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ABSTRACT 
 
An adaptive observer design technique proposed for nonlinear systems has been successfully applied to the 
Lorenz chaotic system which is used in cryptosystems. This observer does not use direct feedback but the 
adaptation scheme uses the feedback. One of the system parameters is assumed to be unknown and only one 
of the state variables, which is transmitted in the communication system, is assumed to be accessible. It is 
possible to transmit two different information signals over the same chaotic signal securely using this 
adaptive observer. 
 
Keywords: Adaptive observers, nonlinear observers, Lorenz chaotic oscillator, parameter estimation, crypto 
systems. 
 
ÖZET 
 
Doğrusal olmayan sistemler için önerilmiş bir adaptif gözleyici tasarım tekniği, kripto sistemlerinde 
kullanılan Lorenz kaotik sistemine başarıyla uygulanmıştır. Bu gözleyici doğrudan doğruya geribesleme 
kullanmaz; geribeslemeyi sadece adaptasyon algoritması kullanır. Sistem parametrelerinden bir tanesinin 
bilinmediği ve durum değişkenlerinden sadece birinin erişilebilir olduğu kabul edilmiştir. Haberleşme 
sisteminde karşı tarafa bu değişken gönderilmektedir. Bu adaptif gözleyici kullanılarak, iki ayrı bilgi 
sinyalinin aynı kaotik sinyal üzerinden güvenli bir şekilde gönderilmesi mümkündür. 
 
Anahtar Kelimeler: Adaptif gözleyiciler, lineer olmayan gözleyiciler, Lorenz Kaotik sistemi, parametrik 
tahmin, kripto sistemleri. 
 
1. INTRODUCTION 
 
Lorenz chaotic system, which was proposed 40 years ago as a model for two-dimensional fluid convection, is 
given by 
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where σ , r  and  are system parameters, and ,  and  are state variables [1,2]. This system 
produces broadband chaotic oscillations. The Lorenz chaotic system is used in secure communications since 
these oscillations are noise-like and depend on the initial conditions and system parameters, which are 
difficult to estimate. In such systems, the information signal with very small amplitude is added to one of the 
chaotic signals produced by the chaotic oscillator and the mixed signal is transmitted. The receiver estimates 
first the chaotic signal as it was before mixing with the information signal using an observer providing 
synchronization between the transmitter and the receiver. Then, the difference between this chaotic signal 
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and the received signal gives the small-amplitude information signal [3]. A simplified block diagram of such 
a system is given in Figure 1, where  is the information signal. )(tm
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Figure 1: Use of chaotic oscillator in secure communications. 
 
Some of popular observers used in secure communications based on the Lorenz chaotic oscillator are the 
extended Kalman filter, Thau observer, state dependent Riccati equation, high-gain observer and covariance 
upper bound assignment [4]. 
 
Even though the feedback is essential for observers, an observer design technique without using the direct 
feedback has been recently proposed [5,6]. Convergence of the state estimations with such an observer, 
which is called a natural observer, is achieved using a parameter adaptation scheme. In this paper, this 
technique has been applied to the Lorenz chaotic system successfully. The main advantages of this observer 
over the other observers applied to the Lorenz chaotic system are it is adaptive and very simple. Since the 
observer does not use the feedback directly, it is quite robust to the measurement noise. Moreover, with such 
an adaptive system, it is possible to send two different information signals over the same chaotic signal. 
 
2. AN ADAPTIVE NATURAL OBSERVER DESIGN FOR THE LORENZ CHAOTIC 
OSCILLATOR 
Natural observers are designed in the same structure as the actual system and can be used for many nonlinear 
systems with bounded-input bounded-state (bibs) stability [56]. The system (1) is also bibs stable [7] and a 
natural observer can be designed assuming only one of the state variables is accessible. In this paper, the 
accessible chaotic signal is chosen as 

2xy =             (2) 
 
and r  is assumed to be the parameter to be estimated. Then the natural observer, which is in the same form 
as system (1)-(2), is given by 
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where a hat ( ) symbol associates the symbols of the quantities to be estimated. ^

 
The convergence between the observer, (3), which does not use any feedback directly, and the actual system, 
(1)-(2), is achieved controlling the observer with r̂  using the feedback as if r̂  is an input. By this way, r̂  
will be estimation of r  and the observer will use the feedback indirectly. Since (1) is bibs stable, (3) will also 
be bibs stable for certain ranges of r̂ . 
 
The correction term for the parameter adaptation will be the estimation error of the only measured state 
 

22ˆ xxe −=            (4) 
 
Since r̂  explicitly appears in the first derivative of , a first order differential equation of e  can be 
established as 

e

 
rxdee ˆ)ˆ( 2−−=+α&           (5) 
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where α  is an arbitrary positive constant and  summarises all the other terms not including d r̂  explicitly in 
the right hand side of (5). Because the system (1)-(2) is observable, asymptotic convergence of e  to zero 
means all the estimated terms converge to the corresponding values in the actual system. If r̂  is changed in 
such a way that (  follows d , then  goes to zero as the right hand side of (5) becomes zero. In order 
that  follows , a closed loop integral control is proposed as shown in Figure 2. 
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Figure 2: Closed-loop integral control for rx ˆ)ˆ( 2−  to follow . d
 
Under the assumption that  and (  change slowly with respect to the adaptation, assigning the sign of 
the gain 

d )ˆ2x−
K  as 

 
( 21 ˆˆsign)(sign xxK −= )           (6) 

 
implies that (  follows  with a small error. In order to apply this control while  is unknown, 

 is replaced with 
rx ˆ)ˆ2− d d

rxd ˆ)ˆ( 2−− ee α+&  due to (5) as shown in Figure 3.. 
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Figure 3: Simplification of Figure 2. 
 

This means r  is estimated with a PI adaptation algorithm as 
 

∫+= dteKeKr ipˆ           (7) 
 
where  and  correspond to pK iK K  and αK  respectively. 
 
Actually,  and  are not slow-varying and a small error between (d )ˆ( 2x− rx ˆ)ˆ2−  and  does not allow all the 
observer variables to converge to the actual system values. However, this  is not an ordinary signal but a 
function of the observer and actual system states such that its difference with (  decreases as the 
observer variables converge to the actual values. For suitable absolute values of  and  gains, this 
decrease reduces  further due to (5) and in turn both 

d

x̂−
K

d
r̂)2

p iK
e r̂  and the observer states converge to the 

corresponding values in the actual system. Suitable absolute values of  and  gains are found with trial-
errors in simulation. In this context, this method can be regarded as an empirical method in some respects; 
however, this method is still very useful since some suitable gains can be found simply with a few trials. 

pK iK

 
To guarantee the boundedness of the observer states, r̂  can be limited within quite a large range as 

. In order to prevent jumps in [ maxmin , rr ] r̂  due to the proportional term in (7) when  and  change sign, 
the integral term in (7) is re-initiated at these instants as 

pK iK

−+−+ −= eKr pˆξ            (8) 
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where  is the new value of ,  and  are the integral values just before and after the sign change, 

and 

+
pK pK −ξ +ξ

−r̂  and e  are the values of − r̂  and  just before the sign change respectively. e
 
It is possible to send two different information signals,  and m , over the same chaotic signal. For 
this purpose, whilst directly adding a small-amplitude  signal to the transmitted chaotic signal as in the 
existing methods, the parameter to be estimated is changed according to a low-frequency  signal. The 
proposed use of the Lorenz chaotic oscillator is shown in Figure 4, where  is a calibrating function for 
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according to the value of . On the receiver side, inverse of this function is used to convert the 
estimation of 

)(2 tm
r  to the estimated value of the low frequency information signal, . The Lorenz chaotic 

oscillators on both sides are of the identical form with different initial values. The one on the receiver side 
acts as a natural observer. 
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Figure 4: Proposed use of the chaotic oscillator in secure communications. 

 
3. SIMULATION RESULTS 
 
The Lorenz chaotic system (1)-(2), the observer (3) and the adaptation scheme (7) have been simulated with 

 of time steps using the Euler method. The parameters are assigned as ms1 10=σ ,  and 100=r 38=b  in 
the beginning, then in order to see the performance of the adaptation better, r  is changed as  for 

 and  for . Absolute values of the adaptation gains are selected as 
50=r

st 10<s6 ≤ 120=r st 10≥ 1=pK  and 

100=iK , the initial conditions are assigned as 1321 === xxx  for the actual system, , 1.0ˆ1 =x 0ˆˆ 32 == xx  
for the observer and zero for the integral in (7). The results are shown in Figures 5-8. 
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Figure 5: Change and estimation of r . 
 
As seen in Figure 5, r̂  converges to r  quickly after some oscillations. Meanwhile, the observer states also 
converge to the actual system states as seen in Figures 6-8. Once the convergence is achieved, there is not a 
remarkable transient error seen in state estimations even when r  changes suddenly and all the estimations 
converge to the actual values quickly after the sudden changes in r . 
 



TEKNOLOJİ, Yıl 6, Sayı 3-4, 2003   5 

0 5 10
-50

0

50

)(st

1x̂1x

 
 

Figure 6:  and its estimation. 1x
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Figure 7:  and its estimation. 2x
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Figure 8:  and its estimation. 3x
 

 
4. CONCLUSIONS AND FUTURE WORK 
 
An adaptive observer has been developed for the Lorenz chaotic system, which is used in secure 
communications with its observer. Even though the adaptation gains are found with trial-error in simulations 
for this adaptive observer, its implementation is very simple and useful. When this observer is used in 
cryptosystems, an extra information signal can be transmitted changing the parameter to be estimated. 
However, this signal can be slow-varying. The proposed adaptation scheme is in the proportional-integral 
form. Since the proportional gain is relatively small, the adaptation is quite insensitive to the noise. If the 
adaptation algorithm is improved such that a more suitable feedback signal is used to get rid of the 
proportional term, the measurement noise will be double filtered by the adaptation and the same observer. 
This will be considered as a future work in order to obtain a more noise-insensitive adaptive observer. 
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