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On Constraint Manifolds of Lorentz Sphere

Buşra Aktaş, Olgun Durmaz and Hal˙t Gündoğan

Abstract

The expression of the structure equation of a mechanism is signifi-
cant to present the last position of the mechanism. Moreover, in order
to attain the constraint manifold of a chain, we need to constitute the
structure equation. In this paper, we determine the structure equations
and the constraint manifolds of a spherical open-chain in the Lorentz
space. The structure equations of spherical open chain with reference to
the causal character of the first link are obtained. Later, the constraint
manifolds of the mechanism are determined by means of these equa-
tions. The geometric constructions corresponding to these manifolds
are studied.

1 Introduction

Kinematics is a branch of physics and a subsection of classical mechanics in-
terested in the geometrically possible motion of a body or a system of bodies
without consideration of the forces included, i.e., causes and effects of the mo-
tions. The study of kinematics can be summarized into purely mathematical
representations that can be used to compute various situations of the motions
such as acceleration, time, displacement, velocity, and trajectory. Kinematics
aims to describe the spatial positions of bodies or the systems of material par-
ticles, the velocity of particles, and the rate at which their velocity changes
([1], [3] and [9]).
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In classical mechanism, an object on which the distance between two points
never changes is called as a rigid body. The motion of a rigid body is repre-
sented as a continuous sequence of displacement D (t) : F →M. The frame F
is fixed, but the position of the moving frame M varies with the parameter t.

Spherical mechanism is a mechanical system in which pin-jointed spatial
links are used to move the body through a 3-dimensional way. In spherical
mechanism, the axis of revolute joint coincides with the center of sphere [12].

In a chain, the position of each link relative to its neighbor is defined by
the coordinate transformations. The sequence of links has a corresponding
sequence of the transformations. The position of the last link of the chain
related to the base is determined by the product of the transformations. An
equation of the chain is obtained by equating this product to a specification
of the position of the end link. This equation is termed by the structure
equation for this mechanism. Why is there a need for the equation? The
structure equation assists to compute the last position of the mechanism in
terms of the joint parameters or to identify the joint movement, which is
required to determine the last position. On the contrary, there is no technique
describing the structure equation on the Lorentz sphere. For this reason, the
first goal of this study is to present how these structure equations are described
in the Lorentz sphere and the last position for the mechanism in this sphere
is designated.

A surface, hypersurface, or parameterized curve in the image space is rep-
resented as the structure equation for an open chain written in quaternion
form. This manifold is called the constraint manifold for this mechanism. Ge-
ometrically, the constraint impressed in the last situations by the rest of the
mechanism is expressed as constraint manifolds [12]. The constraint manifold
defines the set of all movements that the mechanism can make according to
the joints used and the lengths of the links. It is used in explaining robotic
motion, manipulation planning, kinodynamic planning and physical motion of
human skeleton ([2] and [4]). McCarthy [12] investigated the constraint man-
ifolds of the 2R and 3R planar and spherical open chains. In 2018, we [6] gave
the constraint manifolds of the 2R and 3R planar open chains on the Lorentz
plane. Another aim of this paper is to study the constraint manifolds of the
2R and 3R open chains on the Lorentz sphere.

2 Preliminaries

A link is a nominally rigid body that possesses at least two loops which are
attachment points to other links via joints. Some common types of links are
binary link (one with two loops), ternary link (one with three loops), quater-
nary link (one with four loops), etc. These joints are a connection between
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two or more links that satisfy a certain or potential motion between the con-
nected links. There are joints different from one another such as revolute (R) ,
prismatic (P ) , cylindrical (C), and spherical or ball (S) joints. The joint
parameters can parameterize the rigid motion of a body part.

A combination of the links and joints interlocked in a path to supply a
controlled output motion in response to a provided input motion is called
a kinematic chain. In mechanical engineering, biomechanics, and robotics,
kinematic chains help to characterize the motion of systems obtained from
attached bodies such as a robotic arm, human skeleton, or an engine. The
kinematic chains are either open or closed. An open kinematic chain is a
mechanism in which the last link has a part, such as the head or hand. If the
series chain closes on itself, the chain is called a closed kinematic chain. For
more details, we refer the readers to ([9], [12] and [16]).

Throughout this paper, we will make some computations by using open
chains with binary links and revolute joints.

Lorentz inner product on R3 is symbolized as

〈, 〉L : R3 × R3 → R
(x, y) → 〈x, y〉L = −x1y1 + x2y2 + x3y3.

This space is called as the 3-dimensional Lorentz space and denoted by R3
1 or

L3. A vector x = (x1, x2, x3) ∈ L3 is said to be timelike if 〈x, x〉L < 0, spacelike
if 〈x, x〉L > 0 and lightlike (null) if 〈x, x〉L = 0 and x 6= 0. The vector x = 0 is

said to be spacelike. The norm of x is identified to be ‖x‖L =
√
〈x, x〉L. There

exist three situations for ‖x‖L: i) positive, ii) zero, iii) positive imaginary.
In case ‖x‖L is positive imaginary, the expression ‖|x|‖ is written instead of
‖x‖L . In L3, Lorentz and Hyperbolic unit spheres are defined as

S2
1 (1) =

{
x ∈ L3 | 〈x, x〉L = 1

}
H2

0 (1) =
{
x ∈ L3 | 〈x, x〉L = −1

}
,

respectively. For any x = (x1, x2, x3) and y = (y1, y2, y3) ∈ L3, Lorentzian
cross product is defined by

x×L y = (x3y2 − x2y3, x3y1 − x1y3, x1y2 − x2y1) .

Let V be a vector subspace of L3. V is called spacelike if every vector in
V is spacelike, timelike if V has a timelike vector, or lightlike otherwise.

Let φ be an angle between the vectors x and y. There exist the following
equalities:

1. For the spacelike vectors x, y in L3 that span spacelike vectors subspace

〈x, y〉L = ‖x‖L ‖y‖L cosφ,

‖x×L y‖L = ‖x‖L ‖y‖L sinφ.
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2. For the timelike vectors x, y in L3,

〈x, y〉L = −‖|x|‖ ‖|y|‖ coshφ,

‖x×L y‖L = ‖|x|‖ ‖|y|‖ sinhφ.

3. For the spacelike vectors x, y in L3 that span a timelike vector subspace

|〈x, y〉L| = ‖x‖L ‖y‖L coshφ,

‖x×L y‖L = ‖x‖L ‖y‖L sinhφ

([13] and [15]).
Lorentzian inner product in Ln is expressed as follows:

〈x, y〉L = −x1y1 +

n∑
v=2

xvyv,

where x = (x1, ..., xn) and y = (y1, ..., yn) are the vectors in Ln.
Suppose that Rm×n is the set of matrices of m rows and n columns. For

A = [agh] ∈ Rm×n and B = [bhr] ∈ Rn×l, Lorentzian matrix multiplication of
the matrices A and B is determined as below:

A ·L B =

[
−ag1b1r +

n∑
h=2

aghbhr

]
.

Note that A·LB is an m×l matrix. The n×n L-identity matrix with reference
to the Lorentzian matrix multiplication denoted by In is defined by

In =


−1 0 ... 0
0 1 ... 0
. . ... .
. . ... .
. . ... .
0 0 ... 1


n×n

.

If the condition A ·LB = B ·LA = In is satisfied, an n×n matrix A is termed
by L−invertible, where B is the n × n matrix. Then, B is called L−inverse
and is symbolized as A−1. AT = [ahg] ∈ Rn×m is denoted by the transpose
of a matrix A = [agh] ∈ Rm×n. In case of AT = A−1, A ∈ Rn×n is called an
L−orthogonal matrix. Consider that L−orthogonal matrix A satisfies detA =
∓1. We call L−orthogonal matrices with detA = −1 rotations and detA = 1
reflections ([8] and [10]).

Assume that the transformation f is determined by f : Ln → Ln, f (x) =
A ·Lx+d where A is an n×n matrix and d is an n−dimensional vector. When
AT = A−1, f preserves the distances which are measured between the points
[8].
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Definition 1. Let α be a curve in L3. The causal character of α is the same
as the causal character of α′, where α′ is the first derivative of the curve α
[11].

A split quaternion is determined by the base {1, i, j, k} , where i, j, k satisfy
the qualities

i2 = −1 j2 = 1 k2 = 1
ij = k jk = −i ki = j
ji = −k kj = i ik = −j.

Then, a split quaternion p can be represented as p = q4 + q1i + q2j + q3k,
where q1, q2, q3, q4 are real scalars. The conjugate of p is symbolized as p. It
is p = q4 − q1i− q2j − q3k. The norm of p is expressed as follows:

N (p) =
√
q24 + q21 − q22 − q23 .

A rotation about the origin is defined by A ·L x = X, where A is an 3× 3
L−orthogonal matrix and x ∈ L3. The L−Cayley formula is defined as

A = (I −B)
−1 ·L (I +B)

or its equivalent form

A = (I +B) ·L (I −B)
−1
,

where B is a skew-symmetric matrix. A 3 × 3 skew-symmetric matrix B has
only three independent elements, i.e.,

B =

 0 b3 −b2
−b3 0 −b1
b2 b1 0

 .
These elements can be assembled into the vector b = (b1, b2, b3) . Here, the
matrix B satisfies the below equality:

B ·L y = b×L y, (1)

where y is an arbitrary vector of L3. Given the L−orthogonal matrix A, we
have the following equality by considering the L−Cayley formula:

X − x = B ·L (X + x) .

If we use the equality (1), we can write

X − x = b×L (X + x) .

This equation is called the L−Rodrigues equation for rotations, and the vector
b is termed by the L−Rodrigues vector.
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Theorem 1. In L3, the rotation matrix A transforms the timelike vectors to
timelike vectors, the spacelike vectors to spacelike vectors, and the null vectors
to null vectors [14].

Let us take the L−Rodrigues equation X − x = b×L (X + x) . There exist
two situations with regard to the causal characters of the vectors b and x:

Situation I. Let b be a timelike vector and x be any vector in L3. Assume
that x∗ and X∗ are projections of x and X onto a plane perpendicular to b.
In this case, it is seen that

‖b‖L = tan
φ

2
,

where φ is the angle between x∗ and X∗ spacelike vectors in spacelike subspace.
Let the unit vector in the direction of b be s = (sx, sy, sz) . Then the compo-
nents of the vector b, or equivalently the components of the skew-symmetric
matrix B are

b1 =

(
tan

φ

2

)
sx,

b2 =

(
tan

φ

2

)
sy,

b3 =

(
tan

φ

2

)
sz.

These are called timelike L−Rodrigues parameters. The L−Cayley formula
for the L−orthogonal matrix A can be written in terms of the rotation angle
φ and the unit timelike vector s determined from

B =

(
tan

φ

2

)
S.

The result is:

A =

((
cos

φ

2

)
I −

(
sin

φ

2

)
S

)−1
·L
((

cos
φ

2

)
I +

(
sin

φ

2

)
S

)
.

If C =
((

cos φ2

)
I +

(
sin φ

2

)
S
)

is taken, the constants

c0 = cos
φ

2
,

c1 =

(
sin

φ

2

)
sx,

c2 =

(
sin

φ

2

)
sy,
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and

c3 =

(
sin

φ

2

)
sz

are called timelike L−Euler parameters of A. Therefore, the rotations in L3

can be defined by the split quaternion

q = cos
φ

2
+ sx

(
sin

φ

2

)
i+ sy

(
sin

φ

2

)
j + sz

(
sin

φ

2

)
k

[10].
Situation II. Let b be a spacelike vector and x be a timelike vector in

L3. Suppose that b is perpendicular to x. In this case, the following equality
is obtained:

‖b‖L = tanh
φ

2
,

where φ is the angle between x and X timelike vectors. Let the unit vector in
the direction of b be s = (sx, sy, sz) . Then the components of the vector b are

b1 =

(
tanh

φ

2

)
sx,

b2 =

(
tanh

φ

2

)
sy,

b3 =

(
tanh

φ

2

)
sz.

These are called L−Rodrigues parameters. Similar to the first situation, the
constants that are called L−Euler parameters of A are obtained as follows:

c0 = cosh
φ

2
,

c1 =

(
sinh

φ

2

)
sx,

c2 =

(
sinh

φ

2

)
sy,

c3 =

(
sinh

φ

2

)
sz.

Thus, the rotations in L3 can be identified by the split quaternion

q = cosh
φ

2
+ sx

(
sinh

φ

2

)
i+ sy

(
sinh

φ

2

)
j + sz

(
sinh

φ

2

)
k
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[14].
Let Z = Z4 +Z1i+Z2j+Z3k be a split quaternion. Each split quaternion

can be identified with a 4-dimensional vector Z = (Z1, Z2, Z3, Z4) . For W =
W4+W1i+W2j+W3k, the product of two split quaternions W and Z is given
by the matrix product

WZ = W+ ·L Z

or
WZ = Z− ·LW,

where

W+ =


−W4 W3 −W2 W1

−W3 W4 −W1 W2

W2 W1 W4 W3

W1 W2 W3 W4

 ,

Z− =


−Z4 −Z3 Z2 Z1

Z3 Z4 Z1 Z2

−Z2 −Z1 Z4 Z3

Z1 Z2 Z3 Z4

 .
W+ and Z− are defined as follows: i, j, k being the basis vectors of split
quaternions, each column of the matrix W+ is the result of the product of W
on the right with basis bivectors −i, j, k, 1 and each column of the matrix Z−

is the result of the product of Z on the left with the basis bivectors −i, j, k
and 1 ([10] and [14]).

Theorem 2. Suppose that P (x1, x2, x3) is a point on the Lorentzian revolu-
tion ellipsoid specified by the number b1 > 0, and this ellipsoid has the foci
F1 (0, 0, b3) and F2 (0, 0,−b3) which are on the spacelike axis. Hence, the below
expression exists

−x
2
1

b22
+
x22
b22

+
x23
b21

= 1,

where b1, b2, b3 satisfy the condition b21 = b22 + b23 [7].

Theorem 3. Assume that P (x1, x2, x3) is a point on the Lorentzian revolution
hyperboloid identified by the number b1 > 0, and this hyperboloid has the foci
F1 (0, 0, b3) and F2 (0, 0,−b3) which are on the spacelike axis. Thus, there is
the following equality

x21
b22
− x22
b22

+
x23
b21

= 1,

where b1, b2, b3 satisfy b23 = b21 + b22 [7].
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Acknowledgement 1. The Lorentzian revolution ellipsoid and hyperboloid
are indicated by L−ellipsoid and L−hyperboloid in the study, respectively.

Note that the mechanism is designated by an open chain of rigid bodies
Av, v = 1, 2, ..., n. Each body of the chain expects the last has two joints
attaching it to the bodies before and after it. Consider that these joints on
Av are symbolized as ov and tv. In this case, the mechanism is constituted by
attaching the joint tv−1 of the body Av−1 to ov of Av. A1 is on the ground
in order that o1 coincides with the ground point to. The link An has only one
joint on.

Assume that Tv is a reference frame connected to the body Av at the joint
tv. Then, the transformation Sv : Tv−1 → Tv is determined by the position
of Av relative to Av−1. The frame T0 is located on the ground frame with its
origin at t0. The transformation H : On →M is described by the position of
the reference frame M in the last link. The beginning position of the chain is
indicated by G : F → T0. With these conventions, a sequence of coordinate
transformations between M and the base frame F is attained. This sequence
is named by the structure equation of the mechanism. The structure equation
is identified by

D = GS1S2...SnH.

The equation determines the position of M relative to F with regard to the
relative positions of each body of the mechanism.

Consider the coordinate frame Ov at every point ov. This transformation
Sv consists of the product Sv = ZvXv, where Zv : Tv−1 → Ov and Xv : Ov →
Tv are called joint and link transformations, respectively. In this case, the
displacement D : F →M can be stated by

D = GZ1X1Z2X2...Zn−1Xn−1ZnH,

where G,H and Xv are constant [12].

3 The L−Structure Equations on S2
1 (1) for an Open Chain

Let us consider the unit Lorentz sphere

S2
1 (1) =

{
x = (x1, x2, x3) | −x21 + x22 + x23 = 1

}
⊂ L3

and a geodesic µ of this sphere.
i) if µ is timelike, it is a parametrization of one branch of a hyperbola in

L3,
ii) if µ is spacelike, it is a periodic parametrization of an ellipse in L3 (see

Fig.1.) [13].
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Now, let us investigate the structure equations for an open chain by means
of the spacelike and timelike geodesics on the Lorentz sphere. The structure
equation on the Lorentz sphere is called L−structure equation throughout this
paper. There exist two situations according to the first link considered.

Case I. Let the first link be on the spacelike geodesic. Any link on this
chain is the link Av with two coordinate frames Ov and Tv at points ov and tv.
Suppose that the centre of the Lorentz sphere S2

1 (1) is c. In order to calculate
the motion on this sphere, let us consider that the x−axis is normal to the
plane in the direction (ov − c)×L (tv − c) , and the length of the link Av is the
angle ψv between the z − axes of the frames Ov and Tv. Hence, the matrix
form of the rotation motion between the above mentioned frames is obtained
in the following way [5]:

[Xv] =

 −1 0 0
0 cosψv − sinψv
0 sinψv cosψv

 .
This rotation motion is on the same spacelike geodesic. The rotation matrix
with the hyperbolic angle φv about z−axis is defined as [5]

[Zv] =

 − coshφv sinhφv 0
− sinhφv coshφv 0

0 0 1

 ,
where φv is the hyperbolic angle between the frames Tv−1 and Ov. This
rotation motion is a movement from a spacelike geodesic to another spacelike
geodesic.
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The motion of this link is determined by the following matrix form:

[Sv] = [Zv] ·L [Xv]

=

 − coshφv sinhφv 0
− sinhφv coshφv 0

0 0 1

 ·L
 −1 0 0

0 cosψv − sinψv
0 sinψv cosψv


=

 − coshφv sinhφv cosψv − sinhφv sinψv
− sinhφv coshφv cosψv − coshφv sinψv

0 sinψv cosψv

 .
Using the above mentioned matrix multiplication, the L−structure equation
for the spherical open chain is obtained by the equality

[D] = [S1] ·L ... ·L [Sn] ,

where [D] is the orientation of the moving frame M .
Case II. Assume that the link Av with the frames Ov and Tv at points ov

and tv is on the timelike geodesic. Take into consideration the y−axis being
normal to the plane in the direction (ov − c)×L (tv − c) , where the centre of
S2
1 (1) is c. Let us determine the hyperbolic angle αv between the z−axes of

the frames Ov and Tv. The matrix form of the rotation motion between the
above mentioned frames is written as below:

[Yv] =

 − coshαv 0 sinhαv
0 1 0

− sinhαv 0 coshαv

 .
Note that this rotation motion with the hyperbolic angle αv is on the same
timelike geodesic. On the other hand, the rotation matrix with the angle φv
between the frames Tv−1 and Ov about z−axis is

[Zv] =

 − coshφv sinhφv 0
− sinhφv coshφv 0

0 0 1

 .
A movement from a timelike geodesic to another timelike geodesic is deter-
mined by this rotation motion.

The below mentioned matrix form expresses the motion of this link:

[Sv] = [Zv] ·L [Yv]

=

 − coshφv sinhφv 0
− sinhφv coshφv 0

0 0 1

 ·L
 − coshαv 0 sinhαv

0 1 0
− sinhαv 0 coshαv


=

 − coshφv coshαv sinhφv coshφv sinhαv
− sinhφv coshαv coshφv sinhφv sinhαv
− sinhαv 0 coshαv

 .
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Similarly, the L−structure equation for this situation is calculated by the
equality

[D] = [S1] ·L ... ·L [Sn] .

Case I and II show that if the link established on the Lorentz sphere is on
the spacelike (resp. timelike) geodesic, then this link makes all the movements
on the spacelike (resp. timelike) geodesic.

4 L−Constraint Manifolds on S2
1 (1)

In this chapter, we will calculate the constraint manifolds for cases I and II,
and make geometric comments. The constraint manifold on the Lorentz sphere
is symbolized as the L−constraint manifold.

Consider that the first link of the chain is on the spacelike geodesic. There
exist two axes on this link which intersects at a point c and intersects the
unit Lorentz sphere at points o1 and t1. Furthermore, the angle between these
axes is ψ1. We know that the x-axis is normal to the plane in the direction
(o1 − c) ×L (t1 − c) . In this case, let us connect the moving body M at t1,
and attach o1 to t0 which is fixed in the base. Assume that the rotation of the
first link and the rotation of the moving body are symbolized as φ1 and φ2,
respectively. Taking advantage of these conventions, the L−structure equation
for the 2R spherical open chain in case I is briefly stated by

[D] = [Z1] ·L [X1] ·L [Z2] .
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The displacement [D] of the chain can be written in the matrix form as below:

[D] =

 − coshφ1 sinhφ1 0
− sinhφ1 coshφ1 0

0 0 1

 ·L
 −1 0 0

0 cosψ1 − sinψ1

0 sinψ1 cosψ1


·L

 − coshφ2 sinhφ2 0
− sinhφ2 coshφ2 0

0 0 1

 .
The split quaternion form of this L−structure equation is easily attained as
below:

D = Z1X1Z2.

The right side of the above mentioned expression is the product

D =

(
0, 0, sinh

(
φ1
2

)
, cosh

(
φ1
2

))(
sin

(
ψ1

2

)
, 0, 0, cos

(
ψ1

2

))
(2)(

0, 0, sinh

(
φ2
2

)
, cosh

(
φ2
2

))
.

If we widen the split quaternion product, the split quaternion form is found
as below:

D (φ1, φ2) = (D1 (φ1, φ2) , D2 (φ1, φ2) , D3 (φ1, φ2) , D4 (φ1, φ2)) ,

where

D1 (φ1, φ2) = sin

(
ψ1

2

)
cosh

(
φ1 − φ2

2

)
,

D2 (φ1, φ2) = sin

(
ψ1

2

)
sinh

(
φ1 − φ2

2

)
,

D3 (φ1, φ2) = cos

(
ψ1

2

)
sinh

(
φ1 + φ2

2

)
,

D4 (φ1, φ2) = cos

(
ψ1

2

)
cosh

(
φ1 + φ2

2

)
.

If φ1 and φ2 are eliminated, the algebraic equation of the parameterized surface
is obtained in the following way:

cos2
(
ψ1

2

)
D2

1 − cos2
(
ψ1

2

)
D2

2 + sin2

(
ψ1

2

)
D2

3 − sin2

(
ψ1

2

)
D2

4 = 0. (3)

The positions D = (D1, D2, D3, D4) that satisfy this equation are reachable
by the end link of the 2R chain.
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Assume that the coordinates of points in L4 is presented by the vector
X = (x1, x2, x3, x4). Thus, (3) can be expressed as the canonical form of a
quadric hypercone:

XT ·L [Q] ·L X = 0,

where

[Q] =


cos2

(
ψ1

2

)
0 0 0

0 − cos2
(
ψ1

2

)
0 0

0 0 sin2
(
ψ1

2

)
0

0 0 0 − sin2
(
ψ1

2

)

 .

Thus, the equation (3) is written as below:

x21 − x22 + tan2

(
ψ1

2

)
x23 − tan2

(
ψ1

2

)
x24 = 0. (4)

If the intersection of the equality (4) with the hyperplane x4 = 1 is computed,
it is clear that the set of L−hyperboloids

x21 − x22 + tan2

(
ψ1

2

)
x23 = tan2

(
ψ1

2

)
or

x21

tan2
(
ψ1

2

) − x22

tan2
(
ψ1

2

) + x23 = 1

that have the foci F1 =

(
0, 0,

√
1 + tan2

(
ψ1
2

))
and F2 =

(
0, 0,−

√
1 + tan2

(
ψ1
2

))
is found.

Presently, we will calculate the L−constraint manifold of the chain for case
II. Taking the given basic information into consideration, the L−structure
equation of the 2R spherical chain becomes

[D] = [Z1] ·L [Y1] ·L [Z2] .

The right side of this expression is the following matrix product:

[D] =

 − coshφ1 sinhφ1 0
− sinhφ1 coshφ1 0

0 0 1

 ·L
 − coshα1 0 sinhα1

0 1 0
− sinhα1 0 coshα1


·L

 − coshφ2 sinhφ2 0
− sinhφ2 coshφ2 0

0 0 1

 .



Structure Equations and Constraint Manifolds 29

The split quaternion form of this L−structure equation is written as below:

D = Z1Y1Z2.

The right side of this expression is the product

D =

(
0, 0, sinh

(
φ1
2

)
, cosh

(
φ1
2

))(
0, sinh

(α1

2

)
, 0, cosh

(α1

2

))
(5)(

0, 0, sinh

(
φ2
2

)
, cosh

(
φ2
2

))
.

Expanding the split quaternion product, the following parametrized surface

D (φ1, φ2) = (D1 (φ1, φ2) , D2 (φ1, φ2) , D3 (φ1, φ2) , D4 (φ1, φ2))

is attained, where

D1 (φ1, φ2) = sinh
(α1

2

)
sinh

(
φ1 − φ2

2

)
,

D2 (φ1, φ2) = sinh
(α1

2

)
cosh

(
φ1 − φ2

2

)
,

D3 (φ1, φ2) = cosh
(α1

2

)
sinh

(
φ1 + φ2

2

)
,

D4 (φ1, φ2) = cosh
(α1

2

)
cosh

(
φ1 + φ2

2

)
.

Eliminating φ1 and φ2, the algebraic equation parameterized by α1

cosh2
(α1

2

)
D2

1 − cosh2
(α1

2

)
D2

2 − sinh2
(α1

2

)
D2

3 + sinh2
(α1

2

)
D2

4 = 0 (6)

is obtained. To analyze this equation as the canonical form of the quadric
hypercone, consider that the points of L4 is denoted X = (x1, x2, x3, x4) in
order that (6) becomes

x21 − x22 − tanh2
(α1

2

)
x23 + tanh2

(α1

2

)
x24 = 0. (7)

The quadratic form of this equation is given by

XT ·L [Q] ·L X = 0,

with the coefficient matrix

[Q] =


cosh2

(
α1

2

)
0 0 0

0 − cosh2
(
α1

2

)
0 0

0 0 − sinh2
(
α1

2

)
0

0 0 0 sinh2
(
α1

2

)
 .



Structure Equations and Constraint Manifolds 30

Similarly, the set of L−ellipsoids

−x21 + x22 + tanh2
(α1

2

)
x23 = tanh2

(α1

2

)
or

− x21
tanh2

(
α1

2

) +
x22

tanh2
(
α1

2

) + x23 = 1

arises from the projection of this form onto the hyperplane x4 = 1.

These L−ellipsoids have the foci F1 =

(
0, 0,

√
1− tanh2

(
α1

2

))
and F2 =(

0, 0,−
√

1− tanh2
(
α1

2

))
.

Now, we will obtain the L−constraint manifold of a 3R spherical open
chain by using the given structure equations. Consider that coordinate frames
are appointed as in the same way defined for the 2R open chain. Thus, the
joints for the second body are indicated by o2 and t2. Note that the angle
between these axes is ψ2 or α2 for cases I and II, respectively. The moving
frame M is attached at joint t2. Its angle related to T2 is shown by φ3 in both
situations.

In case I, we will investigate the L−constraint manifold for the 3R spherical
open chain. The position of the workpiece now depends on the parameters
φ1, φ2, and φ3. If these conventions are taken into consideration, the product
of the split quaternion form generates the below parameterized surface:

D (φ1, φ2, φ3) = Z1X1Z2X2Z3, (8)

where Z3 =
(

0, 0, sinh
(
φ3

2

)
, cosh

(
φ3

2

))
, X2 =

(
sin
(
ψ2

2

)
, 0, 0, cos

(
ψ2

2

))
and Z1, X1, and Z2 are given by (2) . If the above expression (8) is expanded,
it is seen that

D (φ1, φ2, φ3) = (D1 (φ1, φ2, φ3) , D2 (φ1, φ2, φ3) , D3 (φ1, φ2, φ3) , D4 (φ1, φ2, φ3)) ,

where

D1 = cosh
(
φ1−φ3

2

)
cosh

(
φ2
2

)
sin
(
ψ1+ψ2

2

)
− sinh

(
φ1−φ3

2

)
sinh

(
φ2
2

)
sin
(
ψ1−ψ2

2

)
,

D2 = sinh
(
φ1−φ3

2

)
cosh

(
φ2
2

)
sin
(
ψ1+ψ2

2

)
− cosh

(
φ1−φ3

2

)
sinh

(
φ2
2

)
sin
(
ψ1−ψ2

2

)
,

D3 = cosh
(
φ1+φ3

2

)
sinh

(
φ2
2

)
cos
(
ψ1−ψ2

2

)
+ sinh

(
φ1+φ3

2

)
cosh

(
φ2
2

)
cos
(
ψ1+ψ2

2

)
,

D4 = sinh
(
φ1+φ3

2

)
sinh

(
φ2
2

)
cos
(
ψ1−ψ2

2

)
+ cosh

(
φ1+φ3

2

)
cosh

(
φ2
2

)
cos
(
ψ1+ψ2

2

)
.

Eliminating the variables φ1 and φ3, the algebraic equation of this solid is
found as follows:

D2
1 −D2

2 +D2
3 −D2

4 = − cos ρ(φ2), (9)
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where cos ρ(φ2) = cosψ1 cosψ2 − sinψ1 sinψ2 coshφ2.
Let the coordinates of points in L4 be represented by the vector X =

(x1, x2, x3, x4) . Thus, the parameterized set of the hypercones is denoted by
the equality (9):

XT ·L [Q] ·L X = 0,

where

[Q] =



cos2
ρ(φ2)

2
0 0 0

0 − cos2
ρ(φ2)

2
0 0

0 0 sin2 ρ(φ2)

2
0

0 0 0 − sin2 ρ(φ2)

2


.

In such a way, the following equation can be written

x21 − x22 + tan2 ρ(φ2)

2
x23 − tan2 ρ(φ2)

2
x24 = 0. (10)

When the L−constraint manifold is projected onto the hyperplane x4 = 1
along the lines of the hypercone, it is done by placing x4 = 1 in (10). With
these conventions, the set of L−hyperboloids is found as follows:

x21

tan2 ρ(φ2)

2

− x22

tan2 ρ(φ2)

2

+ x23 = 1,

where F1 =

(
0, 0,

√
1 + tan2 ρ(φ2)

2

)
and F2 =

(
0, 0,−

√
1 + tan2 ρ(φ2)

2

)
are

the foci of L−hyperboloids.
Now, we try to demonstrate the L−constraint manifold of the mechanism

for case II in a similar way. The position of this mechanism depends on three
parameters as φ1, φ2, and φ3. The split quaternion form of the structure
equation of the chain is as in the following equality:

D (φ1, φ2, φ3) = Z1Y1Z2Y2Z3, (11)

where Z1, Y1, and Z2 are obtained from (5) and Y2 =
(
0, sinh

(
α2

2

)
, 0, cosh

(
α2

2

))
and Z3 =

(
0, 0, sinh

(
φ3

2

)
, cosh

(
φ3

2

))
. Expanding (11) , the displacement D

in the split quaternion form is computed as follows:

D (φ1, φ2, φ3) = (D1 (φ1, φ2, φ3) , D2 (φ1, φ2, φ3) , D3 (φ1, φ2, φ3) , D4 (φ1, φ2, φ3)) ,
(12)
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where

D1 = sinh
(
φ1−φ3

2

)
cosh

(
φ2
2

)
sinh

(
α1+α2

2

)
− cosh

(
φ1−φ3

2

)
sinh

(
φ2
2

)
sinh

(
α1−α2

2

)
,

D2 = cosh
(
φ1−φ3

2

)
cosh

(
φ2
2

)
sinh

(
α1+α2

2

)
− sinh

(
φ1−φ3

2

)
sinh

(
φ2
2

)
sinh

(
α1−α2

2

)
,

D3 = cosh
(
φ1+φ3

2

)
sinh

(
φ2
2

)
cosh

(
α1−α2

2

)
+ sinh

(
φ1+φ3

2

)
cosh

(
φ2
2

)
cosh

(
α1+α2

2

)
,

D4 = sinh
(
φ1+φ3

2

)
sinh

(
φ2
2

)
cosh

(
α1−α2

2

)
+ cosh

(
φ1+φ3

2

)
cosh

(
φ2
2

)
cosh

(
α1+α2

2

)
.

The variables φ1 and φ3 can be eliminated from (12) to yield the algebraic
equation

D2
1 −D2

2 +D2
3 −D2

4 = − cosh ρ(φ2), (13)

where cosh ρ(φ2) = coshα1 coshα2 + sinhα1 sinhα2 coshφ2. In case D =
(D1, D2, D3, D4) satisfies the above mentioned algebraic equation, the 3R
chain can arrive at this position D.

Let the points of L4 be indicated by X = (x1, x2, x3, x4) . Thus, the pa-
rameterized set of the hypercones is identified as follows:

x21 − x22 − tanh2 ρ(φ2)

2
x23 + tanh2 ρ(φ2)

2
x24 = 0.

The canonical form of the quadric hypercone

XT ·L [Q] ·L X = 0

can be observed by the equality (13), where

[Q] =



cosh2 ρ(φ2)

2
0 0 0

0 − cosh2 ρ(φ2)

2
0 0

0 0 − sinh2 ρ(φ2)

2
0

0 0 0 sinh2 ρ(φ2)

2


.

This quadric form might be taken as a quadric equation expressed as the homo-
geneous coordinates of 3-dimensional projective space. We project this solid
onto the hyperplane x4 = 1 to obtain the parameterized set of L−ellipsoids:

− x21

tanh2 ρ(φ2)

2

+
x22

tanh2 ρ(φ2)

2

+ x23 = 1.

It is clear that each L−ellipsoid has the foci F1 =

(
0, 0,

√
1− tanh2 ρ(φ2)

2

)

and F2 =

(
0, 0,−

√
1− tanh2 ρ(φ2)

2

)
.
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Conclusion 1. The rotation movement of each link relative to the axis is rep-
resented by the matrices on the sphere and the multiplication of these matrices
forms the structure equations. These equations define the last position for the
mechanism. Throughout the study, each of the movements of the spacelike
or timelike links placed on the geodesics of the Lorentz sphere is shown. Af-
ter that, by using these movements, it is demonstrated that if the first link is
placed on the spacelike (resp. timelike) geodesic of the Lorentz sphere, then the
L−constraint manifolds of the 2R and 3R spherical open chains are the set of
L−hyperboloids (resp. L−ellipsoids).
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Buşra Aktaş,
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