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Summary. In this article we take the nonhomogeneous Vekua equation

wz = Aw +Bw + F ; z 2 D

subject to the conditions

Rew j@D= ' ; ' 2 C� (@D)
Imw (z0) = c0 ; z0 2 D:

where A;B; F 2 Lp (D) ; p > 2. We want to derive the conditions under which
the solution exists in Wiener-type domains.
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1. Introduction

Let us consider the boundary value problem

(1.1) wz = Aw +Bw + F ; z 2 D

(1.2) Rew j@D= ' (z) ; z 2 @D

(1.3) Imw (z0) = c0 ; z0 2 D
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in a domain D � C with non-smooth boundary where A;B; F 2 Lp (D) ; p >
2; ' 2 C� (@D) and c0 is a real constant. The di¤erential equation (1.1) is
equivalent to the real system of equations

(1.4)
ux � vy = a (x; y)u+ b (x; y) v + f (x; y)

uy + vx = c (x; y)u+ d (x; y) v + g (x; y)

if we take w = u+ iv , where

(1.5)

4A = a+ d+ i (c� b)
4B = a� d+ i (c+ b)
2F = f + ig :

On the other hand, if u; v 2 C2 (D) ; a; b; c; d; f; g 2 C1 (D) and bx = �dy then
we may eliminate, for example v, from the system (1.4) to �nd

(1.6) Lu = H (x; y)

where

(1.7) L = �+ p (x; y)
@

@x
+ q (x; y)

@

@y
+ k (x; y) ;

� =
@2

@x2
+
@2

@y2

and
H (x; y) = r � (f; g) := fx + gy :

Thus we have deduced the boundary value problem

(1.8)
Lu = H (x; y)

u j@D= ' ; ' 2 C� (@D) ;

in the bounded domain D � C where x + iy 2 D. We assume there exist
constants C1; C2 such that the coe¢ cients of L satisfy the inequalities

(1.9) jp (x; y)j ; jq (x; y)j 6 C1
r�

; � C2
r�+1

6 k (x; y) 6 0

where

(1.10) r =

q
(x� �)2 + (y � �)2 ; (x; y) 2 D; (�; �) 62 D

and 0 6 � < 1 .

De�nition 1.1: The real valued function u 2 C2 (D) satisfying the inequality
Lu > 0 (or Lu 6 0) is called the subsolution (or supersolution) of Lu = 0 where
L is given by (1.7).
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Let E; T � C be Borel measurable sets, r be the distance de�ned by (1.10)
where z = x+ iy 2 T; � = �+ i� 2 E. LetM be the set of all measures de�ned
on the �-algebra of all subsets of E. Let us de�ne also the real valued function

(1.11) h (z; �) :=
h
log
�
r

�is
; r < :

In (1.11), s 2 R+ is a constant and  is determined so that Lh > 0. Let us
de�ne the subset ofM by

M1 :=

8<:� 2M :

ZZ
E

h (z; �) d� (�) 6 1

9=; :
De�nition 1.2: The logarithmic (L; s)-capacity of E with respect to T is de-
�ned by

(1.12) Cap(L;s)E := sup
�2M1

� (E) :

Now, consider the boundary value problem

(1.13)
Lu = 0 ; z 2 D
u j@D= ' ; ' 2 C� (@D) ; 0 < � < 1

�
where D � C is a bounded domain with non-smooth boundary. Let us choose
the set fDmg11 of domains with smooth boundaries, such that

(1.14) Dm � Dm+1 � D m = 1; 2; : : : ; lim
m!1

Dm = D:

Thus we may de�ne the boundary value problem

(1.15)
Lum = 0 ; z 2 Dm
um j@Dm= �0m (z) ; �0m 2 C� (@Dm) ; m = 1; 2; : : :

inDm which has smooth boundary, where �0m is the restriction to the boundary
@Dm of the Hölder continuous extension �0 of ' into D. This problem has a
unique solution um (see for example [2]). So we obtain the set of solutions
fumg11 .

De�nition 1.3: If
lim
m!1

um = u'

exists, then u' is called the generalized solution of (1.13) in Wiener sense.

De�nition 1.4: Let z0 2 @D be a �xed point and u' be the generalized solution
of (1.13) in Wiener sense. If for each ' 2 C� (@D),

lim
z!z0

u' (z) = ' (z0)
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holds, then z0 is called a regular point. Otherwise it is called as an irregular
point of @D.

De�nition 1.5 A domain is of Wiener-type if every point on its boundary is
regular in Wiener sense.
Throughout the paper, we assume that the coe¢ cients of the operator L satis�es
the inequalities (1.9), r is de�ned by (1.10) and BR (z0) represents the ball with
center z0 and radius R.
Now we will recall

Theorem 1.1: [3]Let us assume that the solution u of Lu = 0 in a bounded
domain D is continuous in Dn fz0g, z0 2 @D, bounded in D and vanishes on
@D\BR0 (z0). Let ER := BR (z0) nD and Cap(L;s)E4�m := Km for 0 < 4�m <
R0; m = m0;m0+1; : : : :. If

P1
m=m0

Km is divergent, then z0 2 @D is a regular
point in the sense of Wiener.

De�nition 1.6: Let z0 2 @D be a �xed point and u be a subsolution de�ned
in any D0 � D, continuous in D0 and satisfying u (z) < 1 for all z 2 D0. If there
exists a real valued function 	 such that

(i) 	 (r) > 0for0 < r < r0and limr!0	(r) = 0

(ii) u jD\�16 	(r)wheneveru j@D0\�6 0

where � and �1 are two neighborhoods of z0, then z0 is called as 	-regular point
for the boundary value problem (1.13).

Note It has been proved previously [3] that if z0 2 @D is a 	-regular point,
than it is also regular in Wiener sense.

2.Existence of the real part of solutions

We will investigate the necessary conditions for the Dirichlet problem (1.8) to
have a solution, when H 2 Lp (D), H real valued, p > 2. This problem may be
decomposed into two new problems

(2.1)
LV = 0 ; z 2 D
V j@D= ' ; ' 2 C� (@D) ;

)

and

(2.2)
LW = H ; z 2 D;
W j@D= 0:

)

to give the solution as u = V +W .
The problem (2.1) has been investigated previously [3] in Wiener-type do-

mains. Hence we will deal with (2.2), only. If H were a continuous and bounded
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function in a domain D with smooth boundary, then the problem (2.2) would
have solution W 2 C2 (D)\C

�
D
�
. Otherwise, the classical maximum principle

does not hold in general. But it is known that [3], if H 2 Lp(�) (D) ; 2 < p (�) <
2
� , then the solutions satisfy

(2.3) sup
D
jW j 6 C3 (measD)

1
2�

1
p(�) kHkLp(�)(D) :

Now we will discuss the generalized solutions of (2.2) in Wiener sense, in the
cases where H is a bounded or unbounded function in D.
Case I: H is continuous and bounded: First of all, let us consider the domain

D� = fz 2 D : � > dist (z; @D)g :

Let us choose the subdomains fDkg11 with smooth boundaries such that

Dk � Dk+1 ; Dk � D� ; lim
k!1

Dk = D�:

So, we may de�ne the boundary value problems

(2.4)
LWk = H ; z 2 Dk
Wk = 0 ; z 2 @Dk k = 1; 2; : : : :

Let us de�ne functions

�+k := e
2A�eARe [(1�i)(z�z0k)]

��k := �e2A�eARe [(1�i)(z�z0k)]

where z0k 2 D� and limk!1 z0k = z0 2 D�. It is trivial that

limk!1�
+
k = e

2A�eARe [(1�i)(z�z0)] =: �+

limk!1�
�
k = �e2A�eARe [(1�i)(z�z0)] =: ��;

� is the diameter of D and A is a real constant to be chosen. By use of (1.9)
and the fact that r > �, we can �nd

(2.5)
L�+ > C4A
L�� 6 �C4A

)

where C4 may depend on �; �; C1; C2. On the other hand, let W
+
k and W�

k be
the classical solutions of the boundary value problems

(2.6)
LW+

k = 1
2H ; z 2 Dk

W+
k = �+ ; z 2 @Dk

)
and

(2.7)
LW�

k = 1
2H ; z 2 Dk

W�
k = �� ; z 2 @Dk

)
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respectively. Since Dk have smooth boundary, both of these problems have
unique solutions. Utilizing (2.5), we �nd

L
�
W+
k � �

+
�
6 1

2
H � C4A:

We know that H is bounded in D:

jH (z)j 6 K ; z 2 D:

Thus
L
�
W+
k � �

+
�
6 1

2
K � C4A:

Choosing

A > max

�
1;
K

2C4

�
we get

L
�
W+
k � �

+
�
6 0

in Dk. Taking into account that

W+
k (z)� �

+ (z) = 0 ; z 2 @Dk;

the classical maximum principle leads to

W+
k (z) > �+ (z)

in Dk. Moreover
L
�
W+
k �W

+
k�1

�
= 0 ; z 2 Dk�1

and
W+
k (z)�W

+
k�1 (z) > 0 ; z 2 @Dk�1:

Then using the maximum principle in Dk�1 we �nd

W+
k (z) >W+

k�1 (z) ; z 2 Dk�1:

Hence the sequence
�
W+
k

	1
1
is non-decreasing. This sequence is bounded since

there exists � 2 R such that

sup
Dk

��W+
k (z)

�� � C5

�
max
Dk

1

2
jH (z)j+max

@Dk

���+ (z)���
� 1

2
C5K + C6A � �

So the sequence
�
W+
k

	1
1
is convergent in every domain D�, � > 0. In a similar

way, it is easy to see that the sequence
�
W�
k

	1
1
is also convergent in D�. On

the other hand, if we de�ne

Wk :=W
+
k +W

�
k ;
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then Wk are solutions of the boundary value problems

(2.8) LWk = H ; z 2 Dk

Wk = 0 ; z 2 @Dk ; k = 1; 2; : : : :

Because of its construction, the sequence
�
W+
k

	1
1
is convergent. That is, there

exists W de�ned in D� such that

lim
k!1

Wk (z) =W (z) :

It is well-known by the Schauder interior estimate that [2] the solutions Wk,
k = 1; 2; : : : are equicontinuous together with their �rst and second derivatives.
This means that we have a subsequence fWkmg

1
1 which can be substituted in

(2.8). Taking the limit as km !1 we �nd

(2.9)
LW = H ; z 2 Dk
W = 0 ; z 2 @Dk:

De�nition 2.1: If H is continuous and bounded in D�, then the limiting
function W is called generalized solution of (2.9).

Case II: H 2 Lp (D), 2 < p < 2
� , 0 < � < 1 : In this case, the generalized

solution in Wiener sense cannot be obtained as in Case I.
First of all, let us decompose H as

H = H+ +H�

where
H+ (z) = max

z2D
(H (z) ; 0) ; H� (z) = min

z2D
(H (z) ; 0) :

Now, let us consider the boundary value problems

(2.10)
LW1 = H

� (z) ; z 2 D
W1 (z) = 0 ; z 2 @D

)

and

(2.11)
LW2 = H

+ (z) ; z 2 D
W2 (z) = 0 ; z 2 @D:

)

Thus if the problems (2.10) and (2.11) have generalized solutions in Wiener
sense, then the generalized solution of (2.2) in the sense of Wiener is represented
by

W (z) =W1 (z) +W2 (z) :

First, let us investigate the existence of the solution of (2.10).
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We know by the maximum principle that if H� (z) 6 0, then W1 > 0. Now, let
us de�ne

(2.12) H�
j (z) =

(
H� (z) ; H� (z) > �j
�j ; H� (z) 6 �j

for j = 1; 2; : : : and the auxiliary boundary value problems

(2.13)
LW �

j (z) = H
�
j (z) ; z 2 D

W �
j (z) = 0 ; z 2 @D ; j = 1; 2; : : : :

)

Let W �
j , j = 1; 2; : : : be the generalized solutions of (2.13) in Wiener sense.

Thus, from (2.12) and (2.13) we have

L
�
W �
j+1 (z)�W �

j (z)
�
= H�

j+1 (z)�H
�
j (z) 6 0 ; z 2 D

W �
j+1 (z)�W �

j (z) = 0 ; z 2 @D ; j = 1; 2; : : : :

Employing the classical maximum principle in D we get

W �
j+1 (z) >W �

j (z) :

Thus the sequence
�
W �
j

	
is non-decreasing. So, there exists a constant C7 such

that the inequality

sup
z2D

��W �
j (z)

�� 6 C7 jDj
1
2�

1
p(�)

H�
j


Lp(�)(D)

6 C7 jDj
1
2�

1
p(�) kHkLp(�)(D) (2.14)

holds, where
jDj := measD:

Since the right-hand side of (2.14) is independent of j,
�
W �
j

	1
1
is bounded.

Hence the limit
lim
j!1

W �
j (z) =W1 (z)

exists. This limiting function W1 is the generalized solution of the boundary
value problem (2.10) in Wiener sense.
To identify the generalized solution of (2.11) in Wiener sense, we will �rst de�ne
the boundary value problems

(2.15)
LW ��

j (z) = H+
j (z) ; z 2 D

W ��
j = 0 ; z 2 @D ; j = 1; 2; : : :

)

where

H+
j (z) =

(
H+ (z) ; H+ (z) < j

j ; H+ (z) > j:
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Using the same technique given above for the solutions of (2.13), we can show
that the sequence

�
W ��
j

	1
1
of solutions of (2.15) is convergent. Thus the limit

lim
j!1

W ��
j (z) =W2 (z)

exists in D. W2 is the generalized solution of (2.11) in Wiener sense.
Since the boundary value problem (2.2) is linear

W (z) =W1 (z) +W2 (z)

is the generalized solution of it, in the sense of Wiener. This enables us to �nd
the generalized solution of (1.8) in Wiener sense. Substituting the solution

u (z) = V (z) +W (z)

in the system of equations (1.4), we �nd

vx = c (x; y)u+ d (x; y) v + g � uy
vy = �a (x; y)u� b (x; y) v � f + ux:

It is easy to observe that this system is of exact di¤erentiable type. Imposing
the condition

Imw (z0) = v (x0; y0) = c0 ; z0 2 D
we �nd a unique solution. Combining u (x; y) and v (x; y) as

w (z) = u (x; y) + iv (x; y) ;

we obtain the existence of the generalized solution of (1.1)-(1.3) in Wiener sense.

3.The Representation of the Solution by TD Operators:

It is well known [4] that the solution of the boundary value problem de�ned by
(1.1)-(1.3) in a domain D with smooth boundary is given by

w (z) = � (z) + TD (Aw +Bw + F ) (z)

where � (z) is a holomorphic function satisfying the conditions

Re� (z) = ' (z)� ReTD (Aw +Bw + F ) (z) ; z 2 @D
Im� (z0) = c0 � ImTD (Aw +Bw + F ) (z0) ; z0 2 D;

if

(TDf) (z) := �
1

�

ZZ
D

f (�)

� � z d� d� ; � = � + i� ; f 2 C
� (D)

is contractive. In order to extend this result to the domains with non-smooth
boundary, we will follow the technique given in [1]. First let us take the set of
domains fDmg11 with smooth boundaries, subject to the conditions de�ned by
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(1.14). Let the extension of ', as a Hölder continuous function into the domain
D, be 'D. Then we may de�ne the boundary value problems

(3.1)

@wm
@z = Awm +Bwm + F ; z 2 Dm

Rewm (z) j@Dm= 'D (z) j@Dm := 'Dm
(z)

Imwm (z0m) = c0m ; z0m 2 Dm ; m = 1; 2; : : :

in Dm, m = 1; 2; : : : with smooth boundaries where

lim
m!1

z0m = z0 ; lim
m!1

c0m = c0:

Thus the solutions of (3.1) are represented by

(3.2) wm (z) = �m (z) + TDm
(Awm +Bwm + F ) (z) ; m = 1; 2; : : :

if

(3.3)
h
kAkLp(Dm) + kBkLp(Dm)

i
kTDm

kLp(Dm) 6
1

K1 + 1

where K1 is a constant, k�kLp(Dm) is the usual norm de�ned in Lp
�
Dm

�
and

�m (z) is a holomorphic function satisfying proper boundary conditions [4].
Hence we have a sequence of functions fwmg11 as the solutions of the boundary
value problem (3.1) in Lp(D). Now we will show that fwmg11 is a Cauchy
sequence.
Theorem 3.1: Under the conditions of (3.3), the solution sequence fwmg11 of
the problem (3.1) is a Cauchy sequence in Lp(Dm)

Proof. It is evident that wm; wn 2 Lp
�
Dm

�
for m < n. If we call

Qm = Awm +Bwm + F;

then we get

kwm � wnkLp(Dm) 6 k�m � �nkLp(Dm) + kTDm (Qm)� TDn (Qn)kLp(Dm)

6 k�m � �nkLp(Dm) + kTDm
(Qm)� TDm

(Qn)kLp(Dm)

+ kTDm
(Qn)� TDn

(Qn)kLp(Dm)

6 k�m � �nkLp(Dm) + kTDm
kLp(Dm) kQm �QnkLp(Dm)

+
TDnnDm


Lp(Dn)

kQnkLp(Dn)

6 k�m � �nkLp(Dm) + kTDmkLp(Dm)

h
kAkLp(Dm) +

kBkLp(Dm)

i
kwm � wnkLp(Dm) +

TDnnDm


Lp(Dn)

kQnkLp(Dn) :
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This inequality may be written as

kwm � wnkLp(Dm) 6
k�m � �nkLp(Dm)

1� kTDmkLp(Dm)

h
kAkLp(Dm) + kBkLp(Dm)

i

+

TDnnDm


Lp(Dn)

kQnkLp(Dn)

1� kTDm
kLp(Dm)

h
kAkLp(Dm) + kBkLp(Dm)

i :
where denominator is away from zero by (3.3). So fwmg11 is a Cauchy sequence.

Corollary 3.1:Thus the limit

lim
m!1

wm = w

exists. If we take the limit of the problem (3.1) as m!1, we see that

lim
m!1

wm (z) = lim
m!1

[�m (z) + TDm
(Awm +Bwm + F ) (z)]

or
w (z) = � (z) + TD (Aw +Bw + F ) (z)

is the representation of the solution of (1.1)-(1.3) is a Wiener-type domain.

References:

1. A. O. ÇELEB·I and K. KOCA. A boundary value problem for generalized analytic
functions in Wiener-type domains. Complex Variables, 48 (6): 513�526, 2003.
2. D. GILBARG and N. S. TRUDINGER. Elliptic Partial Di¤erential Equations of
Second Order. Springer-Verlag, Berlin, Heidelberg, New York, 1983
3. K. KOCA and A. A. NOVRUZOV. Ein singuläres Randwertproblem für elliptische
Di¤er-entialgleichungen in der Ebene. The Scienti�c Annals of AL. I. CUZA University
of IASI, Tom. XLVI f. 2: 373�392, 2000.
4. W. TUTSCHKE. Partielle Di¤erentialgleichungen, klassische, funktional-analytische
und komplexe Methoden, volume Band 27. Tuebner Texte zur Math., 1983.

13


