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Abstract
In this paper, optimal reactive power dispatch problem (ORPD) is solved by using a new chaos and global competitive 
ranking-based symbiotic organisms search algorithm (A-CSOS). SOS is an effective meta-heuristic algorithm, especially 
for optimization problems with continuous variable, with important features such as the absence of any user-defined algo-
rithmic parameters and the easily applicable. However, some essential features of SOS such as trap into local optima and 
slow convergence problems need to be improved in order to find better solutions for more complex, nonlinear, multi-modal 
optimization problems such as ORPD. In this study, to solve ORPD and enhance the capability of the standard SOS even 
further, A-CSOS algorithm is developed. To test the performance of the developed algorithm in ORPD, the both SOS and 
the proposed A-CSOS are applied to the two different objective functions including power loss minimization and total volt-
age deviation minimization in IEEE 57-, 118-, 300-bus power systems. According to the results of ten different test cases, 
the proposed method gives better solutions up to 15.3% and 40.52% than the state-of-art algorithms and SOS, respectively. 
Moreover, the convergence performance of A-CSOS is considerably better than all tried algorithms. The effectiveness of 
A-CSOS for solving ORPD and other complex constrained optimization problems is proofed by this study.

Keywords Optimal reactive power dispatch · Symbiotic organisms search · Adaptive chaotic symbiotic organisms search · 
Power loss minimization · Voltage profile improvement

1 Introduction

With the increase in power demand and generation, simulta-
neously economic and safe operation of power systems has 
become a current and important issue. In order to operate 
the power systems in an economical way, it is necessary to 

use the existing infrastructure and capacity in the most effi-
cient and optimal way. Minimization of power loss (Ploss) is 
one of the priorities of the power system operators in terms 
of achieving both technical and economic benefit. Optimal 
distribution of reactive power generation in a power system 
by tuning the control variables to minimize specific objec-
tive function and satisfy the numerous constraints is known 
as optimal reactive power dispatch (ORPD). According to 
grid code, it is not enough to minimize only the considered 
objective function such as the minimization of Ploss or total 
voltage deviation (TVD), but also all equality and inequal-
ity constraints must be satisfied simultaneously. Therefore, 
ORPD is a complex, nonlinear and non-convex problem.

It is seen from the literature survey that researchers have 
used deterministic approaches such as linear programming 
[1], nonlinear programming [2], quadratic programming 
[3] and interior point [4] for solving ORPD in early years. 
By the reason of the nonlinearity, non-differential, multi-
modal, non-convex characteristics of the ORPD, the major-
ity of the deterministic methods may be very sensitive to 
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the starting point and converge to a local optimum point 
[5]. Instead of these methods, population-based algorithms 
and their hybrid or improved/modified versions, such as 
genetic algorithm (GA) [6], differential evolution (DE) 
[7], biogeography-based optimization (BBO) [8], seeker 
optimization algorithm (SOA) [9], gravitational search 
algorithm (GSA) and its variants [10, 11], particle swarm 
optimization (PSO) with an aging leader and challengers 
(ALC-PSO) [12], hybrid PSO and imperialist competitive 
algorithm (ICA) (PSO–ICA) [13], hybrid modified ICA 
and invasive weed optimization (IWO) (MICA–IWO) [14], 
hybrid PSO and GSA (PSOGSA) [15], multi-objective cha-
otic improved PSO (MOCIPSO) [16], firefly algorithm (FA) 
[17], gray wolf optimization (GWO) [18], moth-flame opti-
mization (MFO) [19], water cycle algorithm (WCA) and 
gaussian bare-bones WCA (NGBWCA) [20], chaotic parallel 
vector evaluated interactive honeybee mating optimization 
(CPVEIHBMO) [21], ant lion optimization (ALO) [22], 
modified ALO (MALO) [23], exchange market algorithm 
(EMA) [24], have been proposed for solving the ORPD. 
However, one of the disadvantages of some of the above-
mentioned algorithms is that they have various algorithmic 
parameters, which influence the solution significantly and 
require to be identified carefully. The crossover and mutation 
probability values for GA, acceleration and inertia weight 
parameters for PSO, gravitational and α constants for GSA, 
differentiation (or mutation) and crossover constants for DE, 
reflection, expansion and contraction coefficients for FA are 
just a few examples. These parameters affect the conver-
gence speed and balance between exploration and exploita-
tion. Since the performance of these algorithms is closely 
associated with these parameters, it is important and neces-
sary to adjust them to their ideal values [25].

In 2014, the Symbiotic Organisms Search algorithm 
(SOS) has introduced a population-based meta-heuristic 
algorithm that does not require any user-defined algorith-
mic parameters [26]. SOS algorithm’s underlying logic is 
symbiotic interaction behavior of organisms to survive in 
the ecosystem. SOS has been tested for unconstrained and 
constrained benchmark functions and yields better results 
than well-known algorithms [26].

While setting the optimal value of these algorithmic 
parameters is sometimes a challenging process, they ful-
fill an important mission of balancing the global and local 
search capabilities of algorithms in search space. The 
absence of such an algorithmic parameter in the SOS algo-
rithm makes it difficult to maintain the global and local 
search balance of the algorithm [25]. Unfortunately, SOS 
algorithm seems to be able to trap into local optima points 
and converge late, especially in solving highly nonlinear and 
non-convex problems with much boundary conditions. This 
is also the case for the ORPD problem as the number of bus 
and control parameters increases. Therefore, the mentioned 

frailties of the SOS algorithm needs to be eliminated. For 
this reason, studies are being done to improve the SOS algo-
rithm and applied to various optimization problems. The 
quasi-oppositional SOS algorithm is developed and applied 
to load frequency control by Guha et al. [27]. The modified 
SOS algorithm is introduced and implemented on economic 
dispatch problem with valve-point effects by Secui [28]. The 
adaptive SOS algorithm is created by updating the benefit 
factor terms in SOS throughout the iteration and tested on 
structural design optimization problems by Tejani et al. 
[29]. Saha et al. proposed chaotic SOS (CSOS) algorithm by 
replacing the parasitism phase that one of the phases of SOS 
with a chaotic local search for unconstrained benchmark test 
functions and siting and sizing problem of distributed gen-
erators in radial distribution system in [25]. Chaotic local 
search (CLS) was used in CSOS [25], but CLS was applied 
only to the best organism. Although the algorithm’s local 
search capability is enhanced by this way, it limits global 
search capabilities. Therefore, CSOS, like the SOS algo-
rithm, unable to get rid of local optima points in solving 
more complex and non-convex optimization problems.

It is a frequently used method to obtain new algorithms 
by hybridizing existing algorithms with other algorithms or 
by adding extra features. Due to the positive impact of algo-
rithms on local and global searching performance and easy 
implementation, chaos maps are an often-preferred healing 
method by researchers. In many heuristic algorithms, the 
“rand” operator is defined to increase the randomness of the 
solution candidates and the search capability in the solution 
space. The logistic map, one of the variance of chaos, known 
for their ergodicity, randomness and non-repeatability, have 
been found to improve algorithms search capability and con-
vergence speed compared to rand operators. Along with the 
modification in the algorithm stages, it is important to improve 
the constraint handling mechanisms integrated with the algo-
rithms. The most common classical method for constraint 
handling is the static penalty function (SPF) method, which 
involves penalty coefficients that must be defined by the user. 
The main problem with SPF method is that it requires many 
trial and error process to find the ideal value of the penalty 
coefficients. As a solution to this situation, the researchers 
define higher values than necessary for the penalty coef-
ficients, but this causes the algorithms to be fell into local 
optima points. On the other hand, global competitive ranking 
(GCR), developed by Runarsson and Yao [30], quickly finds 
the nearest candidate solution to the global optimum point by 
making a balanced search in both the feasible and the infea-
sible region. By using algorithms such as SOS, CSOS or the 
other algorithms using SPF method it is very difficult and time 
consuming to find both minimum and feasible solutions to 
more complex and more constrained optimization problems 
like ORPD. The GCR provides substantial improvements in 
algorithmic speed by finding the feasible solution very quickly 
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without requiring any trial and error process. It also appears 
to improve the standard deviation values encountered in men-
tioned algorithms. inspired by these ideas, a new A-CSOS 
algorithm is developed by merging the logistic map and GCR 
constraint handling mechanism with SOS to eliminate the 
weakness of the SOS as mentioned earlier and enhance the 
exploration and exploitation skills of the SOS even further.

The main contributions of this paper are: developing a new 
A-CSOS algorithm, hybridizing the logistic map and global 
competitive ranking with SOS, eliminating the drawbacks in 
more complex and con-convex problems of the SOS such as 
being trapped into local optima and premature convergence, 
implementing the proposed A-CSOS and SOS on the ORPD 
problem. In order to analyze the performance of the A-CSOS 
and SOS, both algorithm are applied to the ORPD problem in 
IEEE 57-, 118-, 300-bus standard test systems. Since both Ploss 
and TVD minimization are studied as objective functions for 
each power systems, and some of control variables are consid-
ered the mix of discrete and continuous or fully continuous, the 
results of the proposed algorithm are evaluated in 10 different 
cases under six different scenarios in this study. Moreover, the 
proposed algorithm is not only compared with the SOS but 
also compared with other state-of-art algorithms. It is clear 
that the proposed A-CSOS yields up to 15.3% and 44.1% 
better results than many of the latest studies in literature and 
SOS. Therefore, A-CSOS algorithm is a promising method for 
ORPD and other constrained optimization problems.

The rest of this paper is organized as follows. ORPD 
problem is explained in Sect. 2. Description of the A-CSOS 
algorithm is given in Sect.  3. Implementation steps of 
A-CSOS for ORPD problem is described in Sect. 4. The 
studied scenarios and obtained results are presented in 
Sect. 5, conclusions are given in Sect. 6.

2  The ORPD problem formulation

Since ORPD is a nonlinear, non-convex and constrained 
optimization problem composed of a specific objective func-
tion to be optimized while satisfying numerous constraints, 
it is necessary to express mathematically each objective 
functions and constraints. In this work, two different objec-
tive functions including Ploss and TVD minimization are 
concerned separately for ORPD problem. Mathematical 
explanation of these objective functions and constraints are 
explained in the next sub-sections.

2.1  Objective functions

2.1.1  Minimization of Ploss

ORPD solution is mainly to minimize Ploss in the existing 
branches while fulfilling all constraints. Minimization of 
active power loss can be mathematically stated by Eq. (1).

where NL is the number of branch, Gl is the conductance 
of branch-l connecting buses i and j; Vi and Vj are voltage 
magnitudes at buses i and j, respectively; and δij is the phase 
difference between buses i and j, respectively.

2.1.2  Minimization of TVD

The second objective function used in this study is TVD that 
aims to minimize absolute deviations of all the present load 
bus voltages from the referenced magnitude. Thus, voltage 
profile can be enhanced by this way. The mathematical expres-
sion of TVD minimization problem is described as follows:

where NPQ is the number of PQ bus, Vk is the voltage of PQ 
bus-k, V ref

k
 is desired voltage at bus-k.

Each objective function is related to the state/dependent and 
control/independent variables denoted by x and u, respectively. 
The dependent variable vector is composed of the voltages 
of PQ-bus ( VL ), Mvar output of generators (QG) and MVA 
loading of branches ( SL ), while independent variable vector 
is composed of the voltages of PV bus ( VG ), the tap ratios 
of transformers ( TN ) and Mvar output of shunt compensators (
QC

)
.

where NPV is the number of PV bus, NT is the number of 
transformers, and NC is the number of shunt compensators.

2.2  Constraints

2.2.1  Equality constraints

The equality constraints “g(x, u)” for ORPD problem are 
described using power balance formulas expressed by 
Eqs. (5)–(6) [11].

(1)f1(x, u) =

NL∑

l=1

[
Gl

(
V2
i
+ V2

j
− 2ViVj cos �ij

)]

(2)f2(x, u) =

NPQ∑

k=1

|
|
|
Vk − V ref

k

|
|
|

(
where V ref

k
= 1 p.u.

)

(3)x =
[
VL1

,… ,VLNPQ
,QG1

,… ,QGNPV

, SL1 ,… , SLNL

]

(4)u =

[
VG1

,… ,VGNPV

, T1,… , TNT
,QC1

,… ,QCNc

]

(5)PGi
− PLi

= Vi

∑

j∈Ni

Vj

[
Gij cos �ij + Bij sin �ij

]

(6)QGi
− QLi

= Vi

∑

j∈Ni

Vj

[
Gij sin �ij − Bij cos �ij

]
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where Ni is the number of buses connected to bus-i, PGi 
and QGi are the MW and Mvar generation, respectively; PLi 
and QLi are the MW and Mvar demand; Gij and Bij are the 
conductance and susceptance, respectively.

2.2.2  Inequality constraints

The lower and upper limit values of the essential parameters 
for the grid are defined in the grid codes so that the grid can 
be safely operated by transmission system operators (TSOs) 
and distribution system operators (DSOs). In addition, the 
existing equipment in the grid has its own operating limits. 
The limits in this context including the limits of PV and 
PQ bus voltages, Mvar output of generators and shunt VAR 
compensators, transformers’ taps, transmission line loading 
capacities constitute the inequality constraints denoted by 
h(x, u) and expressed below, respectively.

The superscripts min and max used in Eqs. (7–12) mean 
the corresponding lower and upper limits, respectively.

3  The proposed technique

3.1  Symbiotic organisms search algorithm

The SOS algorithm is one of the new meta-heuristic popu-
lation-based algorithm introduced in 2014 [26]. This algo-
rithm simulates symbiotic reciprocations between different 
organisms living in an ecosystem.

The fundamental relations between different species in 
universe are mutualism, commensalism, and parasitism. 
These interactions are modeled in SOS by their mathemati-
cal expressions given in the following sub-headings.

3.1.1  Mutualism

The mutualism phase simulates to the reciprocal action 
between two different organisms where both of them get 

(7)Vmin
Gi

≤ VGi ≤ Vmax
Gi

, i ∈ NG

(8)Vmin
Li

≤ VLi ≤ Vmax
Li

, i ∈ NPQ

(9)Qmin
Gi

≤ QGi ≤ Qmax
Gi

, i ∈ NG

(10)Qmin
Ci

≤ QCi ≤ Qmax
Ci

, i ∈ NC

(11)Tmin
i

≤ Ti ≤ Tmax
i

, i ∈ NT

(12)||SLi|| ≤ Smax
Li

, i ∈ NL

benefited from this relation. Xi_org and Xj_org, which enter 
into mutualist relation and denote to ith and jth organism in 
the ecosystem, may benefit from each other at equal or dif-
ferent rates. Two new, but temporary organisms, Xi_temp and 
Xj_temp are produced after performing mutualism relation. It 
replaces the better one by comparing the newly produced 
organisms with originals. The mutualism process mathemat-
ically can be described by Eqs. (13) and (14) [26].

In above equations, Xbest is an organism with the highest 
degree of adaption and gives the best solution so far in the 
ecosystem; rand(0, 1) is a random number between 0 and 1; 
mVector, bF1, and bF2 are calculated using Eqs. (15)–(17).

where bF1 and bF2 are the beneficial factors which show the 
rate of profit from each other. As can be understood from 
Eqs. 16 and 17, bF1 and bF2 can take a value of four possible 
combinations. If bF1 and bF2 take equal values, it means that 
both organisms benefit equally in mutualist relation to each 
other, otherwise an organism will benefit more from this 
relation than the other.

3.1.2  Commensalism

Unlike the mutualism phase, only one organism gets to ben-
efit from this dependency between two different organisms. 
The other is not affected significantly. Similarly, Xi_org is an 
organism that corresponds to organism-i in the ecosystem 
and Xj_org is an arbitrary selected organism that interacts 
with Xi_org . In this phase, Xi_org attempts to acquire benefit 
from Xj_org , while Xj_org is not affected negatively or posi-
tively. The new temporary obtained organism after perform-
ing commensalism process Xi_temp is formulated by Eq. (18).

3.1.3  Parasitism

In the parasitism phase, one organism takes advantage from 
this relationship while the other is damaged. Xi_org is an 
organism that represents the parasite vector which is the 

(13)Xi_temp = Xi_org + rand(0, 1)
(
Xbest − mVector × bF1

)

(14)Xj_temp = Xj_org + rand(0, 1)
(
Xbest − mVector × bF2

)

(15)mVector =
Xi_org + Xj_org

2

(16)bF1 = round(1 + rand(0, 1))

(17)bF2 = round(1 + rand(0, 1))

(18)Xi_temp = Xi_org + rand(−1, 1)
(
Xbest − Xj_org

)
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duplicating form of Xi_org and Xj_org is a randomly selected 
organism that hosting the parasite vector and interacting 
with Xi_org . In this phase, Xj_org is modified by interacting 
with parasite vector. The infected and parasite vector’s fit-
ness value are calculated separately. The infected vector 
must have a better fitness value than the parasite vector to 
maintain its position. Otherwise, the parasite vector kills and 
replaces the infected vector.

3.2  Adaptive chaotic symbiotic organisms search 
algorithm

The most important feature that makes the SOS algorithm 
attractive is that not necessitate any user-defined algorith-
mic parameters. This requirement affects negatively both 
the performance of the other algorithms and causes a lot of 
time loss. However, the SOS algorithm has some adverse 
properties need to be solved. The most important of these is 
that it is easily lodged in local optimum points, especially in 
the solution of complex non-convex problems.

Various modifications have been made in the literature to 
overcome these deficiencies in the SOS algorithm. In this 
context, the chaotic local search feature has been added to 
the SOS in CSOS [25], but limited local search capability 
has been developed since chaos is only applied to the best 
organism and the parasitism phase is removed. In addition, 
this can lead to an unbalanced search in the global and local 
search space and trap into local optima because it increases 
the orientation toward the best organism. It is important to 
develop both the local and global exploring capabilities of 
the SOS so that it can be overcome by all sorts of chal-
lenging problems. In addition, some characteristics such as 
the convergence speed of the SOS algorithm can still be 
improved.

Another important issue is that for constrained optimi-
zation problems, an integrated constraint handling strategy 
that works in an efficient and compatible manner with the 
algorithm is required. Constraint handling mechanisms sup-
port the performance of algorithms. If this is ignored, the 
algorithm is inherently capable, but cannot be exploited 
enough without the algorithm due to the constraint handling 
methodology.

In order to remove the problems mentioned above, two 
important contributions have been integrated to the SOS 
algorithm: the logistic map that is one of the chaos functions, 
and the global competitive ranking that is one of the adaptive 
penalty strategies. Finally, a new algorithm named A-CSOS 
is obtained. The changes made on the SOS algorithm can be 
categorized as chaos adaptation to mutualism phase, chaos 
adaptation to commensalism phase, and Global Competitive 
Ranking (GCR) constraint handling integration. It should be 
noted that in this study chaos is applied not only to the best 
organism but also to all the organisms in the ecosystem in 

order to be able to make a more effective search in the local 
and global search space. The details of modifications are 
explained in the following sub-headings.

3.2.1  Increasing randomness of mutualism with logistic 
map

Chaos maps are known to significantly improve the explora-
tion and exploitation capabilities of the algorithms. In some of 
the studies in which chaos is integrated, chaos is only used dur-
ing the generation of initial population phase, while in others it 
is adapted to some stages of the algorithm. Although various 
chaos functions are proposed depending on the problem in the 
studies, logistic map is the most known of these.

The rand expression in Eqs. (13)–(14) affects the organ-
ism’s range of motion and local search abilities. Therefore, 
logistic map is implemented on random statements of Xi_temp 
and Xj_temp formulas in mutualism phase and the equations of 
mutualism phase are modified as follows:

where ct
i,k

 denotes the kth chaotic variable of ith organ-
ism in the tth iteration. μ is called control parameter and 
ct
i,k

∈ (0, 1). The value of μ affects the behavior of the steady-
state solution of this map. For μ ∈ (0, 1), ct

i,k
 tends to zero; 

for μ ∈ [1, 3), a fixed point; for μ ∈ [3, 3.57), periodic; and 
finally for μ ∈ [3.57, 4), chaotic. Therefore, the output ct

i,k
 

is aperiodic, non-convergent and very sensitive to the initial 
value of ct

i,0
 , which is not equal to {0, 0.25, 0.5, 0.75, 1}. 

Although μ can also set close to 4, μ = 4 assures that the 
equation is chaotic [31].

3.2.2  Increasing randomness of commensalism 
with logistic map

The rand(− 1, 1) expression in Eq. (18) affects the exploration 
and exploitation performance of the SOS algorithm. There-
fore, logistic map is implemented on rand(– 1, 1) statement of 
Xi_temp formula in commensalism phase. The new commensal-
ism phase equation after the modification can be rewritten as 
follow:

(19)Xi_temp = Xi_org + ct
i

(
Xbest − mVector × bF1

)

(20)Xj_temp = Xj_org + ct
j

(
Xbest − mVector × bF2

)

(21)ct
i,k

= 𝜇 × ct
i,k−1

×

(
1 − ct

i,k−1

)
where 0 < 𝜇 ≤ 4

(22)Xi_temp = Xi_org +
(
2ct

i
− 1

)
×
(
Xbest − Xj_org

)
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3.2.3  Global competitive ranking‑based constraint 
handling methodology

To satisfy equality and inequality constraints, a constrained 
problem converts into an unconstrained problem by adding 
a penalty value to the objective function. This method is 
known as static penalty function (SPF). The general formula 
of SPF integrated with ORPD can be expressed as follows:

In Eq. (23), fn is described as the objective function either 
Ploss or TVD value. τv and τq are expressed as static penalty 
factors for voltage and reactive power constraints, respec-
tively; V lim

Li
 and Qlim

Gi
 are the limit values of PQ bus voltage 

and generator reactive power output, respectively.
The main handicap of the SPF method is that it requires 

a time-consuming trial-and-error process to adjust the pen-
alty coefficients affecting solution accuracy. This situation 
also overshadows the algorithmic parameterless nature of 
the SOS algorithm. Therefore, instead of the SPF method, 
GCR mechanism that more accurately and quickly converges 
to the global optimum point by correctly interpreting the 
information it receives from the SOS algorithm is proposed.

GCR is a sorting-based adaptive penalty method devel-
oped by Runarsson and Yao [30]. GCR is an advanced ver-
sion of stochastic ranking (SR) [32]. Unlike SR, a solution 
candidate is sorted by analogizing it with not the only adja-
cent neighborhood but also all other members of the popula-
tion. Another difference between SR and GCR is that fitness 
evolution is made according to both objective function and 
constraint violation at the rate of Pf in GCR. The fitness level 
of each individual in the GCR method can be evaluated as 
follows [30]:

In Eq. (24), F(Xi) is the actual fitness value of organism-i, 
rank

(
f
(
Xi

))
 represents the actual rank of ith organism in the 

population considering objective function value; 
rank

�∑m

j=1
vj
�
Xi

��
 represents the actual rank of ith organism 

in the population considering the sum of its constraint viola-
tions, Npop is the number of individuals, Pf symbolize the 
probability that fitness is calculated based on the rank of 
objective function. It is recommended that the value of Pf be 
between 0 and 0.5 to find both a feasible and a minimum 
solution.

(23)

F
(
Xi

)
= fn

(
Xi

)
+ �v

NPQ∑

i=1

(
VLi − V lim

Li

)2
+ �q

NG∑

i=1

(
QGi − Qlim

Gi

)2

(24)

F(Xi) = Pf

rank
�
f
�
Xi

��
− 1

Npop − 1
+
�
1 − Pf

� rank
�∑m

j=1
vj
�
Xi

��
− 1

Npop − 1

(25)vj
(
Xi

)
= max

{
0, gj

(
Xi

)}

4  Implementation of the A‑CSOS algorithm 
for ORPD problem

Creating the ecosystem is the first phase of the A-CSOS 
algorithm. An ecosystem comprises a number of organ-
isms. Each organism represents a candidate solution in 
search space. The ecosystem, in other words control varia-
ble vector including generator set voltages, reactive power 
outputs of shunt VAR compensators and tap settings of 
transformers is created randomly considering their limits. 
Moreover, basic parameters like the number of organisms, 
maximum number of iteration, maximum and minimum 
limits of related variables are also defined in this phase. 
The bus, generator and branch data of each test system 
are prepared.

Secondly, each organism is exposed to Newton–Raph-
son power flow using the Matpower and then objective 
function and the sum of constraint violation values are 
calculated from the obtained results. In accordance with 
GCR method, organisms in the ecosystem are separately 
ranked according to their objective function and sum of 
the constraint violation value. The fitness function value 
of each organism is calculated by using Eq. (24).

Thirdly, mutualism, commensalism and parasitism rela-
tionship are established between Xi and randomly selected 
organism Xj until the predefined maximum iteration is 
achieved. Nevertheless, unlike the mathematical expressions 
of mutualism and commensalism phases of conventional 
SOS, Eqs. (19–22) are used that is highlighted in Fig. 1.

5  Results and discussion

A-CSOS and SOS algorithms are implemented on ORPD 
problem for IEEE 57-, 118- and 300-bus standard power 
systems. Two different objective functions are studied 
including Ploss and TVD minimization for each test case 
for understanding performance of the A-CSOS. Algorithms 
are implemented using the MATLAB R2013a and applied 
on a 2.60 GHz Intel Core i5 with 4 GB RAM notebook. 
Due to a fair evolution of the simulation results, Matpower 
software [33] is selected for power flow analysis. For each 
case, above-mentioned boundary conditions are also checked 
in Matpower. The maximum number of iteration is 100 for 
IEEE 57-, 118-bus simulation analysis, and 200 for IEEE 
300-bus simulation analysis. The numbers of organism in 
the simulations are taken as 30 for IEEE 57-bus, 50 for IEEE 
118-bus, 75 for IEEE 300-bus power system. The algorithm 
is tested with 100 runs of each test case. The best, mean and 
standard deviations of each objective functions after 100 
runs are given in the related sub-sections.
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However, it is useful to first investigate the effect on the 
results of the value of benefit factors, since these values 
are taken into account in the other results given in the fol-
lowing headings. The beneficial factors can be taken two 
different values, 1 or 2. Beneficial factor is critical because 
it determines the direction of motion of organisms and 
express the benefit degree of organisms to each other. A 
deep analysis of the best results for all scenarios revealed 
that bF1 and bF2 parameters are equal to 1. The statistical 
results of analyses carried out for IEEE-57 bus system are 
presented in Table 1.

As can be seen in Table 1, the worst solution for all 
cases has been obtained when both bF1 and bF2 are equal 
to 2. On the other hand, the algorithm when both bF1 and 
bF2 are equal to 1 is much better in terms of best, mean 
and standard deviation values for all test scenarios. The 
results confirm that adjusting the benefit factors of the 
SOS strengthened the ability of the SOS and the algorithm 
become more stable and promising. Therefore, both bF1 
and bF2 have been taken as 1 for the results given in the 
paper.

Start

Initialize the ecosystem

Run power flow & Rank organisms & Fitness evaluation of each organism

Assign the first rank organism to the best organism

Randomly select an organism Xj_org, where Xi_org≠ Xj_org
Update organisms Xi org and Xj org according to equation of mutual relationship added logistic map

If F(Xi_temp)<F(Xi_org) ?
If F(Xj_temp)<F(Xj_org) ?

Keep the original organism
(Xi org , Xj org) 

YesNo Replace Xi_org with Xi,temp
Replace Xj org with Xj temp

Randomly select an organism Xj_org, where Xi_org≠ Xj_org
Update organism Xi org according to equation of commensalism relationship added logistic map

If F(Xi_temp)<F(Xi_org)? Replace Xi org with Xi,temp
Yes

Run power flow & Rank organisms according to objective function and sum of constraint violation
Calculate fitness values of updated organisms in accordance with GCR equation

No

Randomly select an organism Xj_org, where Xi_org≠ Xj_org
Update organism Xi org based on the principal of parasitism 

Run power flow & Rank organisms according to objective function and sum of constraint violation
Calculate fitness values of updated organisms in accordance with GCR equation

Yes
If F(Xparasite)<F(Xinfected)?Keep Xj_org

Delete Xparasite

Substitute Xj_org
with Xparasite

No
If itercurrent=itermax? 

Yes

Display the best solution

No

Run power flow & Rank organisms according to objective function and sum of constraint violation
Calculate fitness values of updated organisms in accordance with GCR equation

Keep the original organism Xi org

 

Fig. 1  Flowchart of A-CSOS algorithm-based reactive power dispatch
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5.1  Test System 1: IEEE 57‑bus power system

The IEEE 57-bus power system has 25 control variables 
including seven PV bus voltages, fifteen transformers’ tap 
ratios and three shunt VAR compensators. Test system data 
are adapted from [28]. The permissible voltage limits at 
load and generator buses are 0.95–1.05 p.u. and 0.95–1.1 
p.u., respectively. The permissible limits of transformer tap 
ratios are 0.9–1.1 p.u. The permissible Mvar limits of shunt 
capacitor linked to bus-18, -25 and -53, respectively are set 
to 0–10 Mvar, 0–5.9 Mvar, and 0–6.3 Mvar. The proposed 
algorithm and studied SOS algorithm are applied to IEEE 
57-bus test system for minimization of Ploss as Scenario 1 
and minimization of TVD as Scenario 2. Transformer taps 
and VAR compensators are considered continuous in Sce-
nario 1.1 and 2.1, and discrete with the 0.01 p.u stepwise in 
Scenario 1.2 and 2.2.

Comparison of the best results of proposed A-CSOS with 
SOS algorithm and the best results of other state-of-the-art 
optimization techniques such as self-adaptive differential 
evolution (L-SaDE) [9], SOA [9], comprehensive learn-
ing particle swarm optimizer (CLPSO) [9], ABC [23], FA 
[23], BAT [23], ALO [23], MALO [23], MFO [19], hybrid 
PSO–ICA [13], modified ICA and IWO (MICA–IWO) [14], 
MOCIPSO [16], OGSA [11] for Scenario 1 and 2 are given 
in Tables 2 and 3, respectively.

Table 4 demonstrates the best solutions for each scenario 
and optimal values of variables. After applying the A-CSOS 
algorithm to IEEE 57-bus test system, Ploss is reduced to 
a minimum value of 23.8193  MW (Scenario 1.1) and 
23.8284 MW (Scenario 1.2) from the initial case Ploss of 
27.8638 MW. It is clear that approximately the same and the 
best results are obtained via A-CSOS and SOS algorithms 

for each scenario. The result of A-CSOS is 0.4336 MW 
(1.79%) better than the MFO [19] that is the best result 
of above-mentioned algorithms considering continuous 
variables.

According to the result of Scenario 1.2, A-CSOS yields 
0.0716 MW better than MALO [23], which is the best result 
of given algorithms. As can be seen in Figs. 2 and 3, all 
dependent variables are within permissible limits after Sce-
nario 1 and Scenario 2 optimizations, respectively.

While the results obtained from A-CSOS and SOS algo-
rithms in Scenario 1 are close to each other, there is an 
important difference between the results of the two algo-
rithms obtained under Scenario 2. According to Scenario 2.1 
results shown in Table 3, the proposed algorithm is 4.44% 
better than SOS and 5.22% better than OGSA [11] algo-
rithm with the lowest value among the algorithms shown in 
Table 3. In the Scenario 2.2 analysis, the A-CSOS algorithm 
yielded a 4.18% better result than the SOS, and 15.32% bet-
ter than the MALO [23], which regarded the control vari-
ables as discrete.

To illustrate the convergence profile of A-CSOS and SOS 
algorithms, Ploss and TVD value changes over 100 iterations 
are demonstrated in Figs. 4 and 5, respectively.

There is a great difference between the convergence speed 
of A-CSOS and SOS. As Fig. 4 shows, A-CSOS converges 
to the minimum optimal solution about the fifteenth iteration 
while SOS needs twenty-five more iterations to converge.

Table 1  The effect of bF1 and bF2 on the simulation results

Objective bF1 and bF2

Function 1 1 or 2 2

Ploss minimization
Scenario 1.1 Best 23.81930 23.82537 24.96960

Mean 23.91820 24.23793 28.59416
Std. 0.344870 0.569286 1.893115

Scenario 1.2 Best 23.82610 23.84012 24.80120
Mean 24.05490 24.74526 29.05011
Std. 0.452563 0.943265 1.572828

TVD minimization
Scenario 2.1 Best 0.661740 0.666830 0.862580

Mean 0.685835 0.703160 0.703160
Std. 0.018488 0.040748 0.040748

Scenario 2.2 Best 0.668900 0.699484 0.905440
Mean 0.705900 0.715332 1.079061
Std. 0.031790 0.038233 0.076371

Table 2  Comparison of the results for Scenario 1

a Discrete variable is considered in this result
b Not reported

Algorithms Min Ploss, MW Mean Ploss, MW Std.

PSO [13] 27.5543 NRb NRb

MOCIPSOa [16] 27.0750 NRb NRb

ICA [13] 26.9996 NRb NRb

CLPSOa [9] 25.7968 27.3334 1.9252E−02
PSO–ICA [13] 25.5856 NRb NRb

ALOa [23] 25.1000 25.3338 4.4E−01
L-SaDEa [9] 24.6712 26.0983 1.3426E−02
SOAa [9] 24.6248 25.7410 1.1918E−02
IWOa [14] 24.5939 26.5769 1.7332E−02
ABCa [23] 24.3000 NRb NRb

MICA–IWOa [14] 24.2568 24.2756 2.3361E−04
MFO [19] 24.2529 24.7702 NRb

BATa [23] 24.1000 NRb NRb

FAa [23] 24.1000 NRb NRb

MALOa [23] 23.9000 23.9519 4.58E−02
SOSa 23.8670 27.1009 1.7193
A-CSOSa 23.8284 24.7216 9.3634E−01
SOS 23.8566 26.4900 1.5933
A-CSOS 23.8193 24.2295 6.1438E−01
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It is observed in Fig. 5 that A-CSOS converges faster as 
compared to SOS and the results are very promising in all 
scenarios. The obtained best solution is achieved about the 
twentieth iteration. It is also noted that logistic map has been 
very effective to generate organism from the first iteration. 
Hence, it can be concluded that both the chaos and adaptive 
penalty approaches are a significant positive contribution to 
convergence speed.

5.2  Test System 2: IEEE 118‑bus power system

Considering that today’s power systems are more complex, 
it is important to proof the performance of the A-CSOS 
algorithm in larger power systems. For this reason, Ploss 
and TVD minimization for IEEE 118-bus power system are 
studied as Scenario 3 and Scenario 4, respectively. As in 
analyses on Test System 1, the mentioned variables are con-
sidered as discrete in Scenarios 3.2 and 4.2. Seventy-seven 
control parameters have to be adjusted for the solution of the 
ORPD problem in IEEE 118-bus test system consisting of 

Table 3  Comparison of the results for Scenario 2

a Discrete variable is considered in this result

Algorithms Min TVD, pu Mean TVD, pu Std.

BATa [23] 0.8800 NRb NRb

ABCa [23] 0.8400 NRb NRb

FAa [23] 0.8200 NRb NRb

PSO [13] 0.8007 NRb NRb

ALOa [23] 0.8000 0.850817 0.03245
ICA [13] 0.7952 NRb NRb

MALOa [23] 0.7900 0.8021 0.00636
PSO–ICA [13] 0.7130 NRb NRb

OGSA [11] 0.6982 NRb NRb

SOSa 0.69821 0.93090 0.138573
A-CSOSa 0.66899 0.70502 0.023933
SOS 0.69252 0.90414 0.142248
A-CSOS 0.66174 0.69816 0.031045

Table 4  Optimal value of control variables for best result of Ploss and TVD optimization on Test System 1

Variable Scenario 1.1 Scenario 1.2 Variable Scenario 2.1 Scenario 2.2

A-CSOS SOS A-CSOS SOS A-CSOS SOS A-CSOS SOS

VG1 (p.u.) 1.07720 1.0804 1.0773 1.0760 VG1 (p.u.) 1.00330 1.0030 1.00360 0.9884
VG2 (p.u.) 1.07350 1.0752 1.0742 1.0726 VG2 (p.u.) 0.98738 1.0133 1.01050 0.9744
VG3 (p.u.) 1.05530 1.0529 1.0573 1.0557 VG3 (p.u.) 1.01780 1.0147 1.02030 1.0139
VG6 (p.u.) 1.04700 1.0444 1.0479 1.0517 VG6 (p.u.) 1.00120 1.0016 0.99992 1.0072
VG8 (p.u.) 1.06510 1.0609 1.0661 1.0664 VG8 (p.u.) 1.02390 1.0299 1.02480 1.0247
VG9 (p.u.) 1.04510 1.0400 1.0464 1.0462 VG9 (p.u.) 1.01810 1.0221 1.01850 1.0216
VG12 (p.u.) 1.03670 1.0311 1.0364 1.0387 VG12 (p.u.) 1.03190 1.0327 1.03120 1.0483
T4–18 (p.u.) 0.95340 1.0613 0.9600 0.9500 T4–18 (p.u.) 1.00210 0.9883 0.91000 1.0700
T4–18 (p.u.) 1.02330 0.9471 0.9900 1.0000 T4–18 (p.u.) 0.97362 0.9851 1.05000 0.9100
T21–20 (p.u.) 1.01150 1.0179 1.0100 1.0100 T21–20 (p.u.) 0.97264 0.9765 0.98000 0.9800
T24–26 (p.u.) 1.00910 1.0071 1.0100 1.0200 T24–26 (p.u.) 1.05790 1.0687 1.06000 1.0700
T7–29 (p.u.) 0.98933 0.9863 0.9900 0.9900 T7–29 (p.u.) 0.95110 0.9439 0.95000 0.9500
T34–32 (p.u.) 0.97089 0.9706 0.9600 0.9700 T34–32 (p.u.) 0.90722 0.9132 0.91000 0.9100
T11–41 (p.u.) 0.90635 0.9043 0.9100 0.9100 T11–41 (p.u.) 0.90000 0.9000 0.90000 0.9000
T15–45 (p.u.) 0.99006 0.9886 0.9900 0.9900 T15–45 (p.u.) 0.94288 0.9491 0.95000 0.9500
T14–46 (p.u.) 0.96721 0.9633 0.9700 0.9700 T14-46 (p.u.) 0.97986 0.9882 0.98000 0.9900
T10–51 (p.u.) 0.97567 0.9696 0.9800 0.9800 T10–51 (p.u.) 1.00940 1.0199 1.01000 1.0200
T13–49 (p.u.) 0.93572 0.9295 0.9400 0.9400 T13–49 (p.u.) 0.90000 0.9000 0.90000 0.9000
T11–43 (p.u.) 0.97677 0.9725 0.9800 0.9800 T11–43 (p.u.) 0.95827 0.9490 0.96000 0.9600
T40–56 (p.u.) 1.00130 0.9979 1.0000 1.0000 T40–56 (p.u.) 1.02790 0.9762 1.03000 1.0300
T39–57 (p.u.) 0.96479 0.9637 0.9600 0.9600 T39–57 (p.u.) 0.90008 0.9946 0.90000 0.9100
T9–55 (p.u.) 0.98756 0.9824 0.9900 0.9900 T9–55 (p.u.) 0.98975 1.0142 0.99000 1.0000
QC18 (MVar) 8.20720 9.9999 1.8000 2.0100 QC18 (Mvar) 0.21433 3.9849 4.22000 1.3300
QC25 (MVar) 5.89160 5.8994 5.9000 5.7400 QC25 (Mvar) 5.90000 5.9000 5.90000 5.8800
QC53 (MVar) 6.27600 6.2990 6.3000 5.8300 QC53 (Mvar) 6.29790 5.6544 6.30000 6.2900
Ploss (MW) 23.8193 23.8566 23.8284 23.8670 TVD (p.u.) 0.66174 0.6925 0.66899 0.6982
CPU time (s) 263.1987 257.1323 265.5406 264.1323 CPU time (s) 286.2552 280.0591 289.6801 285.3849
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fifty-four generators, nine transformers, and fourteen shunt 
VAR compensators. The bus, generator, and line data are 
adapted from [33]. The lower and upper permissible voltages 
at PQ and PV buses are 0.94 and 1.06 p.u., respectively. The 
permissible tap ratio limits set to 0.9–1.1 p.u.

The comparison of the best result of A-CSOS with SOS 
and the most recent ORPD studies for Scenario 3 are given 
in Table 5. The optimal control variable settings for the best 
result of Scenario 3 are demonstrated in Table 6.

It is clear from Tables 5 and 6 that, in contrast to Sce-
nario 1, where the number of bus is increased and the 

power system is more complex, the superiority of the pro-
posed algorithm over the SOS is more obvious.

In addition, as the number of buses increases, it 
becomes difficult to find a feasible and minimum solu-
tion for the SOS. The active power loss is reduced to 
118.4089 MW and 119.4842 MW from the initial case 
Ploss of 132.8629 MW via A-CSOS for Scenario 3.1 and 
3.2, respectively. Moreover, A-CSOS algorithm is 4.45% 
and 1.86% better than standard SOS and GWO [18], 
which is the best result of declared state-of-art algorithms 

Fig. 2  Dependent variable profiles after Scenario 1 (Ploss optimization). a Bus voltage profiles. b Mvar output of generators

Fig. 3  Dependent variable profiles after Scenario 2 (TVD optimization). a Bus voltage profiles. b Mvar output of generators

Fig. 4  The convergence profiles for Scenario 1 Fig. 5  The convergence profiles for Scenario 2
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in Scenario 3.1. The obtained best result of the proposed 
algorithm in Scenario 3.2 is 6.63% lesser than SOS.

The comparison of the best result of A-CSOS with SOS 
and the other state-of-the-art algorithms for Scenario 4 is 
given in Table 7. Table 7 shows that for Scenario 4.1 and 
Scenario 4.2, the A-CSOS algorithm provides 34.74% 
and 40.52% better TVD values than SOS. Compared with 
the most recent ORPD studies in the literature, the result 
obtained with A-CSOS is also 5.55% better than NGBWCA 
[15] that the best result of above-mentioned algorithms for 
Scenario 4.

The control variable settings of best results for Scenario 
4 are demonstrated in Table 8. Figures 6 and 7 show that the 
related dependent variables are within the boundaries after 
Scenario 3 and Scenario 4 optimizations.

It is observed that Scenario 3.2 and Scenario 4.2 analyses 
defined as discrete variables are more difficult than the algo-
rithms defined as the continuous variables. Nevertheless, it 
has been proven that the performance of A-CSOS algorithm 
in discrete variable ORPD problem is superior to SOS and 
other algorithms.

Objective function values obtained from the proposed 
method and SOS over 100 iterations for Scenario 3 and 4 are 
presented in Figs. 8 and 9. It is appeared from these figures 
that the SOS algorithm is trapped into local optimum points 
in the early stage, while the A-CSOS algorithm finds faster 

and better values due to increase global and local search 
capability for both scenarios.

5.3  Test System 3: IEEE 300‑bus power system

To evaluated the performance of the proposed algorithm in 
more complex test systems, the A-CSOS algorithm is imple-
mented on IEEE 300-bus power system as Test System 3. 
The IEEE 300-bus power system has 145 control variables 
including sixty-nine continuous variables related to PV bus 
voltage magnitudes, sixty-two discrete variables related to 
tunable tap ratios of tap changing transformers with 0.01 
p.u. stepwise, forty-five fixed tap transformer, and fourteen 
discrete variables related to shunt VAR compensators with 
1 Mvar stepwise.

Test system data and initial values of the control vari-
ables are adapted from [33]. The permissible maximum and 
minimum bus voltages are 1.1 p.u. and 0.9 p.u., respectively. 
The maximum and minimum tap ratios of transformers are 
the same as the bus voltage limits and are 1.1 and 0.9 p.u.

The A-CSOS and SOS algorithm are applied to IEEE 
300-bus test system for minimization of Ploss as Scenario 5 
and minimization of TVD as Scenario 6. The active power 
loss was 408.3155 MW for initial case, and the reactive 
power outputs of some generators (e.g., Gen-3, -23, -40, 
-56) and voltage magnitudes of some buses (e.g., Bus-17, 
-96, -97, -128, -149) exceeded the related limit values.

Table 9 presents the best values obtained after applying 
the A-CSOS and SOS algorithm on Test System 3 within the 
scope of Scenario 5 and Scenario 6 analyses.

Moreover, analogizing the best result of A-CSOS with 
ALO [22], differential evolutionary PSO (DEEPSO) [34] 
and mean–variance mapping optimization (MVMO) [34] 
algorithms is given in Table 9. It should be noted that the 
DEEPSO and MVMO algorithms were the two best algo-
rithms in the Competition on Application of Modern Heu-
ristic Optimization Algorithms for Solving Optimal Power 
Flow Problems held in 2014 [34].

According to results, Ploss is decreased to a mini-
mum value of 367.1255  MW from the initial Ploss of 
408.3155 MW via A-CSOS, which is the best value in 
reported results. The tap settings of transformers and Mvar 
output of shunt VAR compensators for the best result of 
A-CSOS and SOS algorithms are demonstrated in Figs. 10 
and 11, respectively.

After Scenario 6 optimization, where TVD minimiza-
tion is performed, the TVD value of 5.4286 p.u. initially 
decreased to 2.7113 p.u. The tap ratios of transformers and 
the output of shunt compensators for the best result in Sce-
nario 6 are demonstrated in Figs. 12 and 13, respectively.

The dependent variable characteristics after Ploss and 
TVD optimization are demonstrated in Fig. 14. It can be 
seen that both objective functions are minimized as well as 

Table 5  Comparison of the results for Scenario 3

a Discrete variable is considered in this result
b Not reported

Algorithms Min Ploss, MW Mean Ploss, MW Std.

HFA [17] 134.2400 134.8499 0.008814
GWOa [18] 131.2620 NRb NRb

BBO [8] 128.9700 NRb NRb

PSO–ICA [13] 127.8247 NRb NRb

GSA [10] 127.7603 NRb NRb

OGSA [11] 126.9900 127.1400 0.000088
EMA [24] 126.2200 127.0111 0.000872
SOAa [9] 126.0272 130.0486 0.032134
CPVEIHBMO [21] 124.0983 NRb NRb

PSOGSA [15] 122.4709 NRb NRb

ALC-PSO [12] 121.5300 123.1400 0.000091
NGBWCA [20] 121.4700 NRb NRb

GWO [18] 120.6500 NRb NRb

ABCa [22] 120.4288 NRb NRb

ALOa [22] 119.7792 NRb NRb

SOSa 127.7347 132.3327 3.36735
A-CSOSa 119.4842 124.4001 2.021968
SOS 123.9277 132.1256 3.82281
A-CSOS 118.4089 123.0515 1.803449
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the related numerous dependent variables are all within the 
permissible limit values after optimization.

The convergence profile of A-CSOS algorithm for 
Scenario 5 and Scenario 6 is given in Figs. 15 and 16, 
respectively.

When the convergence characteristics of the two 
algorithms are examined, it is clear that the effect of the 

features added to the SOS algorithm is more apparent in 
large power systems and the convergence performance 
of the A-CSOS algorithm is much better than the SOS 
algorithm.

Table 6  Optimal value of control variables for best result of Ploss optimization on Test System 2

Variable Scenario 3.1 Scenario 3.2 Variable Scenario 3.1 Scenario 3.2

A-CSOS SOS A-CSOS SOS A-CSOS SOS A-CSOS SOS

VG1 (p.u.) 0.9681 0.9802 0.99045 0.96151 VG89 (p.u.) 1.0600 1.0230 1.05506 1.04448
VG4 (p.u.) 1.0077 1.0088 1.02209 1.00003 VG90 (p.u.) 1.0436 1.0124 1.03021 1.02911
VG6 (p.u.) 0.9977 1.0072 1.01467 0.98367 VG91 (p.u.) 1.0475 1.0315 1.03437 1.03254
VG8 (p.u.) 1.0395 1.0476 1.01884 1.01613 VG92 (p.u.) 1.0414 1.0055 1.03505 1.03169
VG10 (p.u.) 1.0577 1.0495 1.05989 1.05961 VG99 (p.u.) 1.0336 0.9975 1.03202 0.99976
VG12 (p.u.) 0.9886 1.0049 1.01139 0.98190 VG100 (p.u.) 1.0352 1.0002 1.03045 1.04159
VG15 (p.u.) 0.9952 1.0036 1.00918 0.98653 VG103 (p.u.) 1.0211 0.9862 1.00855 1.03034
VG18 (p.u.) 0.9987 1.0066 1.01316 0.98489 VG104 (p.u.) 1.0029 0.9727 1.00558 1.02255
VG19 (p.u.) 0.9967 1.0029 1.00784 0.98439 VG105 (p.u.) 0.9968 0.9706 1.00401 1.02084
VG24 (p.u.) 1.0367 1.0428 1.02385 1.00871 VG107 (p.u.) 0.9834 0.9728 1.01079 1.03200
VG25 (p.u.) 1.0596 1.0600 1.04821 1.04122 VG110 (p.u.) 1.0078 0.9578 0.98743 1.00062
VG26 (p.u.) 1.0599 1.0600 1.05999 0.99239 VG111 (p.u.) 1.0250 0.9671 0.99619 0.98757
VG27 (p.u.) 1.0225 1.0240 1.01281 0.99010 VG112 (p.u.) 0.9977 0.9418 0.97287 1.01774
VG31 (p.u.) 1.0104 1.0198 1.00088 0.97732 VG113 (p.u.) 1.0121 1.0289 1.02056 1.00629
VG32 (p.u.) 1.0173 1.0265 1.00500 0.98996 VG116 (p.u.) 1.0600 1.0576 1.05994 0.99797
VG34 (p.u.) 1.0357 1.0049 1.01394 1.01611 T8 (p.u.) 1.0194 1.0373 0.97000 1.00000
VG36 (p.u.) 1.0339 1.0001 1.00676 1.01310 T32 (p.u.) 1.0444 0.9903 1.06000 0.99000
VG40 (p.u.) 1.0163 0.9888 1.00353 1.00597 T36 (p.u.) 1.0147 1.0066 1.00000 0.99000
VG42 (p.u.) 1.0211 0.9941 1.00618 1.00926 T51 (p.u.) 0.9866 1.0276 1.01000 0.97000
VG46 (p.u.) 1.0315 1.0103 1.03318 1.00570 T93 (p.u.) 0.9996 0.9668 0.99000 0.96000
VG49 (p.u.) 1.0439 1.0247 1.04477 1.02096 T95 (p.u.) 1.0139 1.0999 1.01000 0.99000
VG54 (p.u.) 1.0051 0.9931 1.01528 0.99911 T102 (p.u.) 0.9811 0.9943 0.98000 1.04000
VG55 (p.u.) 1.0041 0.9869 1.01577 0.99650 T107 (p.u.) 0.9559 0.9715 0.97000 0.94000
VG56 (p.u.) 1.0042 0.9901 1.01548 0.99732 T127 (p.u.) 0.9980 1.0267 1.00000 0.95000
VG59 (p.u.) 1.0363 1.0134 1.04859 1.04221 QC5 (Mvar) − 25.7306 − 9.7831 − 25.950 − 20.7300
VG61 (p.u.) 1.0490 1.0048 1.04888 1.03406 QC34 (Mvar) 11.5546 4.3279 5.47000 4.39000
VG62 (p.u.) 1.0469 1.0043 1.04620 1.02111 QC37 (Mvar) − 1.5991 − 11.8037 − 8.4200 − 2.5500
VG65 (p.u.) 1.0600 1.0561 1.05999 1.01986 QC44 (Mvar) 9.9506 9.1265 9.60000 5.30000
VG66 (p.u.) 1.0599 1.0376 1.05995 1.00315 QC45 (Mvar) 5.7313 0.1188 9.04000 1.61000
VG69 (p.u.) 1.0595 1.0337 1.05752 1.00915 QC46 (Mvar) 2.5233 0.2667 4.56000 8.35000
VG70 (p.u.) 1.0275 1.0152 1.00956 0.98991 QC48 (Mvar) 8.1370 10.0302 8.49000 9.53000
VG72 (p.u.) 1.0319 1.0333 1.01245 0.98698 QC74 (Mvar) 11.6349 6.0659 4.84000 7.47000
VG73 (p.u.) 1.0282 1.0355 1.01009 1.00089 QC79 (Mvar) 18.1306 7.1566 19.9000 7.45000
VG74 (p.u.) 1.0047 0.9751 0.98960 0.96573 QC82 (Mvar) 14.0703 19.2284 15.6400 10.1600
VG76 (p.u.) 0.9877 0.9603 0.97983 0.95836 QC83 (Mvar) 8.5930 5.6014 6.83000 9.83000
VG77 (p.u.) 1.0261 0.9995 1.02438 1.01497 QC105 (Mvar) 13.8597 17.9772 15.3400 11.2300
VG80 (p.u.) 1.0415 1.0153 1.04151 1.04277 QC107 (Mvar) 5.9824 0.1600 2.38000 5.09000
VG85 (p.u.) 1.0350 0.9999 1.01564 1.03080 QC110 (Mvar) 1.7745 2.0031 1.70000 3.31000
VG87 (p.u.) 1.0323 1.0021 1.00044 1.05979 Ploss (MW) 118.4089 123.9277 119.4842 127.7347

CPU time (s) 692.0560 690.1967 750.3851 703.6804
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6  Conclusion

In this paper, a new chaos and global competitive ranking-
based symbiotic organisms search (A-CSOS) algorithm 
is suggested to deal with ORPD that is one of the highly 
nonlinear and non-convex optimization problem. The most 
important property of SOS algorithm is not to need any par-
ticular algorithmic parameters. SOS algorithm is hybridized 
with chaos theory and self-adaptive penalty approach for 
designing A-CSOS.

As has been explained broadly in previous chapters, 
although chaos was integrated to SOS algorithm in litera-
ture, only the local search capability was slightly increased, 
but global search capability of the SOS was impaired. On 
the other hand, SOS was tended to trap into local minimum 
points for the reason that the chaos was only applied to the 
best organism and the parasitism phase was removed. These 
problems seem to be more apparent especially in complex, 
nonlinear and non-convex optimization problems such as 
ORPD.

The effectiveness and efficiency of the proposed A-CSOS 
algorithm is demonstrated on IEEE 57-, 118-, and 300-bus 
test power systems for minimizing Ploss and TVD. Simula-
tion results reveal that A-CSOS is provided up to 7.67% Ploss 
improvement and 44.06% TVD improvement considering 
the SOS. Moreover, it is clear that the proposed A-CSOS 
yields up to 1.85% better Ploss value and 15.32% better 
TVD value than the best result of reported algorithms to 
the related test cases. According to statistical data of the 
results given in each scenarios, A-CSOS is considerably bet-
ter than SOS, statistically. As the problem gets more com-
plicated, the superiority of the A-CSOS over SOS becomes 
more apparent. Therefore, the performance of A-CSOS is 
considerably better than basic SOS. Any reduction of power 
loss is not only providing energy efficiency but also saving 
considerable money.

The results proved that global search capability and con-
vergence speed of SOS have been considerably improved by 
utilizing chaos and self-adaptive penalty strategies. While 
the chaos helps the optimizer to find near global minimum 
solution in a very short time, GCR eliminates the trial and 
error process needed to find the ideal penalty coefficients 
and helps the optimizer to direct the organisms to the opti-
mal feasible region.

Therefore, A-CSOS is an excellent candidate to be imple-
mented on ORPD and other constrained nonlinear optimiza-
tion problems for the future researches. Further investigation 
on the performance of A-CSOS using other chaotic maps 
and adaptive penalty techniques may prove fruitful. Pro-
posed method can be hybridized with other optimization 
algorithms for improving or investigating performance of 
the hybrid algorithms.

Table 7  Comparison of the results for Scenario 4

Algorithms Min TVD, pu Mean TVD, pu Std.

PSOGSA [15] 0.7308 NRb NRb

BBO [8] 0.5020 NRb NRb

WCA [20] 0.3752 NRb NRb

OGSA [11] 0.3666 NRb NRb

ALC-PSO [12] 0.3262 0.3281 0.0001
NGBWCA [20] 0.3194 NRb NRb

SOSa 0.55816 0.812842 0.1769
A-CSOSa 0.33198 0.451382 0.06959
SOS 0.46218 0.843000 1.316848
A-CSOS 0.30454 0.414846 0.043144
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Table 8  Optimal value of control variables for best result of TVD optimization on Test System 2

Variable Scenario 4.1 Scenario 4.2 Variable Scenario 4.1 Scenario 4.2

A-CSOS SOS A-CSOS SOS A-CSOS SOS A-CSOS SOS

VG1 (p.u.) 0.98743 0.9901 0.98675 0.98989 VG89 (p.u.) 1.01699 1.0453 1.01446 0.99754
VG4 (p.u.) 1.01636 1.0351 1.00846 1.05198 VG90 (p.u.) 1.03626 0.9849 0.95651 1.06000
VG6 (p.u.) 1.00062 1.0193 1.00069 1.02708 VG91 (p.u.) 1.04276 1.0477 0.99226 1.01589
VG8 (p.u.) 0.97677 1.0154 0.97836 0.99467 VG92 (p.u.) 1.01092 1.0291 1.00559 0.99969
VG10 (p.u.) 1.00616 0.9778 1.00449 1.00483 VG99 (p.u.) 0.96225 0.9682 1.05480 1.00447
VG12 (p.u.) 1.01188 1.0163 1.01224 1.01392 VG100 (p.u.) 1.02538 1.0236 1.04179 1.03302
VG15 (p.u.) 0.98968 1.0018 1.00332 0.99379 VG103 (p.u.) 1.01898 1.0025 1.03094 1.01604
VG18 (p.u.) 0.98754 1.0100 1.00845 0.98942 VG104 (p.u.) 1.00174 0.9935 1.01592 1.00944
VG19 (p.u.) 0.98736 1.0031 1.00299 0.99087 VG105 (p.u.) 1.00401 0.9940 1.01115 1.00740
VG24 (p.u.) 1.05289 1.0600 1.06000 1.03809 VG107 (p.u.) 1.01534 1.0233 0.99912 1.00829
VG25 (p.u.) 1.03312 0.9880 0.98354 1.01461 VG110 (p.u.) 0.99854 1.0026 0.98883 1.01119
VG26 (p.u.) 1.00259 0.9402 0.96235 0.99523 VG111 (p.u.) 1.00768 1.0299 0.95795 0.99239
VG27 (p.u.) 1.00905 1.0103 1.00430 0.99936 VG112 (p.u.) 0.98411 0.9987 1.01886 1.05014
VG31 (p.u.) 1.00298 1.0025 1.00452 1.00430 VG113 (p.u.) 1.00047 1.0197 1.02539 0.99224
VG32 (p.u.) 1.00132 1.0001 1.00594 1.00358 VG116 (p.u.) 0.98645 0.9784 0.99010 0.99370
VG34 (p.u.) 0.99623 1.0115 1.01325 1.01080 T8 (p.u.) 0.95774 1.0746 0.94000 1.01000
VG36 (p.u.) 0.99194 1.0052 1.00886 1.00943 T32 (p.u.) 1.02734 1.0349 1.07000 0.98000
VG40 (p.u.) 1.01771 1.0289 1.00204 1.01697 T36 (p.u.) 1.00176 0.9799 1.00000 0.99000
VG42 (p.u.) 0.97694 0.9418 1.01993 0.97842 T51 (p.u.) 0.98510 0.9745 0.97000 0.97000
VG46 (p.u.) 1.04331 1.0519 1.03404 1.04466 T93 (p.u.) 0.99288 0.9816 0.97000 1.04000
VG49 (p.u.) 1.00341 1.0038 1.00387 1.00960 T95 (p.u.) 0.97958 0.9977 0.98000 1.00000
VG54 (p.u.) 1.02351 1.0229 1.02220 1.02139 T102 (p.u.) 1.02732 1.0364 1.03000 1.07000
VG55 (p.u.) 1.01369 1.0111 1.01493 1.00456 T107 (p.u.) 0.99536 1.0406 0.95000 0.93000
VG56 (p.u.) 1.01526 1.0146 1.01564 1.00995 T127 (p.u.) 0.96745 1.0323 0.96000 0.94000
VG59 (p.u.) 1.01153 1.0108 1.02570 0.96687 QC5 (Mvar) − 0.31042 − 9.9388 − 26.400 − 17.6000
VG61 (p.u.) 1.00183 1.0024 1.00189 0.97158 QC34 (Mvar) 7.42403 1.4903 3.34000 8.73000
VG62 (p.u.) 0.99718 0.9938 0.99466 0.96103 QC37 (Mvar) − 22.0909 − 21.0922 − 15.5900 − 17.2200
VG65 (p.u.) 1.01606 1.0120 1.02338 1.02443 QC44 (Mvar) 9.99495 5.4228 9.99000 4.24000
VG66 (p.u.) 1.01461 0.9974 1.01669 0.97804 QC45 (Mvar) 9.99721 3.9528 9.94000 6.02000
VG69 (p.u.) 1.05999 1.0526 1.06000 1.05999 QC46 (Mvar) 5.80266 0.0086 7.41000 7.67000
VG70 (p.u.) 1.00921 1.0152 1.00351 0.99215 QC48 (Mvar) 4.47224 7.3262 0.01000 8.57000
VG72 (p.u.) 0.97148 1.0400 1.05289 0.99500 QC74 (Mvar) 5.70922 11.7285 7.89000 11.7700
VG73 (p.u.) 0.99408 1.0309 0.98107 0.97326 QC79 (Mvar) 9.73093 3.8839 4.27000 2.52000
VG74 (p.u.) 0.98696 0.9893 0.98392 0.98102 QC82 (Mvar) 19.9995 19.9934 19.3200 9.01000
VG76 (p.u.) 0.97191 0.9723 0.96837 0.97514 QC83 (Mvar) 9.95966 9.987 8.50000 8.43000
VG77 (p.u.) 1.00959 1.0095 1.00793 1.02184 QC105 (Mvar) 10.2692 13.1059 15.4000 7.08000
VG80 (p.u.) 1.01761 1.0199 1.02149 1.04296 QC107 (Mvar) 3.55680 4.6934 3.14000 2.57000
VG85 (p.u.) 1.00663 1.0060 1.01056 0.98984 QC110 (Mvar) 5.67025 2.5931 0.43000 0.66000
VG87 (p.u.) 1.01444 0.9954 1.05640 1.04214 TVD (p.u.) 0.30454 0.46218 0.33198 0.55816

CPU time (s) 694.7607 678.5452 716.7083 688.9141
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Fig. 6  Dependent variable profiles after Scenario 3 (Ploss optimization). a Bus voltage profiles. b Mvar output of generators

Fig. 7  Dependent variable profiles after Scenario 4 (TVD optimization). a Bus voltage profiles. b Mvar output of generators

Fig. 8  The convergence profiles of A-CSOS and SOS for Scenario 3 Fig. 9  The convergence profiles of A-CSOS and SOS for Scenario 4
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Table 9  Comparison of the results for Scenario 5 and Scenario 6 on Test System 3

a Not reported

Algorithms Scenario 5: Ploss minimization

Min Ploss, MW Mean Ploss, MW Std.

Initial 408.3155 – –
DEEPSO [34] 394.4343 414.6239 42.0360
MVMO [34] 385.6284 394.1294 8.2219
ALO [22] 384.9224 NRa NRa

SOS 409.9643 434.7161 11.0400
A-CSOS 367.1255 388.9581 10.0496

Scenario 6: TVD minimization

Min TVD, pu Mean TVD, pu Std.

Initial 5.4286 – –
SOS 4.5420 6.9421 1.0159
A-CSOS 2.7113 4.3876 0.4156

Fig. 10  Tap settings for the best results in Scenario 5

Fig. 11  Shunt compensator settings for the best results in Scenario 5

Fig. 12  Tap settings for the best results in Scenario 6

Fig. 13  Shunt compensator settings for the best results in Scenario 6
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