Selçuk J. Appl. Math.
Vol. 8. No.2. pp. - , 2007

Selçuk Journal of Applied Mathematics

A Boundary Value Problem for Nonhomogeneous Vekua Equation in Wiener-type Domains

Kerim Koca ${ }^{1}$ and Okay Çelebi ${ }^{2}$
Kırıkkale University Faculty of Sciences and Letters Department of Mathematics 71450 Yahşihan, Kırıkkale, Turkey;
e-mail: kerimkoca@msn.com
${ }^{2}$ Middle East Technical University Department of Mathematics 06531 Ankara, Turkey; e-mail: celebi@metu.edu.tr

Received: August 28, 2007
Summary. In this article we take the nonhomogeneous Vekua equation

$$
w_{\bar{z}}=A w+B \bar{w}+F \quad, \quad z \in D
$$

subject to the conditions

$$
\begin{array}{ll}
\left.\operatorname{Re} w\right|_{\partial D}=\varphi & , \quad \varphi \in C^{\alpha}(\partial D) \\
\operatorname{Im} w\left(z_{0}\right)=c_{0} & , \quad z_{0} \in \bar{D}
\end{array}
$$

where $A, B, F \in L_{p}(D), p>2$. We want to derive the conditions under which the solution exists in Wiener-type domains.

Key words: Generalized analytic functions, solutions in Wiener sense, Wienertype domain, capacity, non-homogeneous Vekua equations.
Classification categories: 30 G 20, 36 J 40, 35 J 60.

1. Introduction

Let us consider the boundary value problem

$$
\begin{gather*}
w_{\bar{z}}=A w+B \bar{w}+F \quad, \quad z \in D \tag{1.1}\\
\left.\operatorname{Re} w\right|_{\partial D}=\varphi(z) \quad, \quad z \in \partial D \tag{1.2}\\
\operatorname{Im} w\left(z_{0}\right)=c_{0} \quad, \quad z_{0} \in \bar{D} \tag{1.3}
\end{gather*}
$$

in a domain $D \subset \mathbb{C}$ with non-smooth boundary where $A, B, F \in L_{p}(D), p>$ $2, \varphi \in C^{\alpha}(\partial D)$ and c_{0} is a real constant. The differential equation (1.1) is equivalent to the real system of equations

$$
\begin{align*}
& u_{x}-v_{y}=a(x, y) u+b(x, y) v+f(x, y) \\
& u_{y}+v_{x}=c(x, y) u+d(x, y) v+g(x, y) \tag{1.4}
\end{align*}
$$

if we take $w=u+i v$, where

$$
\begin{align*}
4 A & =a+d+i(c-b) \\
4 B & =a-d+i(c+b) \tag{1.5}\\
2 F & =f+i g
\end{align*}
$$

On the other hand, if $u, v \in C^{2}(D), a, b, c, d, f, g \in C^{1}(D)$ and $b_{x}=-d_{y}$ then we may eliminate, for example v, from the system (1.4) to find

$$
\begin{equation*}
L u=H(x, y) \tag{1.6}
\end{equation*}
$$

where

$$
\begin{gather*}
L=\Delta+p(x, y) \frac{\partial}{\partial x}+q(x, y) \frac{\partial}{\partial y}+k(x, y) \tag{1.7}\\
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
\end{gather*}
$$

and

$$
H(x, y)=\nabla \cdot(f, g):=f_{x}+g_{y}
$$

Thus we have deduced the boundary value problem

$$
\begin{align*}
& L u=H(x, y) \\
& \left.u\right|_{\partial D}=\varphi, \quad \varphi \in C^{\alpha}(\partial D) \tag{1.8}
\end{align*}
$$

in the bounded domain $D \subset \mathbb{C}$ where $x+i y \in D$. We assume there exist constants C_{1}, C_{2} such that the coefficients of L satisfy the inequalities

$$
\begin{equation*}
|p(x, y)| \quad, \quad|q(x, y)| \leqslant \frac{C_{1}}{r^{\lambda}} \quad, \quad-\frac{C_{2}}{r^{\lambda+1}} \leqslant k(x, y) \leqslant 0 \tag{1.9}
\end{equation*}
$$

where

$$
\begin{equation*}
r=\sqrt{(x-\xi)^{2}+(y-\eta)^{2}} \quad, \quad(x, y) \in D, \quad(\xi, \eta) \notin D \tag{1.10}
\end{equation*}
$$

and $0 \leqslant \lambda<1$.
Definition 1.1: The real valued function $u \in C^{2}(D)$ satisfying the inequality $L u \geqslant 0$ (or $L u \leqslant 0$) is called the subsolution (or supersolution) of $L u=0$ where L is given by (1.7).

Let $E, T \subset \mathbb{C}$ be Borel measurable sets, r be the distance defined by (1.10) where $z=x+i y \in T, \zeta=\xi+i \eta \in E$. Let \mathcal{M} be the set of all measures defined on the σ-algebra of all subsets of E. Let us define also the real valued function

$$
\begin{equation*}
h(z, \zeta):=\left[\log \left(\frac{\gamma}{r}\right)\right]^{s} \quad, \quad r<\gamma \tag{1.11}
\end{equation*}
$$

In (1.11), $s \in \mathbb{R}^{+}$is a constant and γ is determined so that $L h \geqslant 0$. Let us define the subset of \mathcal{M} by

$$
\mathcal{M}_{1}:=\left\{\mu \in \mathcal{M}: \iint_{E} h(z, \zeta) d \mu(\zeta) \leqslant 1\right\}
$$

Definition 1.2: The logarithmic (L, s)-capacity of E with respect to T is defined by

$$
\begin{equation*}
\operatorname{Cap}_{(L, s)} E:=\sup _{\mu \in \mathcal{M}_{1}} \mu(E) . \tag{1.12}
\end{equation*}
$$

Now, consider the boundary value problem

$$
\left.\begin{array}{ll}
L u=0 & , \quad z \in D \tag{1.13}\\
\left.u\right|_{\partial D}=\varphi & , \quad \varphi \in C^{\alpha}(\partial D) \quad, \quad 0<\alpha<1
\end{array}\right\}
$$

where $D \subset \mathbb{C}$ is a bounded domain with non-smooth boundary. Let us choose the set $\left\{D_{m}\right\}_{1}^{\infty}$ of domains with smooth boundaries, such that

$$
\begin{equation*}
\bar{D}_{m} \subset D_{m+1} \subset D \quad m=1,2, \ldots \quad, \quad \lim _{m \rightarrow \infty} D_{m}=D \tag{1.14}
\end{equation*}
$$

Thus we may define the boundary value problem

$$
\begin{array}{ll}
L u_{m}=0 & , \quad z \in D_{m} \\
\left.u_{m}\right|_{\partial D_{m}}=\Phi_{0 m}(z) & , \quad \Phi_{0 m} \in C^{\alpha}\left(\partial D_{m}\right) \quad, \quad m=1,2, \ldots \tag{1.15}
\end{array}
$$

in D_{m} which has smooth boundary, where $\Phi_{0 m}$ is the restriction to the boundary ∂D_{m} of the Hölder continuous extension Φ_{0} of φ into D. This problem has a unique solution u_{m} (see for example [2]). So we obtain the set of solutions $\left\{u_{m}\right\}_{1}^{\infty}$.

Definition 1.3: If

$$
\lim _{m \rightarrow \infty} u_{m}=u_{\varphi}
$$

exists, then u_{φ} is called the generalized solution of (1.13) in Wiener sense.
Definition 1.4: Let $z_{0} \in \partial D$ be a fixed point and u_{φ} be the generalized solution of (1.13) in Wiener sense. If for each $\varphi \in C^{\alpha}(\partial D)$,

$$
\lim _{z \rightarrow z_{0}} u_{\varphi}(z)=\varphi\left(z_{0}\right)
$$

holds, then z_{0} is called a regular point. Otherwise it is called as an irregular point of ∂D.

Definition 1.5 A domain is of Wiener-type if every point on its boundary is regular in Wiener sense.
Throughout the paper, we assume that the coefficients of the operator L satisfies the inequalities (1.9), r is defined by (1.10) and $B_{R}\left(z_{0}\right)$ represents the ball with center z_{0} and radius R.
Now we will recall
Theorem 1.1: [3]Let us assume that the solution u of $L u=0$ in a bounded domain D is continuous in $\bar{D} \backslash\left\{z_{0}\right\}, z_{0} \in \partial D$, bounded in D and vanishes on $\partial D \cap B_{R_{0}}\left(z_{0}\right)$. Let $E_{R}:=B_{R}\left(z_{0}\right) \backslash D$ and $\operatorname{Cap}_{(L, s)} E_{4^{-m}}:=K_{m}$ for $0<4^{-m}<$ $R_{0}, m=m_{0}, m_{0}+1, \ldots .$. If $\sum_{m=m_{0}}^{\infty} K_{m}$ is divergent, then $z_{0} \in \partial D$ is a regular point in the sense of Wiener.

Definition 1.6: Let $z_{0} \in \partial D$ be a fixed point and u be a subsolution defined in any $D^{\prime} \subset D$, continuous in $\overline{D^{\prime}}$ and satisfying $u(z)<1$ for all $z \in D^{\prime}$. If there exists a real valued function Ψ such that
(i) $\Psi(r)>0$ for $0<r<r_{0}$ and $\lim _{r \rightarrow 0} \Psi(r)=0$
(ii) $\left.u\right|_{D \cap \sigma_{1}} \leqslant \Psi(r)$ wheneveru $\left.\right|_{\partial D^{\prime} \cap \sigma} \leqslant 0$
where σ and σ_{1} are two neighborhoods of z_{0}, then z_{0} is called as Ψ-regular point for the boundary value problem (1.13).

Note It has been proved previously [3] that if $z_{0} \in \partial D$ is a Ψ-regular point, than it is also regular in Wiener sense.

2.Existence of the real part of solutions

We will investigate the necessary conditions for the Dirichlet problem (1.8) to have a solution, when $H \in L_{p}(D), H$ real valued, $p>2$. This problem may be decomposed into two new problems

$$
\left.\begin{array}{ll}
L V=0 & , \quad z \in D \tag{2.1}\\
\left.V\right|_{\partial D}=\varphi & , \quad \varphi \in C^{\alpha}(\partial D)
\end{array}\right\}
$$

and

$$
\begin{align*}
& L W=H \tag{2.2}\\
& \left.W\right|_{\partial D}=0
\end{align*} \quad, \quad z \in D
$$

to give the solution as $u=V+W$.
The problem (2.1) has been investigated previously [3] in Wiener-type domains. Hence we will deal with (2.2), only. If H were a continuous and bounded
function in a domain D with smooth boundary, then the problem (2.2) would have solution $W \in C^{2}(D) \cap C(\bar{D})$. Otherwise, the classical maximum principle does not hold in general. But it is known that [3], if $H \in L_{p(\lambda)}(D), 2<p(\lambda)<$ $\frac{2}{\lambda}$, then the solutions satisfy

$$
\begin{equation*}
\sup _{D}|W| \leqslant C_{3}(\operatorname{meas} D)^{\frac{1}{2}-\frac{1}{p(\lambda)}}\|H\|_{L_{p(\lambda)}(D)} . \tag{2.3}
\end{equation*}
$$

Now we will discuss the generalized solutions of (2.2) in Wiener sense, in the cases where H is a bounded or unbounded function in D.
Case I: H is continuous and bounded: First of all, let us consider the domain

$$
D_{\rho}=\{z \in D: \rho>\operatorname{dist}(z, \partial D)\}
$$

Let us choose the subdomains $\left\{D_{k}\right\}_{1}^{\infty}$ with smooth boundaries such that

$$
D_{k} \subset D_{k+1} \quad, \quad \bar{D}_{k} \subset D_{\rho} \quad, \quad \lim _{k \rightarrow \infty} D_{k}=D_{\rho}
$$

So, we may define the boundary value problems

$$
\begin{array}{ll}
L W_{k}=H & , \quad z \in D_{k} \\
W_{k}=0 & , \quad z \in \partial D_{k} \quad k=1,2, \ldots \tag{2.4}
\end{array}
$$

Let us define functions

$$
\begin{aligned}
& \Phi_{k}^{+}:=e^{2 A \delta} e^{A \operatorname{Re}\left[(1-i)\left(z-z_{0 k}\right)\right]} \\
& \Phi_{k}^{-}:=-e^{2 A \delta} e^{A \operatorname{Re}\left[(1-i)\left(z-z_{0 k}\right)\right]}
\end{aligned}
$$

where $z_{0 k} \in D_{\rho}$ and $\lim _{k \rightarrow \infty} z_{0 k}=z_{0} \in D_{\rho}$. It is trivial that

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \Phi_{k}^{+}=e^{2 A \delta} e^{A \operatorname{Re}\left[(1-i)\left(z-z_{0}\right)\right]}=: \Phi^{+} \\
& \lim _{k \rightarrow \infty} \Phi_{k}^{-}=-e^{2 A \delta} e^{A \operatorname{Re}\left[(1-i)\left(z-z_{0}\right)\right]}=: \Phi^{-}
\end{aligned}
$$

δ is the diameter of D and A is a real constant to be chosen. By use of (1.9) and the fact that $r>\rho$, we can find

$$
\left.\begin{array}{l}
L \Phi^{+} \geqslant C_{4} A \tag{2.5}\\
L \Phi^{-} \leqslant-C_{4} A
\end{array}\right\}
$$

where C_{4} may depend on $\delta, \rho, C_{1}, C_{2}$. On the other hand, let W_{k}^{+}and W_{k}^{-}be the classical solutions of the boundary value problems

$$
\left.\begin{array}{ll}
L W_{k}^{+}=\frac{1}{2} H & , \quad z \in D_{k} \tag{2.6}\\
W_{k}^{+}=\Phi^{+} & , \quad z \in \partial D_{k}
\end{array}\right\}
$$

and

$$
\left.\begin{array}{ll}
L W_{k}^{-}=\frac{1}{2} H & , \quad z \in D_{k} \\
W_{k}^{-}=\Phi^{-} & , \quad z \in \partial D_{k} \tag{2.7}
\end{array}\right\}
$$

respectively. Since D_{k} have smooth boundary, both of these problems have unique solutions. Utilizing (2.5), we find

$$
L\left(W_{k}^{+}-\Phi^{+}\right) \leqslant \frac{1}{2} H-C_{4} A
$$

We know that H is bounded in D :

$$
|H(z)| \leqslant K \quad, \quad z \in D
$$

Thus

$$
L\left(W_{k}^{+}-\Phi^{+}\right) \leqslant \frac{1}{2} K-C_{4} A
$$

Choosing

$$
A>\max \left\{1, \frac{K}{2 C_{4}}\right\}
$$

we get

$$
L\left(W_{k}^{+}-\Phi^{+}\right) \leqslant 0
$$

in D_{k}. Taking into account that

$$
W_{k}^{+}(z)-\Phi^{+}(z)=0 \quad, \quad z \in \partial D_{k}
$$

the classical maximum principle leads to

$$
W_{k}^{+}(z) \geqslant \Phi^{+}(z)
$$

in D_{k}. Moreover

$$
L\left(W_{k}^{+}-W_{k-1}^{+}\right)=0 \quad, \quad z \in D_{k-1}
$$

and

$$
W_{k}^{+}(z)-W_{k-1}^{+}(z) \geqslant 0 \quad, \quad z \in \partial D_{k-1} .
$$

Then using the maximum principle in D_{k-1} we find

$$
W_{k}^{+}(z) \geqslant W_{k-1}^{+}(z) \quad, \quad z \in \bar{D}_{k-1}
$$

Hence the sequence $\left\{W_{k}^{+}\right\}_{1}^{\infty}$ is non-decreasing. This sequence is bounded since there exists $\alpha \in \mathbb{R}$ such that

$$
\begin{aligned}
\sup _{D_{k}}\left|W_{k}^{+}(z)\right| & \leq C_{5}\left[\max _{D_{k}} \frac{1}{2}|H(z)|+\max _{\partial D_{k}}\left|\Phi^{+}(z)\right|\right] \\
& \leq \frac{1}{2} C_{5} K+C_{6} A \equiv \alpha
\end{aligned}
$$

So the sequence $\left\{W_{k}^{+}\right\}_{1}^{\infty}$ is convergent in every domain $D_{\rho}, \rho>0$. In a similar way, it is easy to see that the sequence $\left\{W_{k}^{-}\right\}_{1}^{\infty}$ is also convergent in D_{ρ}. On the other hand, if we define

$$
W_{k}:=W_{k}^{+}+W_{k}^{-}
$$

then W_{k} are solutions of the boundary value problems

$$
\begin{gather*}
L W_{k}=H, z \in D_{k} \tag{2.8}\\
W_{k}=0, z \in \partial D_{k}, k=1,2, \ldots
\end{gather*}
$$

Because of its construction, the sequence $\left\{W_{k}^{+}\right\}_{1}^{\infty}$ is convergent. That is, there exists W defined in D_{ρ} such that

$$
\lim _{k \rightarrow \infty} W_{k}(z)=W(z)
$$

It is well-known by the Schauder interior estimate that [2] the solutions W_{k}, $k=1,2, \ldots$ are equicontinuous together with their first and second derivatives. This means that we have a subsequence $\left\{W_{k_{m}}\right\}_{1}^{\infty}$ which can be substituted in (2.8). Taking the limit as $k_{m} \rightarrow \infty$ we find

$$
\begin{array}{cl}
L W=H & , \quad z \in D_{k} \\
W=0 & , \quad z \in \partial D_{k} . \tag{2.9}
\end{array}
$$

Definition 2.1: If H is continuous and bounded in D_{ρ}, then the limiting function W is called generalized solution of (2.9).

Case II: $H \in L_{p}(D), 2<p<\frac{2}{\lambda}, 0<\lambda<1$: In this case, the generalized solution in Wiener sense cannot be obtained as in Case I.
First of all, let us decompose H as

$$
H=H^{+}+H^{-}
$$

where

$$
H^{+}(z)=\max _{z \in D}(H(z), 0) \quad, \quad H^{-}(z)=\min _{z \in D}(H(z), 0)
$$

Now, let us consider the boundary value problems

$$
\left.\begin{array}{ll}
L W_{1}=H^{-}(z) & , \quad z \in D \tag{2.10}\\
W_{1}(z)=0 & , \quad z \in \partial D
\end{array}\right\}
$$

and

$$
\left.\begin{array}{ll}
L W_{2}=H^{+}(z) & , \quad z \in D \tag{2.11}\\
W_{2}(z)=0 & , \quad z \in \partial D
\end{array}\right\}
$$

Thus if the problems (2.10) and (2.11) have generalized solutions in Wiener sense, then the generalized solution of (2.2) in the sense of Wiener is represented by

$$
W(z)=W_{1}(z)+W_{2}(z) .
$$

First, let us investigate the existence of the solution of (2.10).

We know by the maximum principle that if $H^{-}(z) \leqslant 0$, then $W_{1} \geqslant 0$. Now, let us define

$$
H_{j}^{-}(z)=\left\{\begin{array}{ccc}
H^{-}(z) & , & H^{-}(z)>-j \tag{2.12}\\
-j & , & H^{-}(z) \leqslant-j
\end{array}\right.
$$

for $j=1,2, \ldots$ and the auxiliary boundary value problems

$$
\left.\begin{array}{lll}
L W_{j}^{*}(z)=H_{j}^{-}(z) & , \quad z \in D \tag{2.13}\\
W_{j}^{*}(z)=0 & , \quad z \in \partial D \quad, \quad j=1,2, \ldots
\end{array}\right\}
$$

Let $W_{j}^{*}, j=1,2, \ldots$ be the generalized solutions of (2.13) in Wiener sense. Thus, from (2.12) and (2.13) we have

$$
\begin{aligned}
& L\left(W_{j+1}^{*}(z)-W_{j}^{*}(z)\right)=H_{j+1}^{-}(z)-H_{j}^{-}(z) \leqslant 0, z \in D \\
& W_{j+1}^{*}(z)-W_{j}^{*}(z)=0, z \in \partial D, j=1,2, \ldots
\end{aligned}
$$

Employing the classical maximum principle in D we get

$$
W_{j+1}^{*}(z) \geqslant W_{j}^{*}(z)
$$

Thus the sequence $\left\{W_{j}^{*}\right\}$ is non-decreasing. So, there exists a constant C_{7} such that the inequality

$$
\begin{align*}
\sup _{z \in D}\left|W_{j}^{*}(z)\right| & \leqslant C_{7}|D|^{\frac{1}{2}-\frac{1}{p(\lambda)}}\left\|H_{j}^{-}\right\|_{L_{p(\lambda)}(D)} \\
& \leqslant C_{7}|D|^{\frac{1}{2}-\frac{1}{p(\lambda)}}\|H\|_{L_{p(\lambda)}(D)} \tag{2.14}
\end{align*}
$$

holds, where

$$
|D|:=\operatorname{meas} D
$$

Since the right-hand side of (2.14) is independent of $j,\left\{W_{j}^{*}\right\}_{1}^{\infty}$ is bounded. Hence the limit

$$
\lim _{j \rightarrow \infty} W_{j}^{*}(z)=W_{1}(z)
$$

exists. This limiting function W_{1} is the generalized solution of the boundary value problem (2.10) in Wiener sense.
To identify the generalized solution of (2.11) in Wiener sense, we will first define the boundary value problems

$$
\left.\begin{array}{cll}
L W_{j}^{* *}(z)=H_{j}^{+}(z) & , \quad z \in D & \tag{2.15}\\
W_{j}^{* *}=0 & , \quad z \in \partial D \quad, \quad j=1,2, \ldots
\end{array}\right\}
$$

where

$$
H_{j}^{+}(z)=\left\{\begin{array}{lll}
H^{+}(z) & , & H^{+}(z)<j \\
j & , & H^{+}(z) \geqslant j
\end{array}\right.
$$

Using the same technique given above for the solutions of (2.13), we can show that the sequence $\left\{W_{j}^{* *}\right\}_{1}^{\infty}$ of solutions of (2.15) is convergent. Thus the limit

$$
\lim _{j \rightarrow \infty} W_{j}^{* *}(z)=W_{2}(z)
$$

exists in $D . W_{2}$ is the generalized solution of (2.11) in Wiener sense.
Since the boundary value problem (2.2) is linear

$$
W(z)=W_{1}(z)+W_{2}(z)
$$

is the generalized solution of it, in the sense of Wiener. This enables us to find the generalized solution of (1.8) in Wiener sense. Substituting the solution

$$
u(z)=V(z)+W(z)
$$

in the system of equations (1.4), we find

$$
\begin{aligned}
& v_{x}=c(x, y) u+d(x, y) v+g-u_{y} \\
& v_{y}=-a(x, y) u-b(x, y) v-f+u_{x}
\end{aligned}
$$

It is easy to observe that this system is of exact differentiable type. Imposing the condition

$$
\operatorname{Im} w\left(z_{0}\right)=v\left(x_{0}, y_{0}\right)=c_{0}, z_{0} \in \bar{D}
$$

we find a unique solution. Combining $u(x, y)$ and $v(x, y)$ as

$$
w(z)=u(x, y)+i v(x, y)
$$

we obtain the existence of the generalized solution of (1.1)-(1.3) in Wiener sense.

3.The Representation of the Solution by T_{D} Operators:

It is well known [4] that the solution of the boundary value problem defined by (1.1)-(1.3) in a domain D with smooth boundary is given by

$$
w(z)=\Phi(z)+T_{D}(A w+B \bar{w}+F)(z)
$$

where $\Phi(z)$ is a holomorphic function satisfying the conditions

$$
\begin{array}{ll}
\operatorname{Re} \Phi(z)=\varphi(z)-\operatorname{Re} T_{D}(A w+B \bar{w}+F)(z) & , \quad z \in \partial D \\
\operatorname{Im} \Phi\left(z_{0}\right)=c_{0}-\operatorname{Im} T_{D}(A w+B \bar{w}+F)\left(z_{0}\right) & , \quad z_{0} \in \bar{D}
\end{array}
$$

if

$$
\left(T_{D} f\right)(z):=-\frac{1}{\pi} \iint_{D} \frac{f(\zeta)}{\zeta-z} d \xi d \eta, \zeta=\xi+i \eta, f \in C^{\alpha}(D)
$$

is contractive. In order to extend this result to the domains with non-smooth boundary, we will follow the technique given in [1]. First let us take the set of domains $\left\{D_{m}\right\}_{1}^{\infty}$ with smooth boundaries, subject to the conditions defined by
(1.14). Let the extension of φ, as a Hölder continuous function into the domain D, be φ_{D}. Then we may define the boundary value problems

$$
\begin{align*}
& \frac{\partial w_{m}}{\partial \bar{z}}=A w_{m}+B \bar{w}_{m}+F, z \in D_{m} \\
& \left.\operatorname{Re} w_{m}(z)\right|_{\partial D_{m}}=\left.\varphi_{D}(z)\right|_{\partial D_{m}}:=\varphi_{D_{m}}(z) \tag{3.1}\\
& \operatorname{Im} w_{m}\left(z_{0 m}\right)=c_{0 m}, z_{0 m} \in \bar{D}_{m}, m=1,2, \ldots
\end{align*}
$$

in $D_{m}, m=1,2, \ldots$ with smooth boundaries where

$$
\lim _{m \rightarrow \infty} z_{0 m}=z_{0} \quad, \quad \lim _{m \rightarrow \infty} c_{0 m}=c_{0} .
$$

Thus the solutions of (3.1) are represented by

$$
\begin{equation*}
w_{m}(z)=\Phi_{m}(z)+T_{D_{m}}\left(A w_{m}+B \bar{w}_{m}+F\right)(z), m=1,2, \ldots \tag{3.2}
\end{equation*}
$$

if

$$
\begin{equation*}
\left[\|A\|_{L_{p}\left(\bar{D}_{m}\right)}+\|B\|_{L_{p}\left(\bar{D}_{m}\right)}\right]\left\|T_{D_{m}}\right\|_{L_{p}\left(\bar{D}_{m}\right)} \leqslant \frac{1}{K_{1}+1} \tag{3.3}
\end{equation*}
$$

where K_{1} is a constant, $\|\cdot\|_{L_{p}\left(\bar{D}_{m}\right)}$ is the usual norm defined in $L_{p}\left(\bar{D}_{m}\right)$ and $\Phi_{m}(z)$ is a holomorphic function satisfying proper boundary conditions [4].
Hence we have a sequence of functions $\left\{w_{m}\right\}_{1}^{\infty}$ as the solutions of the boundary value problem (3.1) in $L_{p}(D)$. Now we will show that $\left\{w_{m}\right\}_{1}^{\infty}$ is a Cauchy sequence.
Theorem 3.1: Under the conditions of (3.3), the solution sequence $\left\{w_{m}\right\}_{1}^{\infty}$ of the problem (3.1) is a Cauchy sequence in $L_{p}\left(\bar{D}_{m}\right)$

Proof. It is evident that $w_{m}, w_{n} \in L_{p}\left(\bar{D}_{m}\right)$ for $m<n$. If we call

$$
Q_{m}=A w_{m}+B \bar{w}_{m}+F
$$

then we get

$$
\begin{aligned}
\left\|w_{m}-w_{n}\right\|_{L_{p}\left(\bar{D}_{m}\right)} \leqslant & \left\|\Phi_{m}-\Phi_{n}\right\|_{L_{p}\left(\bar{D}_{m}\right)}+\left\|T_{D_{m}}\left(Q_{m}\right)-T_{D_{n}}\left(Q_{n}\right)\right\|_{L_{p}\left(\bar{D}_{m}\right)} \\
\leqslant & \left\|\Phi_{m}-\Phi_{n}\right\|_{L_{p}\left(\bar{D}_{m}\right)}+\left\|T_{D_{m}}\left(Q_{m}\right)-T_{D_{m}}\left(Q_{n}\right)\right\|_{L_{p}\left(\bar{D}_{m}\right)} \\
& +\left\|T_{D_{m}}\left(Q_{n}\right)-T_{D_{n}}\left(Q_{n}\right)\right\|_{L_{p}\left(\bar{D}_{m}\right)} \\
\leqslant & \left\|\Phi_{m}-\Phi_{n}\right\|_{L_{p}\left(\bar{D}_{m}\right)}+\left\|T_{D_{m}}\right\|_{L_{p}\left(\bar{D}_{m}\right)}\left\|Q_{m}-Q_{n}\right\|_{L_{p}\left(\bar{D}_{m}\right)} \\
& +\left\|T_{D_{n} \backslash D_{m}}\right\|_{L_{p}\left(\bar{D}_{n}\right)}\left\|Q_{n}\right\|_{L_{p}\left(\bar{D}_{n}\right)} \\
\leqslant & \left\|\Phi_{m}-\Phi_{n}\right\|_{L_{p}\left(\bar{D}_{m}\right)}+\left\|T_{D_{m}}\right\|_{L_{p}\left(\bar{D}_{m}\right)}\left[\|A\|_{L_{p}\left(\bar{D}_{m}\right)}+\right. \\
& \left.\|B\|_{L_{p}\left(\bar{D}_{m}\right)}\right]\left\|w_{m}-w_{n}\right\|_{L_{p}\left(\bar{D}_{m}\right)}+\left\|T_{D_{n} \backslash D_{m}}\right\|_{L_{p}\left(\bar{D}_{n}\right)}\left\|Q_{n}\right\|_{L_{p}\left(\bar{D}_{n}\right)} .
\end{aligned}
$$

This inequality may be written as

$$
\begin{aligned}
\left\|w_{m}-w_{n}\right\|_{L_{p}\left(\bar{D}_{m}\right)} \leqslant & \frac{\left\|\Phi_{m}-\Phi_{n}\right\|_{L_{p}\left(\bar{D}_{m}\right)}}{1-\left\|T_{D_{m}}\right\|_{L_{p}\left(\bar{D}_{m}\right)}\left[\|A\|_{L_{p}\left(\bar{D}_{m}\right)}+\|B\|_{L_{p}\left(\bar{D}_{m}\right)}\right]} \\
& +\frac{\left\|T_{D_{n} \backslash D_{m}}\right\|_{L_{p}\left(\bar{D}_{n}\right)}\left\|Q_{n}\right\|_{L_{p}\left(\bar{D}_{n}\right)}}{1-\left\|T_{D_{m}}\right\|_{L_{p}\left(\bar{D}_{m}\right)}\left[\|A\|_{L_{p}\left(\bar{D}_{m}\right)}+\|B\|_{L_{p}\left(\bar{D}_{m}\right)}\right]}
\end{aligned}
$$

where denominator is away from zero by (3.3). So $\left\{w_{m}\right\}_{1}^{\infty}$ is a Cauchy sequence.
Corollary 3.1:Thus the limit

$$
\lim _{m \rightarrow \infty} w_{m}=w
$$

exists. If we take the limit of the problem (3.1) as $m \rightarrow \infty$, we see that

$$
\lim _{m \rightarrow \infty} w_{m}(z)=\lim _{m \rightarrow \infty}\left[\Phi_{m}(z)+T_{D_{m}}\left(A w_{m}+B \bar{w}_{m}+F\right)(z)\right]
$$

or

$$
w(z)=\Phi(z)+T_{D}(A w+B \bar{w}+F)(z)
$$

is the representation of the solution of (1.1)-(1.3) is a Wiener-type domain.

References:

1. A. O. ÇELEBİ and K. KOCA. A boundary value problem for generalized analytic functions in Wiener-type domains. Complex Variables, 48 (6): 513-526, 2003.
2. D. GILBARG and N. S. TRUDINGER. Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, Heidelberg, New York, 1983
3. K. KOCA and A. A. NOVRUZOV. Ein singuläres Randwertproblem für elliptische Differ-entialgleichungen in der Ebene. The Scientific Annals of AL. I. CUZA University of IASI, Tom. XLVI f. 2: 373-392, 2000.
4. W. TUTSCHKE. Partielle Differentialgleichungen, klassische, funktional-analytische und komplexe Methoden, volume Band 27. Tuebner Texte zur Math., 1983.
