the demand percentages for assigning the tasks. Gokcen and Erel (1998)’s
study is the one of the studies that achieved the optimal solution and they
modeled the problem as 0–1 integer programming firstly.

The studies in which researchers solved the problem with various meta-
heuristics: genetic algorithm (Haq, Rengarajan, and Jayaprakash 2006; Hwang
and Katayama 2010; Mamun et al. 2012; Manavizadeh et al. 2012; Rekiek, De
Lit, and Delchambre 2000; Simaria and Vilarinho 2004; Venkatesh and Dabade
2008; Yang, Gao, and Sun 2013). In addition to these, simulated annealing
(McMullen and Frazier 1998; Mendes et al. 2005), ant colony (McMullen and
Tarasewich 2003; Yagmahan 2011), tabu search (Bock 2008), beam search
(Matanachai and Yano 2001). And also there are some studies using simula-
tions (McMullen and Frazier 1997; Mendes et al. 2005; Tiacci 2012). The
researchers used simulations to find performance values of assignments that
are obtained by using other methods. Gokcen and Erel (1997) proposed goal
programming and Erel and Gokcen (1999) proposed shortest path algorithm
as a solution method.

Figure 2. The problem place in the ALBPs literature.

APPLIED ARTIFICIAL INTELLIGENCE 569

ALBP is firstly formulated as a CP model by Bockmayr and Pisaruk (2001)
and a combined method with integer programming and CP is offered. Pastor,
Ferrer, and García (2007) presented a comparative study of the performance of
CP and MIP for simple ALBP type 1 and 2 problems. Also, Topaloglu, Salum,
and Supciller (2012) have proposed a solution procedure with rule-based CP
modeling to solve ALBP. Alağaş, Yüzükırmızı, and Türker (2013) dealt with
type-2 ALBP with stochastic process time. They proposed a new algorithm
which gives the optimum solution using Constraint Programming and
Queueing Network. In their algorithm, the possible combinations are deter-
mined by Constraint Programming, and then, the performance measures are
evaluated by Queueing Network. They tested the method with several numerical
experiments from literature. Öztürk et al. (2013) solved the MMALBP as
scheduling problem and aimed tominimize a total completion time of all orders.
They suggested a methodology with integrated MIP and CP model to solve task
assignment, task sequencing, and model sequencing problems together. Also,
they suggested a CP model for flexible assembly line balancing problem with
parallel stations (Özturk et al. 2015). Alağaş et al. (2016) suggested CPmodel for
MMABLP-2. The proposed model minimizes the cycle time for a given number
of stations. They showed that the performance of the CP model performed well
and can be a choice as an alternative solution method. Bukchin and Raviv (2018)
established constraint programming models for SALBP-1 and SALBP-2 and
showed that it was an effective method by making comparisons. They also
proposed the constraint programming model for U-ALBP. Pınarbaşı,
Yüzükırmızı, and Toklu (2016) studied variability of task times. They modeled
stochastic SALBP-2 problem with constraint programming and also used queu-
ing network methods for performance evaluation.

According to the results of the literature research, most of the studies
about MMALBP are addressed the type 1 problem. The number of study
about type 2 problems is less than the number of study about type 1 problem.
Furthermore, Sivasankaran and Shahabudeen (2014) reached this conclusion
in the literature review paper, too.

Mixed Model Assembly Line Balancing Problem Type II Constraint
Programming Model

Constraint programming model for MMALBP 2 is developed based on the
mathematical model. When we describe the problem as CP,SNiis a decision
variable and it can take all positive integer values. Domains of decision
variables are restricted by constraint 3 and 4 on CP model. As mentioned
before, the solution of the problem is obtained when all of the variables take

570 H. M. ALAKAŞ AND B. TOKLU

values which provide all of the constraints. Constraint programming model is
as follows:

Notations of CP model.

i; j Task indexes
k Station index
m Model index
N Number of tasks in the combined precedence diagram
M Number of models
S Number of station
C Cycle time
Ei Earliest station number that task i can be assign
Li Earliest station number that task i can be assign
tim Processing time of task i for model m
i; jð Þ 2 Pr Precedence relationship between tasks. Task i must be finished

before task j start.
SNi: station number of task i to be assigned.(Decision variable)
Yik: = 1, If SNi take “k” value = 0, otherwise

Objective:

Min z ¼
XM
m¼1

Cm (1)

Constraints:

SNi � SNj ði; jÞ 2 Pr (2)

SNi � Li i ¼ 1:::::N (3)

SNi � Ei i ¼ 1:::::N (4)

9 SNi½ � ¼ k k ¼ 1:::::S ve i ¼ 1:::::N (5)

ctm �
XTj j

i¼1

τim � Yik k ¼ 1:::::S vem ¼ 1:::::M (6)

SNi 2 Ei; Li½ � and integer (7)

In this model, with the objective Obj. 1, minimization of the sum of models’
cycle time is aimed. Const. (2) guarantees that precedence requirements are
satisfied, i.e., if task j predecessor of the task i, task i decision variable SNi

must be equal or small than task j decision variable SNj. Const. (3) and (4)
are defined domains of SNi decision variables. Ei represents the value of the
lowest station number that task i can be assigned in Const. (4). The highest
station number task i can be assigned and denoted by the value of Li in

APPLIED ARTIFICIAL INTELLIGENCE 571

Const.(3). Const. (5) provides at least one task assign to each station. Const.
(6) guarantees that the cycle time is not smaller than any station time. Const.
(7) defines the decision variable SNi which represents the station number of
the tasks to be assigned.

Ei and Liare found in equations 8 and 9. In this formulation, Cm indicates
the cycle time of model m. Desired cycle time is taken as the cycle time and
calculations are made according to this value (Gokcen and Erel 1997).

Ei ¼ max
m¼1;:::M

tim þ P
j2PRi

tjm

Cm

2
64

3
75
þ

(8)

Li ¼ min
m¼1;:::M

K þ 1�
tim þP

j2Si
tjm

Cm

2
64

3
75
þ0

B@
1
CA (9)

Pseudo code of CSP algorithm for MMABLP-2 is given in Algorithm 2:
Algorithm 2: Solve Z (SN, D, C), A

Inputs:
Task=N
Station= S
Model=M
Task times for each model and task
Precedence relations of tasks
Assigned task set=AT
Unassigned task set =UT

Run Domain reduction
While UT�;do

Select SNi according to A selecting rule
Select Value v in domain SNi randomly
Run Propagation
If Dj = Ø; j 2 UT then

Run Shallow Backtrack
If Dj = Ø; i selecting task then

Run Backtrack
End If

End If
End While
Outputs:

Station number sets of tasks
Station times
Sum of cycle times

572 H. M. ALAKAŞ AND B. TOKLU

Variable Selection Rules for Mixed Model Assembly Line Balancing
Problem Type II

In the MMALBP, a branching order of variables is imported for shorter solution
time and obtaining good solutions in the search tree. In addition to the general
variable selection rules of constraint programming, problem-specific rules can also
be used. These rules, which are generated for the MMALBP-2, are grouped into
three main categories according to input parameters: task times based, precedence
relations based and both task time and precedence relations based rules. Addition
to these rules, CPmethod-specific rules can be used for variable selection. The rules
in these groups as follow:

Task Time Based Rules (TTBR): Task times are a primary factor in
determining station times because the station time is the sum of times of
tasks that are assigned that station. Six rules are generated based on the task
times. The rules are generated by task times can be different for each task and
changing depending on the models. These rules are as follow:

TTBR I: Maximum task times are found depending on models for each
time and these values are recorded in an array whose element number to be
equal the number of tasks. Again, the element of the array which has

maximum value is selected for branching. Max
i¼1:::N

Min
m¼1::M

tim

� �
TTBR II: Minimum task times are found depending on models for each

time and these values are recorded in an array which is element number to be
equal the number of tasks. The element of the array which has maximum

value is selected for branching. Max
i¼1:::N

Min
m¼1::M

tim

� �
TTBR III: The average task times are computed for each task depending on

models and these values are recorded in an array. The element of the array which

has maximum value is selected for branching. Max
i¼1:::N

PM
i¼1

tim
�
M

 !
TTBR IV: The average task times are computed for each task depending on

models and these values are recorded in an array. The element of the array which

has minimum value is selected for branching. Min
i¼1:::N

PM
i¼1

tim
�
M

 !
TTBR V: The sum of task times are computed for each task depending on

models and these values are recorded in an array. The element of the array

which has maximum value is selected for branching. Max
i¼1:::N

PM
m¼1

tim

� �

APPLIED ARTIFICIAL INTELLIGENCE 573

TTBR VI: The sum of task times are computed for each task depending on
models and these values are recorded in an array. The element of the array

which has minimum value is selected for branching. Min
i¼1:::N

PM
m¼1

tim

� �
Precedence Relations Based Rules (PRBR): The precedence relationships

among tasks are important factors for determining station numbers that the
tasks can be assigned and can limit these station numbers for each task
depending on other tasks. The eight rules in this category are as follow:

PRBR I: All successor numbers of tasks are computed and these values are
recorded in an array. The element of the array which has maximum
value is selected for branching. Max NumAllSuccessorsðiÞð Þ i ¼ 1:::N

PRBR II: All successor numbers of tasks are computed and these values are
recorded in an array. The element of the array which has minimum
value is selected for branching. Min NumAllSuccessorsðiÞð Þ i ¼ 1:::N

PRBR III: All predecessor numbers of tasks are computed and these values
are recorded in an array. The element of the array which has maximum
value is selected for branching. Max NumAllPredecessorsðiÞð Þ i ¼ 1:::N

PRBR IV: All predecessor numbers of tasks are computed and these values
are recorded in an array. The element of the array which has minimum
value is selected for branching. Min NumAllPredecessorsðiÞð Þ i ¼ 1:::N

PRBR V: A task which has a maximum E value (computed with Eq. 14) is
selected for branching. Max

i¼1:::N
Ei

PRBR VI: A task which has a minimum E value (computed with Eq. 14) is
selected for branching. Min

i¼1:::N
Ei

PRBR VII: A task which has a maximum L value (computed with Eq. 15)
is selected for branching. Max

i¼1:::N
Li

PRBR VIII: A task which has a minimum L value (computed with Eq. 15)
is selected for branching. Min

i¼1:::N
Li

Rules Based on Precedence Relationships and Task Time Together
(PR_TTBR): These rules take into account precedence relationships among
tasks and task time together. Especially, task times which can change model by
model are used for generating rules. The rules in this category are as follow:

PR_TTBR I: For each task, sum of its own time and all successor task
times of the task is computed model by model. Again for each task, the
maximum value in the computed values is selected and record in an array. In
the last step, the element of the array which has maximum value is selected

for branching. Max
j¼1:::N

Max
m¼1:::M

tjm þ P
i2AllSuccðjÞ

tim

 ! !

574 H. M. ALAKAŞ AND B. TOKLU

PR_TTBR II: For each task, sum of its own time and all successor task
times of the task is computed model by model. Again for each task, the
maximum value in the computed values is selected and record in an array. In
the last step, the element of the array which has maximum value is

selected. Max
j¼1:::N

Min
m¼1:::M

tjm þ P
i2AllsuccðjÞ

tim

 ! !

PR_TTBR III: For each task, sum of its own time and all predecessor task
times of the task is computed model by model. Again for each task, the
maximum value in the computed values is selected and record in an array. In
the last step, the element of the array which has maximum value is selected

for branching. Max
j¼1:::N

Max
m¼1:::M

tjm þ P
i2AllpredðjÞ

tim

 ! !

PR_TTBR IV: For each task, sum of its own time and all predecessor task
times of the task is computed model by model. Again for each task, the
maximum value in the computed values is selected and record in an array. In
the last step, the element of the array which has maximum value is

selected. Max
j¼1:::N

Min
m¼1:::M

tjm þ P
i2AllpredðjÞ

tim

 ! !

Constraint Programming Rules: These rules are generated using features
of the constraint programming model. The rules in this group as follow:

CP I: The task which has a maximum domain size is selected for branching.
CP II: The task which has a minimum domain size is selected for branching.

Computational Experiments

In order to investigate the advantages of CP rules in section 4, experiments are
made with 12 test problems from the literature. The results are compared with
amathematical model and standard constraint programmingmodel ofMMABLP
2. The comparisons aremade on the basis of the rules categories. Themathematical
and constraint programming models are solved with ILOG CP/Cplex 12.6 and
each of themodels is run for the each instancewith an hour time limit. Six problem
instances consisting of 28 to 297 tasks and 2 to 4 models are selected from the
literature. Task times are different for each instance. In Table 1 include a list of the
model, task and station numbers for each instance.

Results of Computational Experiments

The experimental results are discussed separately according to the rule categories.
Task Time Based Rules Results and Discussions: Results of TTBR experi-

ments are given in Table 2 According to these results, when MP and TTBRs

APPLIED ARTIFICIAL INTELLIGENCE 575

solution results are compared, TTBR rules generally reach the better solution
in a shorter time. TTBR I, II, III and V rules are efficient to find better
solutions but TTBR IV and VI are not. Same or better solutions are obtained
10 of 12 experiment results with TTBR 1, 2, 3 and 5 rules. When standard CP
solution results are compared with TTBRs results, all rule-based CP models
reach a better solution (except TTBR 4 and 6 results of Tongue_2 problem).
Consequently, task time-based rules are efficient to solve the MMALBP-2.

Precedence Relations Based Rules (PRBR): Results of PRBR experiments are
given in Table 3. As the results in Table 3. CP models with precedence relations
based rules are insufficient to solve the MMALBP-2. Although these CP models
can reach better results in some experiments, MPmodel performs better most of
the experiments. Besides, CP models with PRBRs generally reach same or better
results than standard CP model except Scholl_2, Scholl_4, and Tongue_2
problems. For these reasons, these rules must not be used for MMALBP 2.

Rules Based on Precedence Relationships and Task Time Together
(PR_TTBR): Results of PR_TTBR experiments are given in Table 4. These
rules are established combining the precedence relations and task times together.
PR_TTBR I and II rules at five experiments and PR_TTBR III and IV rules at
four experiments cannot be reached a better solution. PR_TTBRs generally find
the best solutions in long CPU times. Therefore, these rules must not be used to
solve the MMALBP 2.

Constraint Programming Rules: CP rules experimental results are given in
Table 5. MPmodel performance is better than CP I rulemodel performance. But
CP II rule model performance generally better than MP model performance.
Better results are obtained at 9 of 12 experiments with CP II rule model in
shorter time. For these two models, only CP II model can be used to solve the
MMALBP 2.

Discussions
The experimental results can be summarized as follow:

Table 1. Experimental sets.
Model # Task # Station

Heskiaoff 2 28 8
Heskiaoff 3 28 8
Sawyer 2 30 8
Sawyer 3 30 8
Kilbridge 2 45 12
Kilbridge 3 45 12
Tongue 2 70 20
Tongue 3 70 20
WeeMag 2 75 20
WeeMag 4 75 20
Scholl 2 297 45
Scholl 4 297 45

576 H. M. ALAKAŞ AND B. TOKLU

Ta
bl
e
2.

TT
BR

ru
le
s
so
lu
tio

n
re
su
lts
.

M
P

St
an
da
rd

CP
TT
BR

I
TT
BR

II
TT
BR

III

Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e
Be
st
So
lu
tio

n
CP

U
tim

e

H
es
ki
ao
ff
2

48
8

61
0

49
0

42
48
8

43
48
8

12
8

48
8

45
2

H
es
ki
ao
ff
3

66
4

2
66
5

18
0

66
4

11
66
4

18
66
4

8
Sa
w
ye
r
2

36
7

0.
7

36
7

7
36
7

0.
35

36
7

0.
4

36
7

0.
2

Sa
w
ye
r
3

65
8

2.
5

65
8

17
65
8

0.
45

65
8

0.
8

65
8

0.
4

Ki
lb
rid

ge
2

37
5

46
0

37
6

10
40

37
5

11
37
5

3
37
5

98
Ki
lb
rid

ge
3

59
7

24
0

60
2

12
3

59
7

35
90

59
8

61
59
8

96
To
ng

ue
2

40
3

14
60

40
0

29
80

39
7

25
39
9

13
39
8

68
To
ng

ue
3

61
5

10
0

61
2

52
4

60
3

19
0

60
0

10
5

60
4

26
5

W
ee
M
ag

2
15
4

23
5

15
9

28
15
6

5
15
5

53
15
5

43
7

W
ee
M
ag

4
31
1

29
0

32
2

22
40

31
2

30
4

31
1

18
6

31
1

48
8

Sc
ho

ll
2

42
42

35
50

31
99

29
18

31
70

14
38

31
65

36
6

31
62

16
16

Sc
ho

ll
4

80
21

21
50

64
95

26
59

63
96

15
51

63
88

13
00

63
93

77
7

M
P

St
an
da
rd

CP
TT
BR

IV
TT
BR

V
TT
BR

VI

Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e
Be
st
So
lu
tio

n
CP

U
tim

e

H
es
ki
ao
ff
2

48
8

61
0

49
0

42
48
9

72
48
8

47
2

48
9

23
0

H
es
ki
ao
ff
3

66
4

2
66
5

18
0

66
5

77
5

66
4

9
66
4

12
9

Sa
w
ye
r
2

36
7

0.
7

36
7

7
36
7

3.
2

36
7

0.
15

36
7

3
Sa
w
ye
r
3

65
8

2.
5

65
8

17
65
8

2.
5

65
8

0.
3

65
8

2.
5

Ki
lb
rid

ge
2

37
5

46
0

37
6

10
40

37
6

32
5

37
5

64
37
6

12
0

Ki
lb
rid

ge
3

59
7

24
0

60
2

12
3

60
0

55
5

59
8

90
60
2

24
5

To
ng

ue
2

40
3

14
60

40
0

29
80

40
6

10
40
0

26
40
5

11
8

To
ng

ue
3

61
5

10
0

61
2

52
4

60
8

22
2

60
4

24
8

60
8

22
2

W
ee
M
ag

2
15
4

23
5

15
9

28
15
8

27
1

15
6

10
15
8

17
W
ee
M
ag

4
31
1

29
0

32
2

22
40

31
5

28
31
0

19
7

31
5

35
0

Sc
ho

ll
2

42
42

35
50

31
99

29
18

31
98

32
3

31
68

17
00

31
99

18
2

Sc
ho

ll
4

80
21

21
50

64
95

26
59

64
47

17
02

64
01

10
86

64
50

60
0

APPLIED ARTIFICIAL INTELLIGENCE 577

Ta
bl
e
3.

PR
BR

ru
le
s
so
lu
tio

n
re
su
lts
.

M
P

St
an
da
rd

CP
PR
BR

I
PR
BR

II
PR
BR

III
PR
BR

IV

Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e

H
es
ki
ao
ff
2

48
8

61
0

49
0

42
48
9

22
4

48
8

50
8

48
9

41
48
9

27
H
es
ki
ao
ff
3

66
4

2
66
5

18
0

66
4

32
66
4

24
0

66
4

13
0

66
4

15
8

Sa
w
ye
r
2

36
7

0.
7

36
7

7
36
7

1.
3

36
7

0.
95

36
7

0.
3

36
7

1.
6

Sa
w
ye
r
3

65
8

2.
5

65
8

17
65
8

1.
7

65
8

2.
5

65
8

3
65
8

8
Ki
lb
rid

ge
2

37
5

46
0

37
6

10
40

37
6

18
0

37
6

11
5

37
6

8
37
6

10
5

Ki
lb
rid

ge
3

59
7

24
0

60
2

12
3

59
9

44
0

59
9

52
3

60
0

17
0

59
9

12
3

To
ng

ue
2

40
3

14
60

40
0

29
80

40
0

27
40
4

65
40
6

55
7

40
1

55
5

To
ng

ue
3

61
5

10
0

61
2

52
4

60
3

42
5

61
0

10
5

60
9

87
60
6

38
W
ee
M
ag

2
15
4

23
5

15
9

28
15
8

35
6

15
8

34
3

15
6

42
16
0

33
W
ee
M
ag

4
31
1

29
0

32
2

22
40

31
4

37
6

31
4

31
0

31
2

28
5

31
2

17
2

Sc
ho

ll
2

42
42

35
50

31
99

29
18

32
77

93
1

32
60

33
2

32
54

10
73

32
86

25
04

Sc
ho

ll
4

80
21

21
50

64
95

26
59

66
51

56
3

65
16

15
92

64
87

68
7

66
58

11
46

M
P

St
an
da
rd

CP
PR
BR

V
PR
BR

VI
PR
BR

VI
I

PR
BR

VI
II

Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e

H
es
ki
ao
ff
2

48
8

61
0

49
0

42
48
9

63
48
9

4
48
9

9
48
9

88
H
es
ki
ao
ff
3

66
4

2
66
5

18
0

66
4

10
66
4

44
66
4

61
66
4

36
7

Sa
w
ye
r
2

36
7

0.
7

36
7

7
36
7

0.
6

36
7

0.
6

36
7

0.
5

36
7

0.
5

Sa
w
ye
r
3

65
8

2.
5

65
8

17
65
8

3
65
8

2.
5

65
8

0.
4

65
8

1
Ki
lb
rid

ge
2

37
5

46
0

37
6

10
40

37
6

50
37
7

13
37
5

18
0

37
7

25
Ki
lb
rid

ge
3

59
7

24
0

60
2

12
3

60
0

54
6

59
9

10
0

59
9

70
60
1

17
0

To
ng

ue
2

40
3

14
60

40
0

29
80

40
5

21
0

40
0

17
5

40
4

25
40
4

58
To
ng

ue
3

61
5

10
0

61
2

52
4

60
9

50
60
3

12
5

60
4

23
0

60
8

22
5

W
ee
M
ag

2
15
4

23
5

15
9

28
15
8

27
15
9

42
8

15
6

54
15
8

72
W
ee
M
ag

4
31
1

29
0

32
2

22
40

31
3

48
2

31
6

19
4

31
3

31
3

31
4

17
4

Sc
ho

ll
2

42
42

35
50

31
99

29
18

31
99

12
37

32
89

51
1

32
01

10
56

32
58

38
6

Sc
ho

ll
4

80
21

21
50

64
95

26
59

65
07

12
00

66
46

14
53

64
09

98
0

66
39

10
35

578 H. M. ALAKAŞ AND B. TOKLU

Ta
bl
e
4.

PR
_T
TB
R
ru
le
s
so
lu
tio

n
re
su
lts
.

M
P

St
an
da
rd

CP
PR
_T
TB
R
I

PR
_T
TB
R
II

PR
_T
TB
R
III

PR
_T
TB
R
IV

Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e
Be
st

So
lu
tio

n
CP

U
tim

e
Be
st
So
lu
tio

n
CP

U
tim

e
Be
st
So
lu
tio

n
CP

U
tim

e

H
es
ki
ao
ff
2

48
8

61
0

49
0

42
48
9

16
48
9

9
48
8

50
5

48
9

7
H
es
ki
ao
ff
3

66
4

2
66
5

18
0

66
4

1
66
4

27
66
4

53
66
4

51
Sa
w
ye
r
2

36
7

0.
7

36
7

7
36
7

1.
69

36
7

0.
53

36
7

0.
38

36
7

0.
36

Sa
w
ye
r
3

65
8

2.
5

65
8

17
65
8

9
65
8

7
65
8

25
65
8

5
Ki
lb
rid

ge
2

37
5

46
0

37
6

10
40

37
6

56
8

37
6

18
0

37
5

52
8

37
5

65
Ki
lb
rid

ge
3

59
7

24
0

60
2

12
3

59
9

35
0

59
9

10
5

59
9

35
8

59
9

17
To
ng

ue
2

40
3

14
60

40
0

29
80

40
0

14
5

40
0

13
9

40
4

7
40
0

56
5

To
ng

ue
3

61
5

10
0

61
2

52
4

60
1

38
0

60
0

32
5

60
9

73
60
7

52
9

W
ee
M
ag

2
15
4

23
5

15
9

28
15
6

21
9

15
7

47
6

15
6

10
3

15
6

32
W
ee
M
ag

4
31
1

29
0

32
2

22
40

31
3

54
4

31
4

62
31
2

32
3

31
1

43
3

Sc
ho

ll
2

42
42

35
50

31
99

29
18

33
04

13
07

32
82

20
0

32
76

21
0

32
42

72
5

Sc
ho

ll
4

80
21

21
50

64
95

26
59

66
42

47
7

66
36

12
64

65
35

89
3

64
87

10
89

APPLIED ARTIFICIAL INTELLIGENCE 579

(A) The rules in TTBR and CP rule categories are efficient to solve the
MMALBP 2. Performances of the rules in TTBR and CP categories are
better due to obtaining better results and achieve these results in
shorter CPU time than the other rule categories.

(B) When the rules of TTBR and CP categories are analyzed, TTBR I, II,
III, V and CP II rules are more efficient than others. Especially, these
rules perform well to solve large-scale problems that have number of
task, model and station number (Scholl 2 and Scholl 4, etc.).

(C) MP model and CP models results are compared based on the number
of tasks of the experiments. The experiments that have 28 and 30 tasks
are solved in shorter CPU times and optimum solutions are obtained
with MP model. MP and CP models perform closer in 45 tasks
experiments. When problem sizes are larger, e.g., 70 and 75 tasks
experiments, CP models reach better results than MP model. These
better results are obtained with CP models in shorter CPU times. The
largest problems in experiments are Scholl 2 and Scholl 4 problems
that have 297 tasks. Better results are obtained with CP models in
shorter CPU times. According to all these results, when a problem size
is larger, smaller cycle times are obtained with CP models.

(D) The rules that select the variable considering maximum value of
selecting parameters reach smaller cycle times than the rules con-
sidering minimum values of selecting parameters (except minimum
domain rule). So that, while a rule is generated for MMALBP 2,
a variable that selecting parameter is maximum is selected firstly.

Conclusion

The variable and value ordering are a key element in CP and are named
together enumeration strategy. These steps are responsible for selecting

Table 5. CP rules solution results.
MP Standard CP CP I CP II

Best
Solution

CPU
time

Best
Solution

CPU
time

Best
Solution

CPU
time

Best
Solution

CPU
time

Heskiaoff 2 488 610 490 42 489 189 488 362
Heskiaoff 3 664 2 665 180 664 324 664 56
Sawyer 2 367 0,7 367 7 367 8,5 367 0,5
Sawyer 3 658 2,5 658 17 658 3,5 658 1,2
Kilbridge 2 375 460 376 1040 376 120 375 89
Kilbridge 3 597 240 602 123 601 340 598 220
Tongue 2 403 1460 400 2980 404 335 400 15
Tongue 3 615 100 612 524 612 61 601 85
WeeMag 2 154 235 159 28 157 74 156 18
WeeMag 4 311 290 322 2240 317 358 312 379
Scholl 2 4242 3550 3199 918 3278 1556 3175 1451
Scholl 4 8021 2150 6495 2659 6470 1634 6418 1082

580 H. M. ALAKAŞ AND B. TOKLU

a variable that search algorithm branches firstly from and which value assign
to this variable. Rules can be generated based on problem characteristics or
CP algorithm specifications. In this study, problem-based variable selection
rules and their impacts on problem solutions are investigated.

In this study, TheMMALBP 2 is considered to give answers tomain questions
that are mentioned in the introduction. As the result of computational experi-
ments, the rules in task time-based category are effective and solve the problem
in shorter time. The rules in other two categories are not more effective than CP
rules.

The common feature of the effective rules (mentioned in remark B) is that
these rules are related directly to the objective function. In MMALBP 2, the
objective function is the minimization of cycle time which is the maximum
value of station times. Station times are calculated depending on task times.
As seen in computational experiments, the rules in task time-based rules
category are produced better solution than other rules category. Finally,
according to the results of the experimental study, better solutions can be
obtained to select a variable firstly that has a maximum selecting parameter.

A straightforward direction for future work is to determine value selection
rules based on problem specifications. Variable selection rules can be studied for
other problem types (scheduling, vehicle routing, production planning, etc.)
based on problem specifications taking into consideration remarks of this study.

ORCID

Hacı Mehmet Alakaş http://orcid.org/0000-0002-9874-7588
Bilal Toklu http://orcid.org/0000-0001-5094-1501

References

Alağaş, H. M., M. Pınarbaşı, M. Yüzükırmızı, and B. Toklu. 2016. Karma modelli tip-2
montaj hattı dengeleme problemi için bir kısıt programlama modeli. Pamukkale
Üniversitesi Mühendislik Bilimleri Dergisi 22 (4):340–348.

Alağaş, H. M., M. Yüzükırmızı, and A. K. Türker. 2013. Stokastik Montaj Hatlarinin Kisit
Programlama Ve Kapali Kuyruk Ağlari Ile Dengelenmesi. Gazi Üniversitesi Mühendislik-
Mimarlık Fakültesi Dergisi 28 (2), 231-240.

Apt, K. 2003. Principles of constraint programming. Cambridge University Press, Amsterdam,
The Netherlands.

Arcus, A. L. 1965. A computer method of sequencing operations for assembly lines. International
Journal of Production Research 4 (4):259–77. doi:10.1080/00207546508919982.

Balafoutis, T., and K. Stergiou. 2010. Evaluating and improving modern variable and revision
ordering strategies in CSPs. Fundamenta Informaticae 102 (3–4):229–61. doi:10.3233/FI-
2010-307.

Banaszak, Z. A., M. B. Zaremba, and W. Muszyński. 2009. Constraint programming for
project-driven manufacturing. International Journal of Production Economics 120
(2):463–75. doi:10.1016/j.ijpe.2008.12.016.

APPLIED ARTIFICIAL INTELLIGENCE 581

https://doi.org/10.1080/00207546508919982
https://doi.org/10.3233/FI-2010-307
https://doi.org/10.3233/FI-2010-307
https://doi.org/10.1016/j.ijpe.2008.12.016

Bock, S. 2008. Using distributed search methods for balancing mixed-model assembly lines in
the automotive industry. Or Spectrum 30 (3):551-578. doi:10.1007/s00291-006-0069-9.

Bockmayr, A., and N. Pisaruk. 2001. Solving assembly line balancing problems by combining
IP and CP. arXiv Preprint Cs/0106002.

Bui, Q. T., Q. D. Pham, and Y. Deville. 2013. Solving the agricultural land allocation problem
by constraint-based local search. Paper presented at International Conference on Principle
and Practice of Constraint Programming, Uppsala, Sweden.

Bukchin, Y., and T. Raviv. 2018. Constraint programming for solving various assembly line
balancing problems. Omega 78:57–68. doi:10.1016/j.omega.2017.06.008.

Christodoulou, G., and P. Stamatopoulos. 2002. Crew assignment by constraint logic
programming. Paper presented at proceedings of the 2nd hellenic conference on artificial
intelligence SETN-2002, Thessaloniki, Greece.

Crawford, B., R. Soto, C. Castro, and E. Monfroy. 2011. A hyperheuristic approach for
dynamic enumeration strategy selection in constraint satisfaction. Paper presented at the
International Work-Conference on the Interplay Between Natural and Artificial
Computation, La Palma, Canary Islands.

Erel, E., and H. Gokcen. 1999. Shortest-route formulation of mixed-model assembly line
balancing problem. European Journal of Operational Research 116 (1):194–204.
doi:10.1016/S0377-2217(98)00115-5.

Gokcen, H., and E. Erel. 1997. A goal programming approach to mixed-model assembly line
balancing problem. International Journal of Production Economics 48 (2):177–85.
doi:10.1016/S0925-5273(96)00069-2.

Gokcen, H., and E. Erel. 1998. Binary integer formulation for mixed-model assembly line
balancing problem. Computers & Industrial Engineering 34 (2):451–61. doi:10.1016/S0360-
8352(97)00142-3.

Grimes, D., and R. J. Wallace. 2007. Sampling strategies and variable selection in weighted
degree heuristics. In Principles and practice of constraint programming–CP. Springer, 831-
838, Rhoda Island, USA.

Haq, A. N., K. Rengarajan, and J. Jayaprakash. 2006. A hybrid genetic algorithm approach to
mixed-model assembly line balancing. International Journal of Advanced Manufacturing
Technology 28 (3–4):337–341. doi:10.1007/s00170-004-2373-3.

He, F., and R. Qu. 2012. A constraint programming based column generation approach to nurse
rostering problems. Computers & Operations Research 39 (12):3331–43. doi:10.1016/j.
cor.2012.04.018.

Hwang, R., and H. Katayama. 2010. Integrated procedure of balancing and sequencing for
mixed-model assembly lines: A multi-objective evolutionary approach. International
Journal of Production Research 48 (21):6417–41. doi:10.1080/00207540903289755.

Lee, J. E., and K. D. Lee. 2013. Modeling and optimization of closed-loop supply chain
considering order or next arrival of goods. International Journal of Innovative Computing,
Information and Control 9 (9):3639–54.

Mamun, A. A., A. A. Khaled, S. M. Ali, and M. M. Chowdhury. 2012. A heuristic approach
for balancing mixed-model assembly line of type I using genetic algorithm. International
Journal of Production Research 50 (18):5106–16. doi:10.1080/00207543.2011.643830.

Manavizadeh, N., M. Rabbani, D. Moshtaghi, and F. Jolai. 2012. Mixed-model assembly line
balancing in the make-to-order and stochastic environment using multi-objective evolutionary
algorithms. Expert Systems with Applications 39 (15):12026–31. doi:10.1016/j.eswa.2012.03.044.

Matanachai, S., and C. A. Yano. 2001. Balancing mixed-model assembly lines to reduce work
overload. IIE Transactions 33 (1):29–42. doi:10.1080/07408170108936804.

582 H. M. ALAKAŞ AND B. TOKLU

https://doi.org/10.1007/s00291-006-0069-9
https://doi.org/10.1016/j.omega.2017.06.008
https://doi.org/10.1016/S0377-2217(98)00115-5
https://doi.org/10.1016/S0925-5273(96)00069-2
https://doi.org/10.1016/S0360-8352(97)00142-3
https://doi.org/10.1016/S0360-8352(97)00142-3
https://doi.org/10.1007/s00170-004-2373-3
https://doi.org/10.1016/j.cor.2012.04.018
https://doi.org/10.1016/j.cor.2012.04.018
https://doi.org/10.1080/00207540903289755
https://doi.org/10.1080/00207543.2011.643830
https://doi.org/10.1016/j.eswa.2012.03.044
https://doi.org/10.1080/07408170108936804

McMullen, P. R., and G. V. Frazier. 1997. A heuristic for solving mixed-model line balancing
problems with stochastic task durations and parallel stations. International Journal of
Production Economics 51 (3):177–90. doi:10.1016/S0925-5273(97)00048-0.

McMullen, P. R., and G. V. Frazier. 1998. Using simulated annealing to solve a multiobjective
assembly line balancing problem with parallel workstations. International Journal of
Production Research 36 (10):2717–41. doi:10.1080/002075498192454.

McMullen, P. R., and P. Tarasewich. 2003. Using ant techniques to solve the assembly line
balancing problem. Iie Transactions 35 (7):605–17. doi:10.1080/07408170304354.

Mendes, A. R., A. L. Ramos, A. S. Simaria, and P. M. Vilarinho. 2005. Combining heuristic
procedures and simulation models for balancing a PC camera assembly line. Computers &
Industrial Engineering 49 (3):413–31. doi:10.1016/j.cie.2005.07.003.

Özcan, U., and B. Toklu. 2009. Balancing of mixed-model two-sided assembly lines.
Computers & Industrial Engineering 57 (1):217–27. doi:10.1016/j.cie.2008.11.012.

Ozfirat, P. M., and I. Ozkarahan. 2010. A constraint programming heuristic for
a heterogeneous vehicle routing problem with split deliveries. Applied Artificial
Intelligence 24 (4):277–94. doi:10.1080/08839511003715196.

Öztürk, C., S. Tunalı, B. Hnich, and M. A. Örnek. 2013. Balancing and scheduling of flexible
mixed model assembly lines. Constraints 18 (3):434–69. doi:10.1007/s10601-013-9142-6.

Özturk, C., S. Tunali, B. Hnich, and A. Ornek. 2015. Cyclic scheduling of flexible mixed
model assembly lines with parallel stations. Journal of Manufacturing Systems 36:147–58.
doi:10.1016/j.jmsy.2015.05.004.

Pastor, R., L. Ferrer, and A. García. 2007. Evaluating optimization models to solve SALBP. In
Computational Science and Its Applications–ICCSA. Springer, 791-803, Kuala Lumpur,
Malaysia.

Pınarbaşı, M., M. Yüzükırmızı, and B. Toklu. 2016. Variability modelling and balancing of
stochastic assembly lines. International Journal of Production Research 54 (19):5761–82.
doi:10.1080/00207543.2016.1177236.

Qu, R., and F. He. 2009. A hybrid constraint programming approach for nurse rostering
problems. In Applications and innovations in intelligent systems XVI. Springer, 211-224,
London, United Kingdom.

Rekiek, B., P. De Lit, and A. Delchambre. 2000. Designing mixed-product assembly lines. Ieee
Transactions on Robotics and Automation 16 (3):268–80. doi:10.1109/70.850645.

Rodrigues, L. C. A., and M. Leandro. 2007. Enhancing supply chain decisions using constraint
programming: A case study. In MICAI 2007 advances in artificial intelligence, 1110-1121,
Aguascalientes, Mexico.

Rousseau, L. M., M. Gendreau, G. Pesant, and F. Focacci. 2004. Solving VRPTWs with
constraint programming based column generation. Annals of Operations Research 130
(1–4):199–216. doi:10.1023/B:ANOR.0000032576.73681.29.

Scholl, A. 1999. Balancing and sequencing of assembly lines. Heidelberg: Physica-Verlag.
Sel, C., B. Bilgen, J. M. Bloemhof-Ruwaard, and J. G. A. J. van der Vorst. 2015. Multi-bucket

optimization for integrated planning and scheduling in the perishable dairy supply chain.
Computers & Chemical Engineering 77:59–73. doi:10.1016/j.compchemeng.2015.03.020.

Serra, T., G. Nishioka, and F. J. M. Marcellino. 2012. The offshore resources scheduling
problem: Detailing a constraint programming approach. Paper presented at Principles and
Practice of Constraint Programming, Springer, 823-839, Quebec City, Canada.

Siala, M., E. Hebrard, and M. J. Huguet. 2015. A study of constraint programming heuristics
for the car-sequencing problem. Engineering Applications of Artificial Intelligence 38:34–44.
doi:10.1016/j.engappai.2014.10.009.

APPLIED ARTIFICIAL INTELLIGENCE 583

https://doi.org/10.1016/S0925-5273(97)00048-0
https://doi.org/10.1080/002075498192454
https://doi.org/10.1080/07408170304354
https://doi.org/10.1016/j.cie.2005.07.003
https://doi.org/10.1016/j.cie.2008.11.012
https://doi.org/10.1080/08839511003715196
https://doi.org/10.1007/s10601-013-9142-6
https://doi.org/10.1016/j.jmsy.2015.05.004
https://doi.org/10.1080/00207543.2016.1177236
https://doi.org/10.1109/70.850645
https://doi.org/10.1023/B:ANOR.0000032576.73681.29
https://doi.org/10.1016/j.compchemeng.2015.03.020
https://doi.org/10.1016/j.engappai.2014.10.009

Simaria, A. S., and P. M. Vilarinho. 2004. A genetic algorithm based approach to the
mixed-model assembly line balancing problem of type II. Computers & Industrial
Engineering 47 (4):391–407. doi:10.1016/j.cie.2004.09.001.

Sivasankaran, P., and P. Shahabudeen. 2014. Literature review of assembly line balancing
problems. International Journal of Advanced Manufacturing Technology 73 (9–12):1665–-
94. doi:10.1007/s00170-014-5944-y.

Soto, R., B. Crawford, S. Misra, W. Palma, E. Monfroy, C. Castro, and F. Paredes. 2013.
Choice functions for autonomous search in constraint programming: Ga Vs. Pso. Tehnicki
Vjesnik-Technical Gazette 20 (4):621–27.

Soto, R., B. Crawford, W. Palma, E. Monfroy, R. Olivares, C. Castro, and F. Paredes. 2015.
Top-k based adaptive enumeration in constraint programming. Mathematical Problems in
Engineering 2015:1–12. doi:10.1155/2015/580785.

Soto, R., H. Kjellerstrand, O. Durán, B. Crawford, E. Monfroy, and F. Paredes. 2012. Cell
formation in group technology using constraint programming and boolean satisfiability.
Expert Systems with Applications 39 (13):11423–27. doi:10.1016/j.eswa.2012.04.020.

Tiacci, L. 2012. Event and object oriented simulation to fast evaluate operational objectives of
mixed model assembly lines problems. Simulation Modelling Practice and Theory 24:35–48.
doi:10.1016/j.simpat.2012.01.004.

Topaloglu, S., L. Salum, and A. A. Supciller. 2012. Rule-based modeling and constraint
programming based solution of the assembly line balancing problem. Expert Systems
with Applications 39 (3):3484–93. doi:10.1016/j.eswa.2011.09.038.

Venkatesh, J. V. L., and B. M. Dabade. 2008. Evaluation of performance measures for represent-
ing operational objectives of a mixed model assembly line balancing problem. International
Journal of Production Research 46 (22):6367–88. doi:10.1080/00207540701383164.

Wallace, R. J., and D. Grimes. 2008. Experimental studies of variable selection strategies based on
constraint weights. Journal of Algorithms 63 (1–3):114–29. doi:10.1016/j.jalgor.2008.02.009.

Yagmahan, B. 2011. Mixed-model assembly line balancing using a multi-objective ant colony
optimization approach. Expert Systems with Applications 38 (10):12453–61. doi:10.1016/j.
eswa.2011.04.026.

Yang, C. J., J. Gao, and L. Y. Sun. 2013. A multi-objective genetic algorithm for mixed-model
assembly line rebalancing. Computers & Industrial Engineering 65 (1):109–16. doi:10.1016/
j.cie.2011.11.033.

584 H. M. ALAKAŞ AND B. TOKLU

https://doi.org/10.1016/j.cie.2004.09.001
https://doi.org/10.1007/s00170-014-5944-y
https://doi.org/10.1155/2015/580785
https://doi.org/10.1016/j.eswa.2012.04.020
https://doi.org/10.1016/j.simpat.2012.01.004
https://doi.org/10.1016/j.eswa.2011.09.038
https://doi.org/10.1080/00207540701383164
https://doi.org/10.1016/j.jalgor.2008.02.009
https://doi.org/10.1016/j.eswa.2011.04.026
https://doi.org/10.1016/j.eswa.2011.04.026
https://doi.org/10.1016/j.cie.2011.11.033
https://doi.org/10.1016/j.cie.2011.11.033

	Abstract
	Introduction
	Background: Constraint Programming (CP)
	Constraint Solving

	Mixed Model Assembly Line Balancing Problem
	Mixed Model Assembly Line Balancing Problem Type II Constraint Programming Model

	Variable Selection Rules for Mixed Model Assembly Line Balancing Problem Type II
	Computational Experiments
	Results of Computational Experiments
	Discussions

	Conclusion
	References

