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Abstract

In this paper, we propose a differential evolution (DE) algorithm for optimizing the placement and power

of the pilot tones that are utilized by a least square (LS) algorithm for channel estimation in multiple-

input and multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) systems. Computer

simulations demonstrated that the performance of the LS algorithm was increased by optimizing the pilot

tones with the DE algorithm instead of locating them orthogonally. We used the upper bound of the mean

square error (MSE) as a fitness function of the DE algorithm for optimization tasks. With the use of an

upper bound, it is not necessary to compute the matrix inversion that is needed in computing the MSE.
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1. Introduction

Wireless communication systems require high supporting data rate transmission and quality of service. Or-
thogonal frequency division multiplexing (OFDM) is regarded as a promising solution for supporting these
requirements. OFDM is a multicarrier modulation scheme that divides the available bandwidth into a number
of orthogonal subcarriers that are modulated independently. High bit rate data transmission can, therefore,
be provided by using bandwidth efficiently [1]. Additionally, multiple antenna architecture on the transmitter

and receiver side, which is called the multiple-input multiple-output (MIMO) technique, is a suitable choice

to improve the capacity of OFDM without additional power or bandwidth consumption [2]. Due to the many
advantages of MIMO-OFDM, it has been standardized for various digital communication systems such as ter-
restrial digital audio broadcasting (DAB-T), terrestrial digital video broadcasting (DVB-T), wireless local area

networks (WLANs), and 4G wireless cellular systems.
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However, in these systems, knowledge of the channel state information (CSI) at the receiver is necessary
for interference cancellation, coherent detection, and demodulation. To this end, channel estimation methods
based on pilot tones can be applied to obtain CSI in OFDM systems [3-8]. In this method, pilot tones are
inserted into each subcarrier at one OFDM symbol or inserted to the subset of subcarriers with a specific period
[3]. However, the design of the location of pilot tones and power will directly affect the performance of the
channel estimation algorithms. The optimization of the pilot tones for OFDM systems has been investigated
in many papers recently [4-8]. Optimum pilot design and the placement of the pilot symbols by minimizing the

Cramer-Rao bound were considered for channel estimation in [4]. In [5], the pilot locations for OFDM systems

were optimized using bounds on the objective function based on the optimizing symbol error rate (SER) and

the channel capacity. By minimizing the mean square error (MSE) of least square (LS) channel estimation,

optimal uniform and nonuniform placement of pilot tones for MIMO-OFDM systems were presented in [6]

and [7], respectively. In [8], optimal training sequences were derived using the lower bound on the variance
of the channel estimate. Application of evolutionary computing techniques such as differential evaluation in
digital communication systems can also be found in the literature. In [9], Mannoni et al. optimized irregular

Gallager codes for OFDM transmission using differential evolution. In [10], a differential evolution algorithm

was proposed to reduce the training signal sequence. In [11], differential evaluation was applied to design infinite

impulse response (IIR) filters.

The aim of this paper is to propose an optimization of the power of pilot tones and their location
affecting the performance of the comb-type LS channel estimation technique in MIMO-OFDM systems by using
a differential evolution optimizer.

This paper is organized as follows: the background of MIMO-OFDM systems and the MSE of LS
estimation technique are introduced in Section 2. In Section 3, the differential evolution algorithm is presented.
In Section 4, the objective function of the differential evolution (DE) algorithm is derived. Simulation results
and conclusions are given in Section 5 and Section 6, respectively.

2. System model

The block diagram of a MIMO-OFDM system that has Nt transmit antennas, Nr receive antennas, and N
subcarriers is presented in Figure 1. At each transmit antenna, a data stream, including pilot tones, is turned
into OFDM symbols by taking the inverse fast Fourier transform (IFFT). A cyclic prefix (CP) is added and
then symbols are transmitted.
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Figure 1. Simplified block diagram of MIMO-OFDM system.
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At the q th receiver antenna, after removing the CP and applying the fast Fourier transform (FFT), the
received signal vectors are expressed as follows.

Y q(n) =
Nt−1∑
p=o

Xp
diag(n)Fhp,q + W q(n) q = 1, 2, ...,Nr p = 1, 2, ...,Nq (1)

LetXp(n) = Dp(n)+Bp(n), where Dp(n) is some arbitrary N ×1 data vector, Bp(n) is some arbitrary N ×1

pilot tone vector at time index n , W q(n)is additive white Gaussian noise, hp,q is anL × 1 vector representing
the channel impulse response of length L from the pth transmit antenna to the q th receive antenna, F is an
N × N unitary DFT matrix, and (.)diag is a diagonal matrix with column vector (.).

F =

⎡
⎢⎢⎢⎢⎢⎣

F0,0 F0,1 ... F0,N−1

F1,0 F1,1 ... F1,N−1

... ... ... ...

FN−1,0 FN−1,1 ... FN−1,N−1

⎤
⎥⎥⎥⎥⎥⎦

, (2)

where the uth column and v th line of Fu,v are equal to (1/
√

N)e−j2π(uv/N) . Eq. (1) can then be rewritten as

follows:

Y q(n) =
Nt−1∑
p=0

Dp
diag(n)Fhp,q +

Nt−1∑
p=0

Bp
diag(n)Fhp,q + W q(n). (3)

If we write Eq. (3) in simplified form, we have:

Y q = Ghq + Ahq + W q , (4)

where hq = [hq,1T

, ..., hq,NT
t ]T is a channel impulse response vector of NtL length, G = [D1

diagF, ..., DNt

diagF ] is

a K × NtL matrix, A = [B1
diagF, ..., BNt

diagF ] is a K × NtLmatrix, and (.)T is the transpose operation. For a

MIMO system, Nt × Nr individual channel impulse responses must be estimated. For this reason, one of the

channel impulse responses, ĥq , can be estimated using a LS algorithm as:

ĥq = AtY q = hq + (AHA)−1AHW q, (5)

where (.)t is the matrix pseudoinverse and equals At = (AHA)−1AH , and (.)H is the Hermitian matrix. It is
assumed that pilot sequences are designed as M × NtL matrix A , which has a full column rank of NtL that
requires M ≥ NtL where M is the set of pilot tones. A minimum number of pilot tones, M = LNt , is needed.

For optimal pilot tone design, the MSE of LS is derived as:

MSE =
1

LNt
ε

{∥∥∥ĥq − hq
∥∥∥2

}
=

1
LNt

tr
{

Atε
{

W qW qH
}

AtH
}

, (6)

where (.)t is the matrix pseudoinverse, tr(.) is the trace operator, and ε(.) is the expectation. For zero-mean

white noise, ε
{

W qW qH
}

= σ2IM where IM is an M × M identity matrix, and σ is the noise variance. In

that case, the MSE can be defined as:

MSE =
σ2

LNt
tr

{
(AHA)−1

}
. (7)
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The minimum MSE can be achieved if AHA = PILNt , where P is a fixed power dedicated for the pilot. The

minimum MSE is then obtained as [6-7]:

MSE =
σ2

P
. (8)

3. Differential evolution algorithm

The DE algorithm is a population-based stochastic parallel direct search technique for the global optimization
problem [12]. DE uses differential information of individuals in the current population of solutions to create
new candidate solutions. Use of a few control parameters and fast convergence are the main advantages of DE
in finding optimal points of problems.

The algorithm steps are given in the Table [11]. DE starts with the random initializing of the initial

population. The mutation, crossover, and selection operator are then applied to improve the population [12-13].

Table. DE algorithm steps.

Step 1. Initialization
Step 2. Evaluation
Step 3 REPEAT

Mutation
Recombination
Evaluation
Selection
UNTIL (stop criteria are met)

3.1. Mutation

In mutation, new vectors are derived by the combination of randomly chosen vectors from the current popula-
tions at each generation, which is described as follows.

For each target vectorxi(i = 1, 2, ...,m), a mutant vector in generation G is defined by:

Vi,G+1 = xr1,G + η(xr2,G − xr3,G), (9)

where i ,r1 ,r2 ,r3 ∈ {1, 2, ...m} are mutually different random integer indices and η is a scaling factor that
determines the difference of xr1 and xr2 .

3.2. Crossover

Crossover generates new solutions by shuffling the competing vectors, and it increases the diversity of the
population. The operation is given by:

Ui,G+1 =
{

Vi,G+1

xi,G

if
else

randj(0, 1) ≤ Cr ∨ j = k , (10)

where Cr is the crossover constant and randj(0, 1) is the j th evaluation of random number generation.

k ∈ {1, 2, ...,D} is the random parameter index.
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3.3. Selection

Selection decides whether the trial individual Ui,G+1 will be a member of the population of the next generation

(G + 1)or not.

xi,G+1 =
{

Ui,G+1,
xi,G,

if
else

f(Ui,G+1) < f(xi,G) , (11)

where f(.)is the fitness function.

4. Fitness function of differential evaluation

When we use the MSE function in Eq. (7) as an objective function for the DE algorithm, the computational

load of the optimizer will increase because of the matrix inversion of Eq. (8). In that case, we reduce the

computational complexity of Eq. (8) using the Gershgorin circle theorem [14] because A is full rank and the

eigenvalues of AAH are positive and real. When this theorem is considered, the upper bound of MSE that we
use as an objective function for DE is obtained by:

tr
{
(AAH)−1

}
=

L∑
i=1

1
λi

≤
{

L
P−Rmax

+∞
, P > Rmax

, P ≤ Rmax
, (12)

where P (i = 1, ...L) is the diagonal elements of matrix (AAH),λi(i = 1, ..., L) is the eigenvalues, and

Rmax = max(Ri)is the maximum radius of the Gershgorin disk, whose definition is:

Ri =
L∑

j = 1
j �= i

|bij|. (13)

In regards to Eq. (12), we use Rmax
P as the fitness function for DE.

In order to optimize the positions of pilot tones, the populations called pilot positions are first initialized
at random values between 0 and 127. Possible combinations of pilot positions are tested using the fitness

function Rmax
P

. In order to get the best positions of the pilots, their locations are improved by the mutation,

crossover, and selection operators mentioned in Section 3. The process is repeated until the termination criteria
are reached, which was determined as a maximum of 2000 iterations in our simulations. At the end of the
iterations, the best locations were chosen and 3.2 s was required as the convergence time when a Pentium D 3.0
computer was used. The power of the pilot tones was optimized by a continuous DE algorithm as mentioned
above, but for this process, populations were initialized at random values between 0 and 1.

5. Simulation results

The simulations were performed for a 2 × 2 MIMO-OFDM system with N = 128 subcarriers, a cyclic prefix
size of 32, 16 pilot tones, and a power of the pilot tones that was normalized to 1 dB. QPSK modulation was
used. An 8-tap channel model, whose taps were independent, identically distributed, and correlated in time

with a correlation function according to Jakes’ model, rhh(τ ) = σ2
hJo(2πfdτ ), was used. Maximum relative

delays of channels of 600 ns and powers of paths of –2 dB were chosen for the channel profile, while fd = 5
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and fd = 40 Hz Doppler shifts were assumed over the channel. For optimizing the location of pilot tones and
their power, we chose the differential evolution parameters of a population size of 20, scale factor of 0.8, and
crossover probability of 0.8.

In order to evaluate the performance of the pilot tone design using DE, we simulated various pilot tones:

a) Equipowered and equispaced orthogonal pilot tones, shown in Figure 2.

b) Equipowered and optimal placement of pilot tones using DE, shown in Figure 3.

c) Optimal power and placement of pilot tones using DE.

4 20 36 52 68 84 100 116

12 28 44 60 76 92 108 124

Figure 2. The placement of orthogonal pilot tones for 2 transmit antennas.

5 18 33 49 62 79 102 121

13 27 42 51 72 97 112 126

Figure 3. The placement of optimized pilot tones for 2 transmit antennas.

Figures 4 and 5 illustrate the bit error rate (BER) versus the signal-to-noise ratio (SNR) and the MSE
versus the SNR of various pilot signals at an fd = 5 Hz Doppler shift, respectively. As can be seen, optimizing
the pilot tones using a DE algorithm increases the performance of the LS channel estimation method when
compared to orthogonal placement of the pilot tones.
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Figure 4. BER versus SNR (fd = 5 Hz). Figure 5. MSE versus SNR (fd = 5 Hz).

When Figure 4 is considered, at increased SNR values, both the BER and MSE decrease further. For
instance, at a 10-dB SNR, the BER difference between the orthogonal placement and optimum placement of
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the pilot tones is less than 10−1 , whereas this difference is approximately 10−1 at a 30-dB SNR. Furthermore,
by not only optimizing the placement of pilot tones but also optimizing their power, the estimation performance
is increased. Joint optimization (both placement and power) has more than a 1-dB gain in SNR than optimum

placement of pilot tones at an MSE of 10−1 . However, power optimization has a low impact on the performance.
As a matter of fact, optimization of pilot tone placements has considerable effects on channel estimation
performance.

To see the effect of increasing Doppler shifts, simulation results of BER versus SNR are shown in Figure
6, and MSE versus SNR is shown in Figure 7 for anfd = 40 Hz Doppler shift. It can be seen that increased
Doppler shifts decrease the performance of the LS method. When Figures 4 and 6 are considered, it is seen

that orthogonal pilot tones have a 5-dB loss in SNR at a BER of 10−3 when simulated at fd = 40 Hz and
fd = 5 Hz Doppler shifts. However, this difference is approximately 4 dB in the optimal placement of the
pilot tones. Simulation results show that the optimization of pilot tones makes the system robust to the
effect of Doppler shifts. Optimization of pilot tones in MIMO-OFDM systems can also be done to make the
system more robust against estimation errors when the channel parameters are changed. Moreover, the DE
algorithm avoids exhaustive searches for the optimization of pilot tone locations. The exhaustive search for

pilot position for orthogonal pilots is C16
128 ≈ 2.26041× 1028 in a system that has 128 subcarriers and 16 pilot

tones, whereas the number of searches in the DE algorithm is just 2000 × 20 = 4 × 104 for a size of 2000
generations and 20 populations. Furthermore, we examined the rough computational complexity of orthogonal
and optimal placement based on DE in terms of the number of multiplications and additions in order to
represent the computational advantage of our proposal. The computational complexity was computed in terms
of Nt (number of transmitter antennas), Nr (number of receiver antennas), n (population size), Niteration

(number of iterations), and M (number of pilot tones). For orthogonal placement as presented in [6], in order

to get the orthogonality of the pilot tones, NtNrM
4 multiplications are required. When MSE in Eq. (8) is used

as the objective function, matrix inversion must also be computed; as a consequence, M3 multiplications and
additions are needed [15]. However, in the DE algorithm, we avoid computing this matrix inversion by use of

the fitness function mentioned in Section 4. For the proposed DE algorithm, at first n(NtNr) multiplications
are required for the fitness of each position in population n . In order to improve the population, μ additional
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Figure 6. BER versus SNR (fd = 40 Hz). Figure 7. MSE versus SNR (fd = 40 Hz).
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multiplications per iteration are needed. As a result, n(NtNr + μ)Niteration multiplications are required in the
DE algorithm. As can be seen from the above computational analysis, optimizing pilot tones using DE is less
complex than placing them orthogonally.

6. Conclusion

In this paper, a DE algorithm was proposed in order to optimize not only the placements of pilot tones but
also their power for LS channel estimation algorithm in MIMO-OFDM systems. Compared with the orthogonal
placement of pilot tones, the optimization of the location and power of pilot tones based on the DE algorithm
offers better performance and robustness to different Doppler shifts. By using the DE algorithm, the exhaustive
search for pilot position is considerably lessened compared to the orthogonal pilot tones. Moreover, by using
the upper bound of MSE instead of using MSE directly for the fitness function of the DE algorithm, computing
the matrix inversion can be avoided.
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