KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI YÜKSEK LİSANS TEZİ

HARİCİ OPTİK GERİ BESLEMENİN YARI İLETKEN ENJEKSİYON LAZERLERİNE ETKİLERİ VE TİTREŞİM ÖLÇÜMÜ

Mehmet TİKEN

ŞUBAT 2011

Elektrik-Elektronik Mühendisliği Anabilim Dalı Mehmet TİKEN tarafından hazırlanan HARİCİ OPTİK GERİ BESLEMENİN YARI İLETKEN ENJEKSİYON LAZERLERİNE ETKİLERİ VE TİTREŞİM ÖLÇÜMÜ adlı Yüksek Lisans Tezinin Anabilim Dalı standartlarına uygun olduğunu onaylarım.

Doç.Dr.Ediz POLAT Anabilim Dalı Başkanı

Bu tezi okuduğumu ve tezin **Yüksek Lisans Tezi** olarak bütün gereklilikleri yerine getirdiğini onaylarım.

Prof.Dr.Şerafettin EREL

Danışman

Jüri Üyeleri

Başkan: Doç.Dr.Ediz POLATÜye (Danışman): Prof.Dr.Şerafettin ERELÜye: Yrd.Doç.Dr.Tolga EREN

03/02/2011

Bu tez ile Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu Yüksek Lisans derecesini onaylamıştır.

> <u>Prof.Dr.İhsan ULUER</u> Fen Bilimleri Enstitüsü Müdürü

Sevgili Eşime ve Çocuklarıma

ÖZET

HARİCİ OPTİK GERİ BESLEMENİN YARI İLETKEN ENJEKSİYON LAZERLERİNE ETKİLERİ VE TİTREŞİM ÖLÇÜMÜ

TİKEN, Mehmet Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü Elektrik-Elektronik Mühendisliği Anabilim Dalı Yüksek Lisans Tezi Danışman: Prof. Dr. Şerafettin EREL Ocak 2011, 105 sayfa

Bir lazerin çıkışı, harici bir yansıtıcıdan geri yansıyarak lazerinin aktif bölgesine girdiğinde meydana gelen girişim nedeniyle lazerin hem çıkış gücünde hem de spektral özelliklerinde değişimlere neden olur. Bu durum, genellikle lazer ile kuplaj yapılan mercek, fiber optik kablo veya bir disk yüzeyi gibi yansıtıcı özelliğe sahip optik elemanlardan kaynaklı geri yansımalarla kendini göstermekte ve etkileri sistem performansını düşürmektedir. Bununla birlikte, kullanılan lazerin eşfazlı mesafesi içerisindeki bir yansıtıcının, mesafesi ve oluşan geri yansımaların şiddeti belirlenmiş sınırlar içerisinde kalacak şekilde kontrol edilmesi durumunda, yer değişim miktarı vansiticinin mesafesi lazer dalgaboyunun yarısı hassasivetinde veya ölçülebilmektedir. Lazer diyotların, çizgi genişliği büyüme faktörünün değeri diğer tip lazerlere nazaran çok büyük olması ve dolayısyla optik geri beslemeye hassasiyetinin daha fazla olması bu kapsamdaki çalışmalarda sıklıkla kullanılmasına neden olmuştur. Bu yönteme dayalı ölçüm cihazları, ticari ürün olarak hassasiyet ve maliyet yönünden diğerleriyle rekabet edebilmesi bu konudaki çalışmaları ivmelendirmiştir. Halihazırda, geliştirilen sinyal işleme teknikleri ile ölçüm hassasiyeti 100nm'nin de altına indirilebilmiş ve ölçüm cihazlarından, cep telefonlarına, bilgisayar fareleri veya klavyelere kadar geniş bir sahada kullanım yeri bulabilmiştir.

Bu tez çalışması, lazer oran eşitlikleri kullanılarak zayıf yansımaların tek modlu lazer diyotlara olan etkilerinin Lang-Kobayashi modeline dayalı olarak teorik analizini, bu analiz sonucunda elde edilen faz ve güç denklemlerinin sayısal yöntemlerle çözülmesiyle geri yansımaya maruz bir lazer diyot çıkışının MATLAB ortamında simülasyonunu, optik geri beslemeli bir lazer diyot çıkışı kullanılarak yer değişim miktarı, hız ve mesafe ölçümünün temel yöntemlerini, farklı tipteki lazer diyotların optik geri besleme durumundaki çıkışlarının karşılaştırılmasını, gürültülü sinyallerin filtrelenmesini ve ölçüm hassasiyetini 100nm'nin altına düşürmek için faz açma ve optimizasyon içeren sinyal işleme yönteminin geliştirilmesi ve MATLAB ortamındaki simülasyonunu içermektedir.

Anahtar kelimeler: Optik Geri Besleme, Yerdeğişim Ölçümü, Mesafe Ölçümü, Optik Geri Beslemeli Lazer Diyot Titreşim Sensörü.

ABSTRACT

EXTERNAL OPTICAL FEEDBACK EFFECTS ON SEMICONDUCTOR LASERS AND VIBRATION MEASUREMENT

TİKEN, Mehmet

Kırıkkale University Graduate School of Natural and Applied Sciences Department of Electrical and Electronical Engineering, M.S. Thesis Supervisor: Prof. Dr. Şerafettin EREL January 2011, 105 pages

A laser beam is back reflected from a reflector and re-enter inside the laser active region makes a interference with standing wave that causes a variation on intensity and spectral properties of the laser's output. Generally, this phenomenon appears with back reflections from optical materials (lens, optical fiber, disk surface,etc.) coupled to laser source and the system performance is degraded because of the optical feedback effects. However, if the outside target's distance from the laser is smaller than the laser coherent length, this type optical feedback can be used as displacement and distance measurement with half of the laser wavelength resolution when back reflection intensity and distance target are in defined limits. In the studies, laser diodes are much more used than other laser types because of the large LEF (linewidth enhancement factor). LEF determines the level of the optical feedback sensitivity. Nowadays, the measurement resolution is increased under 100nm with developing signal processing algorithm and usage of the method in commercial product spread out from measurement devices to handphones, computer mouses and keyboards.

This thesis includes theorical analysis of the spectral variation and output power fluactuations of a single mode laser diode that exposed to weak optical feedback with laser rate equations based on Lang-Kobayashi model, behaviour of the laser diode with optical feedback simulations in MATLAB, basic methods of the displacement, velocity and distance measurement, comparision of the different type laser diodes according to optical feedback signal quality, de-noising of the optical feedback signal and devoloping a signal processing algorithm covering phase unwrapping and optimisation for increasing the measurement resolution under 100nm and it's simulations in MATLAB.

Key Words: Optical Feedback, Displacement Measurement, Distance Masurement, Optical Feedback Laser Diode Vibration Sensor.

TEŞEKKÜR

Tezimin hazırlanması esnasında hiçbir yardımı esirgemeyen ve biz genç araştırmacılara büyük destek olan, bilimsel deney imkanlarını sonuna kadar bizlerin hizmetine veren, tez yöneticisi hocam, Sayın Prof. Dr. Şerafettin EREL'e, tezimi hazırlamam esnasında yardımlarını esirgemeyen Sayın Elkt.Y.Müh.Levent EVECEN ve Sayın Elkt.Y.Müh.Faruk ÖZTÜRK'e teşekkür ederim.

İÇİNDEKİLER DİZİNİ

ÖZET	i
ABSTRACT	iii
TEŞEKKÜR	v
İÇİNDEKİLER DİZİNİ	vi
ŞEKİLLER DİZİNİ	viii
ÇİZELGELER DİZİNİ	xiv
SİMGE VE KISALTMALAR DİZİNİ	xv
1. GİRİŞ	1
1.1. Genel	1
1.2. Yarı İletken Lazerler	2
1.3. Yarı İletken Lazerlerin Dinamiği ve Kararsızlık	7
2. OPTİK GERİ BESLEME ALTINDAKİ YARI İLETKEN	
LAZERLERİN DAVRANIŞININ İNCELENMESİ	11
2.1. Giriş	11
2.2. Lang-Kobayashi Modeli	12
2.3. Optik Geri Besleme Girişim Sinyalinin Simülasyonu	20
2.3.1. Zayıf Geri Besleme Durumu	22
2.3.2.Orta ve Şiddetli Geri Besleme Durumu	27
2.4. Dalgaboyu Modülasyonu ile Optik Geri Besleme Girişimi	38
3. ÖLÇÜM VE SENSÖR UYGULAMALARI	41
3.1. Giriş	41
3.2. Ölçüm Uygulamaları	44
3.2.1. Yer değişim Ölçümü	44
3.2.2. Hız Ölçümü	46
3.2.3. Mesafe Ölçümü	46
3.3. Optik Geri Besleme Sinyalinin İyileştirilmesi	47

4.	OPTİK GERİ BESLEMELİ LAZER TİTREŞİM	
	SENSÖRÜNÜN SİMÜLASYONU	53
	4.1. Giriş	53
	4.2.100nm Altında Hassasiyetle Titreşim Sinyalinin Tekrar Yapılandırılması	53
	4.2.1. Faz Açma ileAyrık Yapılandırma	54
	4.2.1. Minimizasyon ile Sürekliliğin Sağlanması	56
	4.4. Simülasyon Sonuçları	57
5.	SONUÇLAR	72
K	AYNAKLAR	74
E	KLER	78

ŞEKİLLER DİZİNİ

<u>ŞEKİL</u>

1.1	$(Al_xGa_{1-x})As$ ile $In_{1-x}Ga_xAs_yP_{1-x}$ bileşiklerine ait farklı örgü	
	sabitlerine karşılık gelen dalga boyu ışımaları	2
1.2	Bir lazer diyot ile bir LED'in akım-optik güç eğrisi	3
1.3	Yarı iletken lazer diyodun pn bölgesindeki ısınmaya bağlı değişimler	4
1.4	Sıcaklık değişimlerinin neden olduğu rezonatör mod değişimleri	5
1.5	Yan kenarlardan yansıtmalı lazer diyot (DFB)	6
1.6	Yüzeyden ışımalı lazer diyot (VCSEL)	6
1.7	Kenardan ışımalı lazerlerin spektrumları. (a) Kazanç, (b) İndis kılavuzlu	
	profile sahip rezonatör, (c) DFB lazer (4)	7
2.1	Optik geri beslemenin neden olduğu girişim şeması (3)	11
2.2	Optik geri beslemeli lazer diyot çıkışının vektör modeli (3)	11
2.3	Lazer ile harici kavitenin oluşturduğu birleşik kavite ve modları	12
2.4	Lang-Kobayashi modelinde toplam geri yansımalar	13
2.5	Faz açısı eşitliğinde kullanılan dik üçgen	18
2.6	$C = 3$ ve farklı α değerleri için $x_F(t)$ 'nin $x_0(t)$ 'ye göre değişimi. Elde	
	edilen eğriler, $\alpha = 3$ için kesikli, $\alpha = 7$ için kesikli noktalı, $\alpha = 10$ için	
	noktalı ve $x_F(t) = x_0(t)$ fonksiyonu için ise sürekli olarak gösterilmiştir	22
2.7	Çok zayıf geri besleme için $x_F(t)$ 'nin $x_0(t)$ 'ye göre değişimi. Elde	
	edilen eğriler $C = 0.05$ ve $\alpha = 7$ için kesikli ve $x_F(t) = x_0(t)$	
	fonksiyonu için ise sürekli olarak gösterilmiştir	23
2.8	Çok zayıf optik geri beslemeli lazer diyodun çıkış gücünün gösterimi. (a)	
	Yerdeğişim sinyalinin zamana bağlı değişimi, (b) $C = 0.05$ ve $\alpha = 6$ için	
	lazer diyodun optik çıkış gücünün zamana bağlı değişimi	23
2.9	Zayıf geri besleme için $x_F(t)$ 'nin $x_0(t)$ 'ye göre değişimi. Elde edilen	
	eğriler $C = 0.8$ ve $\alpha = 7$ için kesikli ve $x_F(t) = x_0(t)$ fonksiyonu için	
	ise sürekli olarak gösterilmiştir	24
2.10	Zayıf geri besleme durumu için $x_F(t)$ 'nin $x_0(t)$ 'ye göre eğrisinin $C(k \pm n)$)
	eşdeğer eğri parçaların birleşmesinden oluştuğunu göstermektedir	24

2.11 Zayıf geri besleme durumunda $\alpha=6$ ve farklı C değerleri için $-\pi$ ile π 'nin	
arasında eşit aralıklarla değer almış x_s vektörü için y_s değerlerini	
gösteren eğriler. $C = 0.2$ için sürekli, $C = 0.6$ kesikli eğri ve $C = 0.95$	
için ise noktalı eğri kullanılmıştır.	25
2.12 Çok zayıf ve zayıf optik geri besleme durumunda, $x_0(t)$, C ve α değerler	
kullanılarak $x_F(t)$ fazının elde edilmesini gösteren blok şeması (9)	26
2.13 Çok zayıf optik geri beslemeli lazer diyodun çıkış gücünün gösterimi. (a)	
Yerdeğişim sinyalinin zamana bağlı değişimi, (b) $C = 0.5$ ve $\alpha = 6$ için	
lazer diyodun optik çıkış gücünün zamana bağlı değişimi	27
2.14 Orta ve Şiddetli geri besleme durumları için farklı C değerleri için $x_F(t)$	
'nin $x_0(t)$ 'ye göre değişimi ve çözüm kümeleri. (a) $C = 3$ ve $\alpha = 6$,	
(b) C=6 ve α =6 değerleri için değişim noktalı eğriler ile, $x_0(t) = x_F(t)$	
fonksiyonu ise sürekli eğri ile gösterilmiştir.	28
2.15 Orta șiddetli geri besleme durumunda, $C = 3$ ve $\alpha=6$ değerleri için	
$x_F(t)$ 'nin $x_0(t)$ 'a göre histerisiz tipteki değişimi	29
2.16 Orta şiddetli geri besleme durumunda, $C = 3$ ve $\alpha = 6$ değerleri için	
$x_F(t)$ 'ni $x_0(t)$ 'a göre histerisiz tipteki değişiminin süreksizlik noktaları.	29
2.17 Orta șiddetli geri besleme durumunda, $C = 3$ ve $\alpha=6$ değerleri için	
$x_F(t)$ 'nin $x_0(t)$ 'a göre eğrisinin $C(k \pm n)$ eşdeğer eğri parçaların	
birleşmesinden oluştuğunu göstermektedir	31
2.18 Orta Şiddetli geri besleme durumunda, $x_0(t)$, C ve α değerleri	
kullanılarak $x_F(t)$ fazının elde edilmesini gösteren blok şeması (9)	33
2.19 $C > 1$ durumu için x_s değerleri için y_s eğrileri. $C = 1$ mavi eğri	
C = 2 kırmızı eğri ve $C = 5$ yeşil eğridir	33
2.20 Orta şiddetli optik geri beslemeli lazer diyodun çıkış gücünün gösterimi.	
(a) Yerdeğişim sinyalinin zamana bağlı değişimi, (b) $C = 3$ ve $\alpha = 6$	
için lazer diyodun optik çıkış gücünün zamana bağlı değişimi	34
2.21 Şiddetli optik geri beslemeli lazer diyodun çıkış gücünün gösterimi. (a)	
Yerdeğişim sinyalinin zamana bağlı değişimi, (b) $C = 6$ ve $\alpha = 6$ için	
lazer diyodun optik çıkış gücünün zamana bağlı değişimi.	35
2.22 Şiddetli optik geri beslemeli lazer diyodun çıkış gücünün gösterimi. (a)	
Yerdeğişim sinyalinin zamana bağlı değişimi, (b) $C = 20$ ve $\alpha = 6$ için	
lazer diyodun optik çıkış gücünün zamana bağlı değişimi	35

2.23	Şiddetli optik geribeslemeli lazer diyodun çıkış gücünün gösterimi. (a)	
	Yerdeğişim sinyalinin zamana bağlı değişimi, (b) $C = 100$ ve $\alpha = 6$ için	
	lazer divodun optik cıkıs gücünün zamana bağlı değisimi	

36 2.24 C = 1.1 ve $\alpha = 6$ için Gerçek ve Yaklaşık modelleme ile lazer diyodun optik çıkışının gösterimi. (a) Sürekli eğri gerçek ve noktalı eğri yaklaşık modellemeli çıkışın üst üstte, (b) İki sinyalin farkı sinyali. 37 2.25 Birden fazla frekansla titreşen bir hedefle optik geri beslenen lazer diyodun çıkış gücü. (a) Yerdeğişim sinyalinin zamana bağlı değişimi, (b) C = 1.1 ve $\alpha = 6$ için lazer diyodun optik çıkış gücünün zamana bağlı değişimi..... 38 2.26 Mesafe ölçümü için üçgen dalga modülasyonlu lazere optik geribesleme uygulanması durumunda çıkış gücünde oluşan değişim. 39 2.27 Mesafe ölçümü için üçgen dalga modülasyonlu lazere optik geri besleme uygulanması durumunda elde edilen çıkış gücü sinyalinin türevi..... 40 3.1 Bir optik geri besleme girişim sensörünün temel konfigürasyonu..... 42 3.2 Optik geri besleme sensörünün bir cep telefonunda kullanımı (12)..... 43 3.3 ARCoptix ürünü bir yer değişim sensörü 43 3.4 Philips tarafından geliştirilen "Twin-eye laser sensor"..... 43 3.5 Optik geri beslemeli lazer yer değişim sensörünün blok şeması (2)..... 45 3.6 Yer değişim ölçümünde osiloskop ile elde edilen optik geri besleme sinyali (üstte) ve türevi (altta) (2). 45 3.7 Optik geri beslemeli girişim sinyali ve FFT analizi (15)..... 46 Mesafe ölçümünde elde edilen girişim sinyali ve türevi..... 3.8 47 3.9 $C \leq 1$ için sinyal genliğinin optik zayıflama ve hedef yüzeyin yansıtıcılığına göre grafiği..... 48 3.10 Farklı lazer diyot tipleri için dış kavite zayıflaması A ve hedef yansıtıcılığı R_{ext} 'e göre hesaplanmış optik geri besleme sinyal genliği eğrileri (2)..... 49 3.11 C = 1 için bir F-P lazer diyotun farklı sürme akımına göre hesaplanmış optik geri besleme girişim sinyalinin genliği ve SNR eğrileri (2)..... 50 3.12 Toplanır beyaz gürültünün hakim olduğu ham girişim sinyali 51 3.13 Girişim sinyali üzerinde parıltı impuls parazitleri 51

3.14 Girişim sinyalinin zarfında yavaş zamanlı salınımlı gürültü 52

4.1	Faz açma ile Ayrık yapılandırmanın blok şeması	54
4.2	Darbe algılama algoritması	55
4.3	Sinyal işlemenin minimizasyon bölümü	56
4.4	Tek frekanslı bir titreşim ile elde edilen optik geri beslemeli gürültüsüz	
	girişim sinyaline, ayrık yapılandırma ve darbe algılama algoritması	
	kullanılarak titreşimin kabaca yapılandırılması. (a) Yerdeğişim sinyali,	
	(b) Optik geri beslemeli girişim sinyali, (c) Girişim sinyalinin	
	nomalizasyon ve arccos() işlemleri sonrası elde edilen sinyalin türevi, (d)	
	Darbe algılama algılama algoritması ile işlenmiş türev sinyali, (e) Ayrık	
	faz yapılandırma algoritması ile kabaca yapılandırılmış titreşim sinyali	58
4.5	Kabaca yapılandırılılan titreşim sinyalinin minimizasyon ile sürekli hale	
	dönüştürülmesi. (a) Kabaca yapılandırılmış titreşim sinyali, (b)	
	Minimizasyon işlemi sonrasında hesaplanan titreşim sinyali, (c)	
	Hesaplanan titreşim sinyalinin FFT'si	59
4.6	Yeniden yapılandırılmış titreşim sinyali ile gerçek sinyal arasındaki	
	fark gösterimi. (a) Kesikli eğri ile yeniden yapılandırılmış sinyal ve	
	sürekli eğri ile gerçek sinyal üst üstte, (b) Bu iki sinyalin farkını gösteren	
	eğri	59
4.7	Tek frekanslı bir titreşim ile elde edilen optik geri besleme girişim	
	sinyaline gürültü eklenerek, ayrık yapılandırma ve darbe algılama	
	algoritması kullanılarak titreşimin kabaca yapılandırılması. (a)	
	Yerdeğişim sinyali, (b) Optik geri beslemeli girişim sinyali, (c) Girişim	
	sinyalinin nomalizasyonu, filtreleme ve arccos() işlemleri sonrası elde	
	edilen sinyalin türevi, (d) Darbe algılama algılama algoritması ile	
	işlenmiş türev sinyali, (e) Ayrık faz yapılandırma algoritması ile kabaca	
	yapılandırılmış titreşim sinyali	61
4.8	Kabaca yapılandırılılan titreşim sinyalinin minimizasyon ile sürekli hale	
	dönüştürülmesi. (a) Kabaca yapılandırılmış titreşim sinyali, (b)	
	Minimizasyon işlemi sonrasında hesaplanan titreşim sinyali, (c)	
	Hesaplanan titreşim sinyalinin FFT'si	62
4.9	Yeniden yapılandırılmış titreşim sinyali ile gerçek sinyal arasındaki	

xi

- 4.12 Yeniden yapılandırılmış titreşim sinyali ile gerçek sinyal arasındaki fark gösterimi. (a) Kesikli eğri ile yeniden yapılandırılmış sinyal ve sürekli eğri ile gerçek sinyal üst üstte, (b) Bu iki sinyalin farkını gösteren eğri 65

- 4.15 Yeniden yapılandırılmış titreşim sinyali ile gerçek sinyal arasındaki fark gösterimi. (a) Kesikli eğri ile yeniden yapılandırılmış sinyal ve sürekli eğri ile gerçek sinyal üst üstte, (b) Bu iki sinyalin farkını gösteren eğri. 68
 - xii

4.16	(a) 300Hz, 6300nm genlikli bir titreşim sinyali, (b) Bu titreşimden elde	
	edilen optik geri besleme girişim sinyali	70
4.17	(a) 300Hz frekansında ve 6300nm genlikli bir titreşimden elde edilen	

girişim sinyali, (b) Bu girişim sinyalinin arccos()'unun türevi 71

ÇİZELGELER DİZİNİ

<u>ÇİZELGE</u>

	<u>Sa</u>	<u>iyfa</u>
4.1.	Gürültüsüz bir optik geribesleme sinyalinden tek frekanslı bir sinyalin	
	tekrar yapılandırılması işleminde farklı frekans ve genlik değerleri için	
	maksimum hata değerleri. (a) Farklı frekans değerleri, (b) Farklı genlik	
	değerleri için maksimum hata değerleri	60
4.2.	%40SNR'li bir optik geribesleme sinyalinden tek frekanslı bir sinyalin	
	tekrar yapılandırılması işleminde farklı frekans değerleri için maksimum	
	hata değerleri	63
4.3.	Gürültüsüz bir optik geribesleme sinyalinden iki frekanslı bir sinyalin	
	tekrar yapılandırılması işleminde farklı frekans değerleri için maksimum	
	hata değerleri	66
4.4.	%40SNR'li bir optik geribesleme sinyalinden iki frekanslı bir sinyalin	
	tekrar yapılandırılması işleminde farklı frekans değerleri için maksimum	
	hata değerleri	70

SİMGELER DİZİNİ

е	Elektron yükü
h	Planck sabiti
ν	Foton frekansı
С	Boşluktaki ışık hızı
Р	Işıma Gücü
Ι	Akım Şiddeti
I_{th}	Lazer Eşik Akımı
Т	Son Sıcaklık
T_0	İlk Sıcaklık
E	Elektrik Alanı
n	Taşıyıcı Yük Yoğunluğu
$\omega(n)$	Taşıyıcı Yüke Bağlı Açısal Frekans
ω_0	Rezonatör Mod Frekansı
G(n)	Taşıyıcı Yüke Bağlı Ortam Kazancı
Γ_0	Aktif ortam kayıpları
R	Akım yoğunluğu
γ	Tersinim azalma oranı
α	Çizgi geniliği büyüme faktörü
К	Kuplaj faktörü
P_{ς}	Lazer kavitesinden çıkan güç
P_{g}	Lazer kavitesine giren güç
E_y	Lazer kavitesine geri yansıyan dalga
P_{g}	Lazer ön yüzüne gelen dalga
τ	Harici kavite gecikme süresi
k	Dalga sayısı
Α	Optik güç zayıflama oranı
Ν	Rezonatör mod sayısı
η	Aktif ortamın kırılma indisi
l_D	Lazer diyot kavite uzunluğu

R_1	Lazer arka yüzü yansıtıcılığı
R_2	Lazer ön yüzü yansıtıcılığı
R_3	Harici hedef yansıtıcılığı
R	Pomplama terimi
ω_s	Geri beslemeli açısal frekansı
ω_0	Geri beslemesiz açısal frekansı
$x_0(t)$	Geri beslemesiz faz sinyali
$x_F(t)$	Geri beslemeli faz sinyali
P_0	Geri beslemesiz çıkış gücü
т	Modülasyon indeksi
s(t)	Harici hedefin değişken mesafesi
$\varphi(t)$	Harici hedef mesafesinden kay. faz
$ au_c$	Lazer diyot kavite süresi
$ au_e$	Taşıyıcı yaşam süresi
$ au_p$	Foton yaşam süresi

KISALTMALAR DİZİNİ

LED	Işık Yayan Diyot
VCSEL	Dik Kavite Yüzey Işımalı Lazer
DFB	Dağıtık Geribeslemeli
F-P	Fabry-Perot
FFT	Hızlı Fourier Dönüşümü

1. GİRİŞ

1.1. Genel

LAZER (uyarılmış salım ile ışığın kuvvetlendirilmiş), bilimsel araştırmalardan, endüstriye, tıptan, askeri uygulamalara kadar birçok sahada yaygın bir şekilde kullanılmaktadır. Lazerlerin birçok çeşitleri olmasına karşın yarı iletken tipleri, özellikleriyle ön plana çıkmaktadır. Yarı iletken lazerler, elektrik akımını direk eş fazlı ve eş frekanslı ışığa dönüştürmeleri nedeniyle en önemli optoelektronik eleman olarak kabul edilmektedir (1). Bunun yanısıra düşük voltaj ve akım gereksinimleri, küçük ebatları, düşük maliyeti, diğer elektronik elemanlarla entegre olabilmeleri ve farklı dalga boylarında ışıma yapan tiplerinin kolaylıkla üretilebilmesi diğer tip lazerlere göre üstünleri olarak sıralayabiliriz.

Yarı iletken lazerler, yapısı gereği modülasyon, sıcaklık ve optik geri besleme gibi dış etkilere karşı alınganlığı diğer tip lazerlere göre çok daha fazladır (2). Bunların kontrolsüz gerçekleşmesi durumunda lazerin spektral özellikleri ve çıkış gücünde bozucu etkilere neden olmaktadır. Bu dış etkilerden özellikle optik geri besleme, lazerin dış ortamla kuplajından kaynaklandığından mekanik tasarım sırasında gerekli tedbirlerlerin alınması gereken bir husustur. Fiber haberleşmesi ve disk okuyucu gibi uygulamalar, bu tip bozucu durumun önemli oranda görüldüğü sahalardandır.

Bir lazerin ışın demeti, harici bir hedef üzerinden kendine optik geri besleme yapıldığında kavitesi içerisinde meydana gelen girişime, optik geri besleme girişimi denir. Bu olay kontrollü gerçekleştirildiğinde, yerdeğişim, hız ve mesafe ölçümü gibi metroloji uygulamaları ile yarı iletken lazerlerin spektral parametrelerinin (çizgi genişliği, çizgi genişliği büyüme faktörü gibi) ölçümünde kullanılmaktadır (3).

Optik geri besleme girişimi, bilinen girişim ölçerlerin ürettiği sinyale benzeyen bir sinyal üretir. Ancak bu girişim, sadece faz farkının neden olduğu bir olay olmadığından harici hedefin mesafesine ve geri beslemenin şiddetine bağlı olarak farklılık göstermektedir. Buna ek olarak konfigürasyon yapısı da diğerlerine göre oldukça basit ve farklıdır. Optik geri besleme girişiminin daha iyi anlaşılması için yarı iletken lazerlerin bazı özellikleri 1.2'de verilmiştir.

1.2. Yarı İletken Lazerler

Yarı iletken lazerler, diyotlara benzer olarak pozitif ve negatif olarak zenginleştirilmiş bölgelerin bir araya getirilmesiyle oluşturulur. Bu bölgeler, homo veya hetero yapıda olabilir. Homo yapılar çok düşük sıcaklıklarda çalışabildiğinden kullanıldığı sahalar oldukça dardır. Hetero yapılar, daha düşük eşik akımlarda ve daha yüksek pn eklem noktası sıcaklığında (oda sıcaklığı) çalışabilmesi nedeniyle daha yaygın kullanılmaktadır (1).

Yarı iletken lazerler doğru yönde kutuplandığında, n bölgesinden elektronlar, p bölgesinden deşikler eklem bölgesinde nüfus tersinmesini sağlayacak şekilde hareketlenirler. Eklem bölgesinde, elektron-boşluk çiftinin tekrar birleşmesi sonucu bant aralığı enerjisine yakın bir enerjiye sahip foton salımı gerçekleşir. Yarı iletken kristallerin örgü sabitleri de enerji bandlarını belirlemektedir. Yarı iletken kristaller arasında özellikle, GaAs ve AlAs bileşiklerinin örgü sabitleri (lattice constant) arasındaki farkın çok küçük olması nedeniyle kendi aralarında yaptıkları (Al_xGa_{1-x})As bileşiklerde, x karışım miktarı değiştirilerek geniş bir aralıkta band aralığı (bandgap) ve ışıma yaptığı dalga boyu ayarlanabilinmektedir (1).

Şekil 1.1. (Al_xGa_{1-x})As ile In_{1-x}Ga_xAs_yP_{1-x} bileşiklerine ait farklı örgü sabitlerine karşılık gelen dalga boyu ışımaları (1).

InP ve GaAs arasında oluşturulan $In_{1-x}Ga_xAs_yP_{1-x}$ bileşiğinde de benzer olarak örgü sabitleri değiştirilerek ışıma yaptığı dalga boyu farklı lazerin üretilmesine olanak sağlamaktadır. Şekil 1.1'de $(Al_xGa_{1-x})As$ ile $In_{1-x}Ga_xAs_yP_{1-x}$ bileşiklerine ait farklı örgü sabitlerine karşılık gelen dalga boyu ışımaları görülmektedir (1).

Yarı iletken lazerin pn eklem bölgesi, yüksek kazanç katsayısına ve kırılma indisinin sağladığı yansıtıcılığının yeterince büyük olması (GaAs için n=3,5 ve yansıtıcılığı %30) nedeniyle dalga kılavuzu veya rezonatör olarak işlev yapmaktadır. Akım yönüne dik olan ışıma yüzlerinin hassas bir şekilde kesilmesi ile gerekli rezonatör koşulları sağlanmaktadır (4).

Yarı iletken lazerin, enjeksiyon akımına bağlı optik çıkış gücü eğrisi Şekil 1.2'de görülmektedir. Enjeksiyon akımı, eşik akımına kadar rastgele ışıma yapar. Bu nedenle eşik akım seviyesine kadar lazer diyot karakteristik eğrisi, kendiliğinden ışıma yapan LED ile aynıdır. Bu akım seviyesinden sonra lazer diyot uyarmalı ışıma veya lazer çıkışı verir.

Şekil 1.2. Bir lazer diyot ile bir LED'in akım-optik güç eğrisi (4).

(1.1)'deki fark kuvantum verimi eşitliği kullanılarak bir lazer diyotun Güç-Akım eğrisinin eğiminden fark kuantum verimi hesaplanabilir. Tipik olarak bu değer %30 veya daha fazladır (1).

Fark Kuantum verimi
$$=\frac{e}{hv}\frac{dP}{dI}$$
 (1.1)

Burada, hv foton energisini, e elektronu, $\frac{dP}{dI}$ ise optik güç-akım eğrisinin eğimidir.

Şekil 1.2'deki eğri, enjeksiyon akımı ile optik çıkış gücü arasındaki doğrusal ilişkiyi gösterir. Ancak enjeksiyon akımının nominal değeri aşması, Şekil 1.3'te görüldüğü üzere bazı farklılaşmaya neden olur.

Şekil 1.3. Yarı iletken lazer diyodun pn bölgesindeki ısınmaya bağlı değişimler (1).

Aşırı akım, pn eklem bölgesinde sıcaklığı arttırır. Bu sıcaklık değeri (1.2)'deki eşitlikte görüleceği üzere eşik akımının seviyesini arttıracaktır. Bunun sonucunda, ilk olarak akım ile çıkış gücü arasındaki doğrusallık bozulacak; daha sonra akım artsa da çıkış gücü azalacaktır.

$$I_{th} = I_0 \exp(\frac{T - T_0}{T_0}) \tag{1.2}$$

Şekil 1.3 eğrisinde görülen bükülme, taşıyıcı yük profilinin ve sıcaklık değişiminin neden olduğu lazer mod değişim noktalarını belirtmektedir.

Bir yarı iletkenin lazerin dalga boyunun belirlenmesinde, rezonatör ve kazanç profilinin toplam etkisi vardır. Rezonatördeki optik yol uzunluğunu dolayısıyla frekansını belirleyen kırılma indisi sıcaklığa ve enjeksiyon akımına bağlıdır. Harici bir ısı kaynağının (peltier soğutucu gibi) sıcaklığındaki artış, rezonatör frekansında $\frac{dv}{dT} = -30$ GHzK⁻¹'lik oranda bir değişime neden olur. Enjeksiyon akımındaki değişim ise $\frac{dv}{dl} = n_{th} + n_n$ 'lık bir kaymaya neden olur. Bunlar, hetero yapı içerisindeki sıcaklık değişiminden $(n_{th} = -3 \text{GHzmA}^{-1})$ ve taşıyıcı yük değişiminden $(n_n = 0.1 \text{GHzmA}^{-1})$ kaynaklı olan kaymalardır. Yavaş akım değişimlerinde, termal "kırmızıya kayma" tabanlı frekans değişimleri olurken, enjeksiyon akımının modülasyon frekansının 30kHz'i aştığı durumlarda taşıyıcı yük değişimlerinin etkileri baskındır (1).

Akım değişiminin veya pn birleşme bölgesindeki sıcaklık değişimine karşılık rezonans mod değişiminde Şekil 1.4'te görüldüğü üzere her zaman süreklilik olmaz. Bunun nedeni rezonatör yapısı ile kazanç profili arasındaki ahengin bozulmasıdır (1).

Şekil 1.4. Sıcaklık değişimlerinin neden olduğu rezonatör mod değişimleri (1).

Enjeksiyon akımının nominal değerlerin üzerine çıkması, pn eklem bölgesinde sıcaklığın artmasına ve bu sebeple de hasara neden olacaktır. T_0 sıcaklığı tipik olarak heterojen yapılarda 60K'dir. VCSEL (Vertical Cavity Surface Emitting Laser) ve kuantum film lazerlerde sıcaklığa hassasiyet iyice azaltılmış olup bu değer 200-400K arasındadır (1).

Optik çıkış gücün çok fazla artması durumunda yansıtıcı yüzeyler zarar göreceğinden yarı iletken lazer hasar görecektir (4). Bu nedenle çıkış gücünü maksimumda sınırlamak gereklidir. Bu sınırlama işlemi çoğu kez yarı iletken lazerin paketinde bulunan monitör foto diyot aracılığıyla on-off kontrol ile yapılır.

Yarı iletken lazerlerin çok farklı tasarımları olsa da dinamik özellikleri açısından belirgin farklılık gösteren iki temel sınıfa ayırabiliriz. Bunlar, yatay kaviteli ve dikey kaviteli yapılardır (4).

Şekil 1.5. "Yan kenarlardan ışımalı" lazer diyot (DFB) (4).

Şekil 1.6. Yüzeyden ışımalı lazer diyot (VCSEL) (4).

Kavite aynaları Şekil 1.5'te görüldüğü gibi hetero yapılara dik ise ışıma kenarlardan olur. Bu tip yapıya sahip lazerlere dikey kaviteli veya "**kenardan ışımalı**" (edge-emitting)" denir. Eğer kavite aynaları Şekil 1.6'da görüldüğü gibi hetero yapılara

paralel ise ışıma yüzeyden olur. Bu yapıdakilere ise paralel kaviteli veya yüzeyden ışımalı dikey kavite (VCSEL) lazer diyot denir (4).

Fabry-Perot rezonatörlü lazer diyotlar yapıları gereği çok sayıda modu desteklerler. "Distributed Feedback (DFB)", "Distributed Brag Reflector" ve "Extenden Cavity" laserlerin daha iyi tek modlu çıkışları vardır (4). VCSEL lazer diyotların çok kısa kaviteleri vardır. Aktif ortamın üst ve alt tarafındaki çok katmanlı aynaların yansıtıcılığı kenardan ışımalı olanlara nazaran çok daha yüksek olmalıdır. Diğer tip lazerlere göre çok daha yüksek simetriye sahip aralıktan ışıma yaptığından daha yuvarlak ve saçılması daha düşük bir demet sağlamaktadırlar (4).

Şekil 1.7. Kenardan ışımalı lazerlerin spektrumları. (a) Kazanç, (b) İndis kılavuzlu profile sahip rezonatör, (c) DFB lazer (4).

Kenardan ışımalı lazerlerin rezonatörün indis profilli (index-guided) yapılandırılması çıkış spektrumunda iyileşme sağlamaktadır. Şekil 1.7'de kazanç ile indisi profiline ve DFB lazerlerin ışıma spektrumu gösterilmektedir.

1.3. Yarı İletken Lazerlerin Dinamiği ve Kararsızlık

Yarı iletken lazerlerin, enjeksiyon akımının modülasyonu veya optik geri besleme yapılması durumunda ortaya çıkan kararsızlıkları, dinamik davranışları ile açıklanabilir. Lazerlerin dinamik davranışlarını, rezonatör kavitesindeki elektrik alan ile kazanç ortamı arasındaki etkileşim belirlemektedir (5). Yarı iletken lazerlerin

dinamik davranışlarını tümüyle (1.3) ve (1.4)'teki elektrik alan $\left(\frac{dE}{dt}\right)$ ve taşıyıcı yük yoğunluğunun $\left(\frac{dn}{dt}\right)$ zamana bağlı oran eşitlikleriyle tanımlanabilir (6).

$$\frac{dE}{dt} = \left\{ i\omega(n) + \frac{1}{2} [G(n) - \Gamma_0] \right\} E$$
(1.3)

$$\frac{dn}{dt} = R - \gamma n - G(n)|E|^2 \tag{1.4}$$

Burada, $\omega(n)$ taşıyıcı tük yoğunluğuna bağlı olarak değişmiş rezonans frekansını, G(n) taşıyıcı yük yoğunluğuna bağlı aktif ortam kazancını, Γ_0 ortam kayıplarını, R pompalama terimi ve γ nufus tersinmesi bozulma oranıdır (inversion decay rate).

Kararsızlık durumunun analizi için (1.3) ve (1.4)'teki eşitliklere en az bir serbest değişkenin eklenmesi yeterli olacaktır (6).

Enjeksiyon akımının ω_{mod} frekansı ile modülasyonu durumunda, pompalama terimi J yerine $R = R_{dc} + R_{ac} \cos\varphi(t)$ eklenmelidir. Burada $\frac{d\varphi}{dt} = \omega_{mod}$ 'tur. Bu durumda (1.4) eşitliğinin yeni hali:

$$\frac{dn}{dt} = R_{dc} + R_{ac} \cos\varphi(t) - \gamma n - G(n)|E|^2$$
(1.5)

 ω_{mod} modülasyon frekansı, lazer diyodun gevşeme (relaxation) osilasyonunu aşarsa periyot çiftleme (period doubling) oluşur. ω_{mod} 'un artışı ile birlikte periyot çiftleme kaos durumuna yol açacaktır (6).

Lazer diyot kavitesine harici bir lazer kaynağından $\omega = \omega_0 + \Delta \omega$ frekansında eşfazlı bir besleme yapıldığında ise, (1.3) eşitliğine $E_g = \breve{\kappa} Eexp(i(\omega_0 + \Delta \omega)t)$ serbest değişkeninin eklenmesi yeterli olacaktır.

$$\frac{dE}{dt} = \left\{ i\omega(n) + \frac{1}{2} [G(n) - \Gamma_0] \right\} E + E_g$$
(1.6)

 $\Delta \omega$ 'nin değeri tipik olarak birkaç GHz seviyesindedir. Bu fark frekansını, lazer diyodun gevşeme osilasyon frekansına kadar arttırılırsa birçok periyot çiftleme serisi ve dolayısıyla kaos meydana gelir (6).

Kazanç fonksiyonu G(n) ile frekansı $\omega(n)$ 'yi lazer geçiş durumundaki yük yoğunluğu n_{LD} etrafında doğrusallaştırdığımızda:

$$G(n) = G_n(n - n_{LD}) = G_n \Delta n \tag{1.7}$$

$$\omega(n) = \omega_0 + \omega_n (n - n_{LD}) = \omega_0 - \frac{1}{2} \alpha G_n \Delta n$$
(1.8)

Burada, $\alpha = -2 \frac{\omega_n}{G_n}$ çizgi genişliği genişleme faktörü olarak tanımlanır. α faktörü, kazanç fonksiyonu ve frekansın lazer materyali ile olan bağlantısını ifade eder. Genel olarak α parametresi, lazer materyalinin doğrusal olmayan hassasiyeti olarak ta tanımlanabilir:

$$\alpha = -\frac{d[Re\chi(n)]/dn}{d[Im\chi(n)]/dn}$$
(1.9)

Burada, doğrusal olmayan alınganlığın gerçel kısmı $Re\chi(n)$ kırılma indisi ile orantılı, nonlineer alınganlığın sanal kısmı ise optik kazanç fonksiyonu G(n) ile orantılıdır. Kırılma indisinin değişimi doğrudan rezonatör frekansını değiştirir (6).

İkinci bölümde, Lang-Kobayashi modeline göre lazer oran eşitlikleri kullanılarak zayıf geri beslemeye maruz tek modlu bir lazer diyotun çıkışındaki frekans ve güç değişimlerinin teorik analizi yapılmıştır. Teorik analiz sonucunda elde edilen eşitliklerin sayısal çözümleri kullanılarak optik geribeslemeli lazer çıkışının MATLAB ortamında simülasyonu yapılmıştır. Üçüncü bölümde, optik geribeslemeli lazer çıkışı kullanılarak yerdeğişim, mesafe ve hız ölçümleri için temel prensibler ele alınmıştır. Ayrıca, farklı tip lazer diyotların bu girişime tepkisi, optik geri besleme ile geleneksel girişim ölçerin performanslarının karşılaştırılması ve optik geri besleme girişiminde oluşan gürültü tiplerinin açıklaması yapılmıştır. Dördüncü bölümde ise, faz açma ve optimizasyon içeren bir sinyal işleme algoritması geliştirilerek 100nm'den daha hassasiyette ölçüm simülasyonu MATLAB ortamında gerçekleştirlmiştir. Bu yöntem ile titreşen yansıtıcı bir yüzeyin hareketi girişim sinyalinden tekrar yapılandırılmıştır. Simülasyonlar farklı frekans bileşenine sahip hareketler için de tekrarlanmıştır.

2. OPTİK GERİ BESLEME ALTINDAKİ YARI İLETKEN LAZERLERİN DAVRANIŞLARININ İNCELENMESİ

2.1 GİRİŞ

Sürekli bir yarı iletken lazerin ışığı, Şekil 2.1'deki gibi harici bir hedeften geri yansıtılarak bir kısmının lazerin kavitesine girmesine izin verilirse, kavite içerisindeki duran dalga ile girişim yapar.

Şekil 2.1. Optik geri beslemenin neden olduğu girişim şeması (3).

Optik geri beslemenin neden olduğu bu girişim, Şekil 2.2'deki vektör modeline uygun olarak lazerin çıkışı üzerinde genlik ve frekans modülasyonuna sahip bir salınım oluşturacaktır.

Şekil 2.2. Optik geri beslemeli lazer diyot çıkışının vektör modeli (3).

Burada E_y , harici hedeften geri yansıyan, E ise kavite içerisindeki duran dalganın elektrik alan bileşenidir. 2ks(t), lazer diyodun ön yüzü ile harici yansıtıcı arasındaki mesafeden kaynaklı E_y ile E alanları arasındaki faz farkıdır. Burada, $k = \frac{2\pi}{\lambda}$ dalga sayısını ve s(t) ise lazer diyodun ön yüzü ile harici yansıtıcı arasındaki zamanla değişen yerdeğişim miktarını göstermektedir. Gecikme fazı nedeniyle geri yansıyan lazerin elektrik alanına eklenen üstel ifadeyi bileşenlerine ayırdığımızda, gerçel kısmı $\cos(2ks(t))$ olarak genlik modülasyonunu, sanal kısmı ise $\sin(\varphi(t))$ olarak frekans modülasyonunu oluşturacaktır.

Geri yansıma ile elde edilen optik geri beslemenin lazer diyot çıkışında neden olduğu değişimlerin açıklanmasında yaygın olarak Lang-Kobayashi modeli kullanılmaktadır.

2.2. Lang-Kobayashi Modeli

Bu model, kısa mesafedeki harici bir hedeften zayıf olarak geri beslenen tek modlu bir yarı iletken lazerin dinamik özelliklerindeki farklılaşmanın analizi üzerine kuruludur. Zayıf optik geri beslemenin şiddeti, çoklu yansımaların ihmal edecek kadar az olduğu kabul edilir (7).

Bu modele göre optik geri besleme olayında iki rezonatör kavitesi vardır. Lazer diyot kavitesi, ışıma modunun belirlenmesinde baskındır. Kırılma indisi büyük olduğundan mod aralığı geniş ancak mod sayısı azdır. Harici kavitenin ise kırılma indisi yaklaşık 1'dir. Bu kavitenin mod aralığı küçük mod sayısıda fazladır.

Şekil 2.3. Lazer ile harici kavitenin oluşturduğu birleşik kavite ve modları.

Lazer diyot kavitesi ile harici kavitenin oluşturduğu birleşik kavite ve rezonatör modları Şekil 2.3'te görülmektedir. Harici hedefin hareketi sırasında harici kavitenin rezonatör modu mesafeye bağlı değişmektedir. Optik geri besleme nedeniyle sıcaklık ve taşıyıcı yük yoğunluğundaki değişime bağlı indis değişimi lazer diyot kavitesinin modunu değiştirmektedir. Her iki kavitenin modları birbiri üzerine çakıştığında tepeler, farklılaşmaya başladığında ise çukurlar oluşturacak şekilde süreklilik gösteren girişime neden olacaktır. Mod atlamalar ise süreksizlik noktaları oluşturduğundan girişim sinyalinde keskin iniş ve çıkışlar olarak gözlenecektir.

Lang-Kobayashi, birleşik kavitenin elektrik alan değişimini, lazer diyot için tanımlanan temel lazer eşitliklerinden elektrik alan oran eşitliğine, τ kadar zaman gecikmeli geri yansıyan lazerin elektrik alanını ekleyerek açıklamaktadır. Diyot kavitesindeki elektrik alanını, SVEA yaklaşımı ile yavaş değişen zarf fonksiyonu E(t) ile ω_0 merkezi frekansında hızla değişen optik alanın çarpımı olduğu varsayarak birleşik kavite içerisindeki elektrik alan için lazer oran eşitliği:

$$\frac{d}{dt}E(t)e^{i\omega_0 t} = \{i\omega_N(n) + \frac{1}{2}(G(n) - \Gamma_0)E(t)e^{i\omega_0 t} + \check{\kappa}E(t-\tau)e^{i\omega_0(t-\tau)}$$
(2.1)

olarak ifade edilmiştir (7). Burada, $\omega_N(n)$ eksenel mod frekansı olup aktif ortamın kırılma indisi η 'nün taşıyıcı yoğunluğu ile beraber değişmesi nedeniyle taşıyıcı yoğunluğu *n*'ye bağlı bir fonksiyon olarak tanımlanmaktadır. *N* eksenel modu tanımlayan bir tamsayıdır. Bu terim, kavite içerisindeki ışığın merkezi frekansı ile anlık frekansı arasındaki farkı ifade eder. İkinci terim, uyarılma yoluyla kuvvetlendirmeyi tanımlayan optik kazanç G(n) ile kavite kayıpları Γ_0 arasındaki farktır. Son terim ise Lang-Kobayashi tarafından yapılan eklenti olup τ süresince dış kaviteden geri yansıyan lazer alanının etkisidir. Toplam yansımanın, Şekil 2.4'teki yansımaları içermektedir.

Şekil 2.4. Lang-Kobayashi modelinde toplam geri yansımalar (2).

 R_2 yansıtıcılığındaki sağ yüzeye gelen optik alanı $E_g e^{i\omega_0 t}$ ve bu yüzey ile dış hedeften geri yansıyan toplam alanı $E_y e^{i\omega_0 t}$ olarak gösterirsek,

$$E_{y}e^{i\omega_{0}t} = \left[\sqrt{R_{2}} + (1 - R_{2})\sqrt{R_{3}}e^{-i\omega_{0}\tau} + (1 - R_{2})R_{3}\sqrt{R_{2}}e^{-i2\omega_{0}\tau} + \cdots\right]E_{g}e^{i\omega_{0}t}$$
(2.2)

eşitliği yazılabilir. Çoklu yansımalar ihmal edilirse, (2.2)'nin yeni hali:

$$E_{y}e^{i\omega_{0}t} = \left[\sqrt{R_{2}} + (1 - R_{2})\sqrt{R_{3}}e^{-i\omega_{0}\tau}\right]E_{g}e^{i\omega_{0}t}$$
(2.3)

olacaktır (7). Lazerin sağ yüzeyi ile dış hedef yüzeyinin birleşik etkin yansıtıcılığı,

$$r_{eff} = \frac{E_y}{E_g} = \sqrt{R_2} (1 + ae^{-i\omega_0 \tau})$$
(2.4)

Burada, $a = (1 - R_2)\sqrt{R_3/R_2}$ 'dir.

Ayna kayıplarında kullanılan standart ifadeyi birleşik kavitenin toplam kayıplar için kullandığımızda,

$$\Gamma = \Gamma_{\omega} - \frac{c}{\eta l_D} \ln\left(\sqrt{R_1 \cdot r_{eff}}\right) = \Gamma_0 - \frac{c}{\eta l_D} \ln\left(1 + ae^{-i\omega_0 \tau}\right)$$
(2.5)

elde edilir (7). Burada, Γ_{ω} diyot kavitesindeki dalga kılavuzu kayıplarını ve Γ_0 geri besleme olmaksızın lazer diyodun kavite kayıplarıdır. Diyot içerisindeki lazer alanının sönümleme değişimi $\mathbf{a} \ll \mathbf{1}$ için $\frac{1}{2}\Gamma E e^{i\omega_0 t}$, e eşittir. Bu terimi (2.1)'deki eşitlikle kullandığımızda,

$$\frac{1}{2}\Gamma E e^{i\omega_0 t} = \frac{1}{2}\Gamma_0 E e^{i\omega_0 t} - \check{\kappa} E(t-\tau) e^{i\omega_0(t-\tau)}$$
(2.6)

elde ederiz (7). Kararlı halde, (2.5)'deki Γ 'yu, (2.6)'daki yerine koyduğumuzda,

$$\frac{c}{2\eta l} \ln(1 + ae^{-i\omega_0 \tau}) = \check{\kappa} e^{-i\omega_0 \tau}$$
(2.7)

eşitliği olur. $a \ll 1$ değeri için $\ln(1 + ae^{-i\omega_0\tau}) \approx ae^{-i\omega_0\tau}$ olduğundan, (2.7)'deki kuplaj katsayısı K'nın değeri:

$$\check{\mathbf{K}} = \frac{c(1-R_2)\sqrt{R_3/R_2}}{2\eta l_D} \approx \frac{\varepsilon a}{2\eta l_D/c} = \frac{\kappa}{\tau_c}$$
(2.8)

olarak ifade edilebilir. Burada, ε terimi sonradan yapılan bir eklenti olup kaviteler arasındaki mod uyuşmazlığını (mode overlap mismatch) ifade eder ve 0.1-0.8 arasında değerler alır (8). Lazerin dinamik davranışını tanımlayan diğer bir eşitlik, n(t) taşıyıcı yoğunluğu oran eşitliği:

$$\frac{dn(t)}{dt} = -\gamma n(t) - G(n)|E|^2 + R$$
(2.9)

Bu eşitliğin ilk terimi kendiliğinden salınım kaynaklı taşıyıcı kayıplarıdır. Burada γ taşıyıcı ömrünün tersidir. İkinci terim, uyarımlı salınım kaynaklı taşıyıcı yokluğudur. Son terim $R = \frac{J}{ed}$ ise enjeksiyon akım kaynaklı taşıyıcı yoğunluğundaki artıştır. Burada J enjeksiyon akım yoğunluğu, *e* elektron yükü ve *d* aktif tabaka kalınlığıdır (7,2).

Taşıyıcı yoğunluğu oranının rezonans frekansına etkisini göstermek için optik kazanç G(n) ve kırılma indisi için doğrusal yaklaşımlar kullanılmıştır (7,2). Eşik seviyesindeki bir lazer diyodun taşıyıcı yoğunluğu değeri n_{th} etrafında Δn gibi küçük değişimler olduğunu varsayalım. Kırılma indisinin değeri:

$$\eta(n) = \eta_{th} + \Delta n \frac{d\eta}{dn} \tag{2.10}$$

olur. (2.10) eşitliği kullanarak rezonans frekansını,

$$\omega_N = \omega_{th} - \frac{\omega_{th}}{\eta_{th}} (\Delta n \frac{d\eta}{dn})$$
(2.11)

ile ifade edebiliriz. Benzer bir yaklaşımla optik kazanç:

$$G(n) = G_{th} + \Delta n \frac{dG}{dn}$$
(2.12)

olarak yazılabilir. Eşik seviyesindeki kazanç, kavite kayıplarına eşit olduğundan,

$$\Delta n = (G(n) - \Gamma_0) / \frac{dG}{dn}$$
(2.13)

ile ifade edilebilir. Bu değeri (2.11)'de yerine koyduğumuzda,

$$\omega_N = \omega_{th} + \frac{\alpha(G(n) - \Gamma_0)}{2} \tag{2.14}$$

elde edilir. Burada, α çizgi fonksiyonu genişleme faktörü olup değeri:

$$\alpha = -\frac{2\omega_{th}}{\eta_{th}} \left(\frac{d\eta}{dn} \middle/ \frac{dG}{dn} \right)$$
(2.15)

 $\omega_N(n)$ 'i eşik değerine göre frekans değişimi ($\omega_N - \omega_{th}$) olarak ifade edilirse, (2.1) eşitliğinin yeni hali:

$$\frac{dE(t)}{dt} = 1/2(1+i\alpha)G_n(n(t) - n_{th})E(t) + \kappa E(t-\tau)e^{i\omega_0(t-\tau)}$$
(2.16)

olacaktır. Burada, G_n terimi $\frac{dG}{dn}$ eşit olup $G_n(n(t) - n_{th}) = G(n) - \Gamma_0$ 'tir.

(2.16) eşitliğini kullanarak faz oran eşitliğini bulalım. Birleşik kavite içerisinde yavaş değişen zarf fonksiyonu E(t)'nin genlik ve faz bileşenleri ile beraber ifadesi:

$$E(t) = E_0(t)e^{i\varphi(t)}$$
 (2.17)

Bu terimi, (2.16)'daki Lang Kobayashi eşitliğinde kullandığımızda elde edeceğimiz yeni eşitliğin gerçel ve sanal terimleri sırasıyla:

$$\frac{dE_0(t)}{dt} = 1/2 \, G_n(n(t) - n_{th}) E_0(t) + (\kappa/\tau_c) E_0(t - \tau) \cos(\omega_0 \tau + \varphi(t) - \varphi(t - \tau))$$
(2.18)
$$\frac{d\varphi(t)}{dt} = \frac{\alpha}{2} G_n(n(t) - n_{th}) + \frac{\kappa E_0(t-\tau)}{\tau_c E_0(t)} \sin(\omega_0 \tau + \varphi(t) - \varphi(t-\tau))$$
(2.19)

olacaktır. Böylece, Lang-Kobayashi tarafından optik geri besleme altındaki bir yarı iletken lazerin dinamiklerini tanımlayan eşitliklerin türetilişi yapılmıştır. Bunlar:

$$\frac{dE_0(t)}{dt} = 1/2 G_n(n(t) - n_{th})E_0(t) + (\kappa/\tau_c)E_0(t - \tau)\cos(\omega_0\tau + \Delta(t))$$
(2.20)

$$\frac{d\varphi(t)}{dt} = \frac{\alpha}{2} G_n(n(t) - n_{th}) + \frac{\kappa E_0(t-\tau)}{\tau_c E_0(t)} \sin(\omega_0 \tau + \Delta(t))$$
(2.21)

$$\frac{dn}{dt} = -\frac{n(t)}{\tau_e} - G_n(n(t) - n_{th})|E|^2 + R$$
(2.22)

Burada, $\frac{1}{\tau_e}$ taşıyıcı ömrü olup γ 'ye eşittir. Bu eşitlikler kullanılarak birleşik kavitenin kararlı durumdaki *P* çıkış gücü ve x_F fazı bulunabilir.

Kararlı durumda, $E_0(t) = E_0(t - \tau) = E_s$, $n(t) = n_s$ ve $\varphi(t) = (\omega_s - \omega_0)t$ 'dir. $E_0(t)$ sabit olduğundan, (2.20) sıfıra eşitlenebilir. Bu durumda (2.20)'nin yeni hali,

$$n_s = n_0 - \frac{2\kappa}{G_n \tau_c} \cos[\omega_s \cdot \tau]$$
(2.23)

olacaktır. Bu eşitlikle, optik geri beslemenin lazer diyot içerisinde taşıyıcı yoğunluğu modülasyonuna neden olduğu görülmektedir. Bu denklemi (2.21)'deki faz denklemine yerleştirilirse,

$$\omega_s = \omega_0 - \frac{\kappa}{\tau_c} \{ \alpha \cdot \cos[\omega_s \cdot \tau] + \sin[\omega_s \cdot \tau] \}$$
(2.24)

elde edilir. Bu ifadeyi basitleştirmek amacıyla Şekil 2.5'teki dik üçgen yardımıyla,

Şekil 2.5. Faz açısı eşitliğinde kullanılan dik üçgen.

 $\sin(\omega_s \cdot \tau + \operatorname{atan}(\alpha)) = \frac{\alpha}{\sqrt{1+\alpha^2}} \cos(\omega_s \cdot \tau) + \sin(\omega_s \cdot \tau) \frac{1}{\sqrt{1+\alpha^2}}$ eşitlik ifadesi yazabileceğimizden, (2.24)'teki eşitliği,

$$\omega_s = \omega_0 - \frac{\kappa}{\tau_c} \sqrt{1 + \alpha^2} \cdot \sin[\omega_s(\tau) \cdot \tau + \operatorname{atan}(\alpha)]$$
(2.25)

olarak yazılabilir. (2.25)'teki açısal frekans eşitliğini, faz cinsinden ifadesi,

$$\omega_s \cdot \tau = \omega_0 \cdot \tau - \frac{\kappa \cdot \tau}{\tau_c} \sqrt{1 + \alpha^2} \cdot \sin[\omega_s \cdot \tau + \operatorname{atan}(\alpha)]$$
(2.26)

$$x_0(t) = x_F(t) - C \cdot \sin[x_F(t) + \operatorname{atan}(\alpha)]$$
(2.27)

olarak yazılabilir.

Burada, geri beslemesiz faz ifadesi $x_0(t) = \omega_0 \cdot \tau$ 'ya, geri beslemeli faz ifadesi ise $x_F(t) = \omega_s \cdot \tau$ 'ya eşittir. *C*, geri besleme parametresi olup değeri:

$$C = \frac{\kappa \cdot \tau}{\tau_c} \sqrt{1 + \alpha^2}$$
(2.28)

(2.23)'teki ifadeyi (2.22)'deki taşıyıcı yoğunluğu eşitliğinde yerine koyduğumuzda $|E_s|^2$ 'nin değeri:

$$|E_s|^2 = \frac{R - (n_s/\tau_e)}{G_n[n_s - n_0]} = \left(\frac{\tau_P}{\tau_e}\right) \quad \frac{R\tau_e - n_0 + \frac{2\kappa}{G_n\tau_c}\cos[\omega_s\tau]}{1 - \frac{2\kappa\tau_P}{\tau_c}\cos[\omega_s\tau]} \tag{2.29}$$

 $|E_s|^2$, kararlı haldeki çıkış gücüne yaklaşık olarak eşittir (2,8). Optik geri besleme zayıf olduğundan, bu ifadenin $\kappa \ll \tau_c/2\tau_p$ varsayımı ile **doğrusallaştırılmış** hali:

$$P \propto E_s^2 = \left(\frac{\tau_P}{\tau_e}\right) \left(R\tau_e - n_0 + \frac{2\kappa}{G_n \tau_c} \cos[\omega_s \tau]\right) \times \left(1 + \frac{2\kappa \tau_P}{\tau_c} \cos[\omega_s \tau]\right)$$
(2.30)

Geri beslemenin olmadığı durumda çıkış gücü:

$$P_0 \propto E_0^2 = \tau_P (R - n_0 / \tau_e) \tag{2.31}$$

Zayıf geri besleme nedeniyle (2.30)'daki ikinci dereceden terimleri ihmal edilirse, geri beslemeli çıkış gücü ve (2.31)'deki geri beslemesiz çıkış gücü cinsinden yeni ifadesi,

$$P = \tau_P \left(R - \frac{n_0}{\tau_e} \right) * \left(1 + \frac{2\kappa\tau_P}{\tau_c} \cos[\omega_s \tau] \right)$$
(2.32)

$$\boldsymbol{P} = \boldsymbol{P}_{0}(1 + \boldsymbol{m}\boldsymbol{c}\boldsymbol{o}\boldsymbol{s}(\boldsymbol{\omega}_{s}\boldsymbol{\tau})) \tag{2.33}$$

Burada *m* modülasyon indeksi olup değeri:

$$m = \frac{2\kappa\tau_P}{\tau_c} \tag{2.34}$$

Bu model, Sporleder ve Mork tarafından çoklu yansıma ve çok modlu lazer diyotlarıda kapsayacak şekilde geliştirilerek iteratif model sunulmuştur. Bu modelde, geri besleme seviyesi arttıkça daha fazla mod frekansı ve bu modlara düşen güçler hesaba katılmaktadır. Lang-Kobayashi ile iteratif modellerde lazer diyodun içerdiği modlar arasında eşit aralık olduğu varsayılmakta ve her mod geri beslemeden hafifçe değişerek etkilenmektedir. Bu gereksinim ana yaklaşım olarak bu modellerde kullanılmaktadır.Kuplaj kavite modeli, Lang-Kobayashi ve iteratif modellerinde

kullanılan kavite mod sayısı ve dalga boyları ile ilgili hiçbir varsayım yapmayarak çözüm sunmaktadır. Farklı modlar farklı yaşam sürelerine sahip olabilmekte ve her bir modun yaşam süresi zamanla da değişebilmektedir. Modun yaşam süresi değiştiğinde, kuplaj kavitesi içindeki alan genliklerinde de buna bağlı değişimler olmaktadır Kuplaj kavite modeli her seviyedeki geri besleme ve çok modlu konfigürasyonlarda kullanılabilmektedir. Hesaplamalarındaki karmaşıklığın artması nedeniyle özellikle kısa dış kavitelerde kullanılmaktadır (2).

Optik geri beslemenin neden olduğu girişimi genel olarak geri besleme parametresi *C*'nin aldığı değerlere göre sınıflandırılmaktadır (8,10). Bunlar,

- C « 1 *çok zayıf geri besleme durumu*. Girişim sinyali, geleneksel girişimölçerlerde olduğu gibi sinüzoidal bir sinyalidir.
- 0.1 < C < 1 zayıf geri besleme durumu. Girişim sinyalinin şekli bozuk sinüzoidal olup asimetriktir.
- 1 < C < 4.6 orta şiddetli geri besleme durumu. Girişim sinyali mod atlama nedeniyle testere dişli şeklindedir.
- C > 4.6 şiddetli geri besleme durumu. Girişim sinyali mod atlama rastgele olduğundan karasızlık gösterir. Çok şiddetli durumlarda hedefin titreşim sinyaline benzer bir hal almaktadır.

(2.27) ve (2.33)'teki faz ve güç denklemleri kullanılarak yapılacak sayısal çözümlerle bu durumlar simüle edilebilmektedir.

2.3. Optik Geri Besleme Girişim Sinyalinin Simülasyonu

Lang-Kobayashi modelinin optik geri besleme şartlarındaki faz değişimi (2.27)'de elde edildiği üzere

$$x_0(t) = x_F(t) - C \cdot \sin[x_F(t) + \operatorname{atan}(\alpha)]$$
(2.35)

'dir. Burada, $x_F(t)$ ve $x_0(t)$ değişkenleri geri beslemeli ve geri beslemesiz şartlarındaki ışımanın açısal fazları, *C* geri besleme parametresini ve α ise çizgi genişliği genişleme faktörüdür. Işımanın açısal fazları, (2.36)'daki eşitlikler ile ifade edilebilir.

$$x_F(t) = 2\pi \frac{D(t)}{\frac{\lambda_F(t)}{2}} = 2\pi v_F(t)\tau(t); \quad x_0(t) = 2\pi \frac{D(t)}{\frac{\lambda_0}{2}} = 2\pi v_0\tau(t)$$
(2.36)

Burada, $\lambda_F(t)$ ile λ_0 sırasıyla geri beslemeli ve geri beslemesiz şartlardaki ışımanın dalgaboyları, D(t) lazer diyot ile hedef arasındaki yerdeğişim, $v_F(t)$ ile $v_0(t)$ sırasıyla geri beslemeli ve geri beslemesiz ışımanın frekansı ve $\tau(t)$ ise harici mesafe boyunca uçuş süresidir (9).

(2.35)'te verilen faz eşitliğinde bilinen değişkenler $x_0(t)$, C ve α ; bilinmeyen değişken ise $x_F(t)$ 'tir. $x_F(t)$ 'in sinüs fonksiyonun içinde olması bu eşitliğin hem doğrusallığını bozmakta hem de C ve α parametrelerinin büyüklüğüne bağlı olarak çözümünü zorlaştırmaktadır.

Her durumuda, (2.35) eşitliğinin k'nın tamsayı değerleri için $x_0(t) = k\pi - \arctan(\alpha)$ noktalarındaki çözüm kümesi (2.37)'dedir.

$$x_F(t) = k\pi - \arctan(\alpha) \tag{2.37}$$

Bu çözüm kümesi C ve α parametrelerine bağlı olarak farklılaşan $x_F(t)$ 'nin $x_0(t)$ ile kesişme noktalarıdır. α parametresinin $x_F(t)$ 'ye olan etkisi arctan (α) ile olmaktadır. α 'nın büyük değerleri için arctan $(\alpha) \approx \frac{\pi}{2}$ olduğundan faz değişimine etkisinin küçük değerlerinde olduğunu söyleyebiliriz.

Şekil 2.6'da, C = 3 için α parametresinin farklı değerlerinde $x_F(t)$ fazındaki değişim görülmektedir. α parametresinin farklı değerleri için faz kayması beklendiği üzere vardır. Ancak α 'nın değeri arttıkça arctan(α)'nin değerindeki değişme önemsizleştiğinden, α 'nin 7 ve 10 değerlerinde eğriler üst üste binmiştir. Sonuç olarak α 'nın büyük değerlerinde $x_F(t)$ fonksiyonunun sadece $x_0(t)$ ve C'ye bağlı olduğunu söyleyebiliriz.

Şekil 2.6. C = 3 ve farklı α değerleri için $x_F(t)$ 'nin $x_0(t)$ 'ye göre değişimi. Elde edilen eğriler, $\alpha = 3$ için kesikli, $\alpha = 7$ için kesikli noktalı, $\alpha = 10$ için noktalı ve $x_F(t) = x_0(t)$ fonksiyonu için ise sürekli olarak gösterilmiştir.

 $x_F(t)$ fazının *C* parametresine olan bağımlılığını iki gruba ayırabiliriz: *C* < 1 ve *C* > 1 'dir. *C* < 1 için lazer diyotun davranışı kararlı ve (2.35) no'lu eşitliğin çözümü kolaydır. *C* > 1 için ise mod atlamaların neden olduğu histerisizli bir davranış ve (2.35) no'lu eşitliğinin aynı $x_0(t)$ noktaları için birden fazla çözüm kümesine sahip olabilmektedir (9).

2.3.1. Zayıf Geri Besleme Durumu

C < 0.1'i sağlayan çok zayıf geri besleme şartlarında, (2.35)'teki faz eşitliği Şekil 2.7'de görüldüğü üzere $x_F(t) \approx x_0(t)$ 'yi sağlamaktadır. C'nin sıfıra yaklaşan değerlerinde, (2.35) no'lu eşitliğinin ikinci teriminin faz sinyaline bir etkisinin olmadığını söyleyebiliriz. Faz sinyalinde etkin olan harici mesafenin uzunluğudur.

Şekil 2.7. Çok zayıf geri besleme için $x_F(t)$ 'nin $x_0(t)$ 'ye göre değişimi. Elde edilen eğriler C = 0.05 ve $\alpha = 7$ için kesikli ve $x_F(t) = x_0(t)$ fonksiyonu için ise sürekli olarak gösterilmiştir.

Şekil 2.8. Çok zayıf optik geri beslemeli lazer diyodun çıkış gücünün gösterimi.
(a) Yerdeğişim sinyalinin zamana bağlı değişimi, (b) C = 0.05 ve α = 6 için lazer diyodun optik çıkış gücünün zamana bağlı değişimi.

(2.33)'te verilen çıkış gücü eşitliği kullanılarak elde edilen C = 0.05 için girişim sinyali Şekil 2.8'de görülmektedir. Üstteki sinyal, $5\lambda_0$ genlikli ve 100Hz frekansında

sinüzoidal bir yerdeğişim sinyalini, alttaki sinyal ise optik geri beslemeli girişim sinyali olup sinüzoidaldır.

Şekil 2.9. Zayıf geri besleme için $x_F(t)$ 'nin $x_0(t)$ 'ye göre değişimi. Elde edilen eğriler C = 0.8 ve $\alpha = 7$ için kesikli ve $x_F(t) = x_0(t)$ fonksiyonu için ise sürekli olarak gösterilmiştir.

Şekil 2.10. Zayıf geri besleme durumu için $x_F(t)$ 'nin $x_0(t)$ 'ye göre eğrisinin $C(k \pm n)$ eşdeğer eğri parçaların birleşmesinden oluştuğunu göstermektedir.

0.1 < C < 1 aralığında, $x_0(t)$ ile $x_F(t)$ 'nin yaklaşık doğrusallığı bozulmaktadır. Şekil 2.9'da görüldüğü üzere 0.1 < C < 1 için $x_F(t)$ faz sinyali $x_0(t)$ fazı etrafında periyodik olarak salınmaktadır. Bu durum için $x_F(t)$ eğrisinin Şekil 2.10'da gösterildiği gibi eşdeğer ...C(k-2), C(k), C(k+2)... eğri parçalarının birleşiminden oluştuğu varsayılarak bir çözüme gidilebilir (9). k'nın çift tamsayı değerleri için herbir eğri $x_0(t)$ 'nin $-\pi$ ile π aralığındaki değerleri almaktadır.

Öncelikle, $x_0(t)$ 'nin değerinin hangi C(k) eğrisinde olduğunu belirleyebilmek için k'nın bulunması gereklidir. Şekil 2.10'daki C(k) eğrilerinin aralıkları kullanılarak oluşturulan (2.38)'deki eşitsizlikle k'nın değeri hesaplanabilir.

$$(k-1)\pi - \arctan(\alpha) \le x_0(t) \le (k+1)\pi - \arctan(\alpha)$$
(2.38)

Şekil 2.11. Zayıf geri besleme durumunda α =6 ve farklı C değerleri için $-\pi$ ile π 'nin arasında eşit aralıklarla değer almış x_s vektörü için y_s değerlerini gösteren eğriler. C = 0.2 için sürekli, C = 0.6 kesikli eğri ve C = 0.95 için ise noktalı eğri kullanılmıştır.

k çift tamsayı olduğundan,

$$k = 2round(\frac{x_0(t) + \arctan(\alpha)}{2\pi})$$
(2.39)

ile değerleri elde edilebilir. Burada *round* bir MATLAB fonksiyonu olup işlemin sonucunu en yakın tam sayıya yuvarlamaktadır.

Her bir C(k) eğrisi, $x \in [-\pi, \pi]$ için y = f(x, C) fonksiyonu olduğundan, (2.35)'teki faz eşitliğine $x = x_0(t) + \arctan(\alpha)$ ve $y = x_F(t) + \arctan(\alpha)$ yerleştirildiğinde,

$$x = y + Csin(y) \tag{2.40}$$

elde edilir. Eşit mesafelerle $-\pi$ ile π aralığında değerler almış y_s 'ler kullanılarak x_s ' ler elde edilebilir. Şekil 2.11'de 0.1 < C < 1 aralığındaki farklı geri besleme seviyeleri için $-\pi$ ile π aralığındaki x_s değerleri için y_s eğrileri görülmektedir.

 $x_0(t)$ değeri ile elde edilen x_s ve y_s değerler kümesi kullanılarak interpolasyon kullanılarak $x_F(t)$ hesaplanacaktır. Şekil 2.12'deki şema, C < 1 zayıf geri besleme şartlarında, $x_0(t)$ geri beslemesiz fazdan $x_F(t)$ geri beslemeli fazın sayısal olarak hesaplanmasını göstermektedir.

Şekil 2.12. Çok zayıf ve zayıf optik geri besleme durumunda, $x_0(t)$, C ve α değerleri kullanılarak $x_F(t)$ fazının elde edilmesini gösteren blok şeması (9).

(2.39) no'lu eşitlikle elde edilen k değeri ile (2.37)'de tanımlanan $x_0(t) = x_F(t)$ olan noktayı yani $k\pi - \arctan(\alpha)$ 'yı buluruz. $x_0(t)$ 'nin değerinden bu eşitlik noktasını çıkardığımızda (2.40)'ta tanımlanan x'nin $-\pi$ ile π aralığındaki değerler bölgesine çekmiş oluruz. x = y + Csin(y) eşitliğinde y_s 'in $-\pi$ ile π eşit aralıklarla aldığımız değerler için x_s 'yi elde edebiliriz. Bu değerler kullanılarak doğrusal interpolasyon ile (2.40)'ta tanımlanan y değeri bulunmuş olur.

Şekil 2.13'te C = 0.5 ve $\alpha = 6$ için elde edilen çıkış gücü sinyali görülmektedir. Yerdeğişim sinyali Şekil 2.8'deki ile aynı olup her $\frac{\lambda_0}{2}$ genlik değişiminde bir girişim darbesi oluşturduğundan $5\lambda_0$ genlik değişiminde 10 girişim darbesi oluşturmuştur.

Bununla birlikte, *C*'nin değeri bire yaklaşırken sinüzoidal sinyalin bozulduğu ve testere dişli sinyale dönüştüğü görülmektedir. Aynı zamanda, testere dişli sinyalin, hareketin yönüne göre sağa veya sola eğimli olduğu da görülmektedir.

Şekil 2.13. Çok zayıf optik geri beslemeli lazer diyodun çıkış gücünün gösterimi. (a)
 Yerdeğişim sinyalinin zamana bağlı değişimi, (b) C = 0.5 ve α = 6 için
 lazer diyodun optik çıkış gücünün zamana bağlı değişimi.

2.3.2. Orta ve Şiddetli Geri Besleme Durumu

C > 1 durumunda (2.35) no'lu eşitliğinin bazı $x_0(t)$ değerleri için en az üç çözüm kümesi sağladığı Şekil 2.14'te görülmektedir. Şekil 2.14.a'da, C = 3 şartlarında, aynı $x_0(t)$ değeri için üç farklı $x_F(t)$ değeri bulunmaktadır. Şekil 2.14.b'de C = 6 için çözüm kümesi altıya kadar çıkmaktadır.

Şekil 2.14. Orta ve Şiddetli geri besleme durumları için farklı C değerleri için x_F(t) 'nin x₀(t)'ye göre değişimi ve çözüm kümeleri. (a) C = 3 ve α=6 ve
(b) C=6 ve α=6 değerleri için değişim noktalı eğriler ile, x₀(t) = x_F(t) fonksiyonu ise sürekli eğri ile gösterilmiştir.

Şekil 2.15'te, matematiksel çözüm ve fizksel davranış beraber verilmiştir. Mavi oklar fiziksel davranışın farklılığını göstermekte olup $x_0(t)$ 'nin artan ve azalan değerleri için $x_F(t)$ 'nin takip edeceği yollardır. $x_0(t)$ artarken, $x_F(t)$ ABCD yolundaki değerleri almakta; $x_0(t)$ azalırken, $x_F(t)$ DCEF yolu üzerindeki değerleri almaktadır.

Şekil 2.15. Orta şiddetli geri besleme durumunda, C = 3 ve $\alpha=6$ değerleri için $x_F(t)$ 'nin $x_0(t)$ 'a göre histerisiz tipteki değişimi.

Şekil 2.16. Orta şiddetli geri besleme durumunda, C = 3 ve $\alpha=6$ değerleri için $x_F(t)$ 'nin $x_0(t)$ 'a göre histerisiz tipteki değişiminin süreksizlik noktaları.

Şekil 2.16'da görüldüğü üzere C > 1 için $x_F(t)$ eğrisi $x_0(t) = x_F(t)$ eğrisi etrafında periyodik olarak salınmaktadır. Bu nedenle C > 1 şartlarında, (2.35) no'lu eşitliğin çözümünü C < 1 için yapılan çözüme benzer olarak yapılabilir.

 $x_0(t)$ 'nin arttığı durumda, k'ıncı periyodu başlangıç nontası $x_{0,R}(k-2)$, bitiş noktası $x_{0,R}(k)$; $x_0(t)$ 'nin azaldığı durumda, k'ıncı periyodu başlangıç noktası $x_{0,F}(k)$, bitiş noktası $x_{0,F}(k-2)$ 'dir. Bu noktalar $x_F(t)$ 'in $x_0(t)$ 'ye göre eğiminin sıfır olduğu noktalardır. Buna göre,

$$\frac{dx_0(t)}{dx_F(t)} = 1 - \mathcal{C}cos[x_F(t) + \arctan(\alpha) = 0$$
(2.41)

eşitliğinin çözüm kümesi süreksizlik noktalarını verecektir. k'nın çift tamsayı değerleri için (2.41)'in $x_F(t)$ noktalarının çözüm kümesi ,

$$x_{F,R}(k) = k\pi - \arctan(\alpha) + \arccos(-\frac{1}{c})$$
(2.42)

$$x_{F,F}(k) = (k+2)\pi - \arctan(\alpha) - \arccos(-\frac{1}{c})$$
(2.43)

ve (2.35) no'lu eşitlik kullanılarak (2.42) ve (2.43) no'lu eşitliliklerdeki $x_F(t)$ noktalarına karşılık gelen $x_0(t)$ noktaları,

$$x_{0,R}(k) = k\pi - \arctan(\alpha) + \beta + C\sin(\beta)$$
(2.44)

$$x_{0,F}(k) = (k+2)\pi - \arctan(\alpha) - \beta - C\sin(\beta)$$
(2.45)

olarak elde edilir. Burada $\beta = \arccos(-\frac{1}{c})$ 'a eşittir. *C* parametresinin değeri bire yaklaştığında $x_{0,R}(k-2)$ noktası $(k-1)\pi + \arctan(\alpha)$ 'ya, $x_{0,F}(k)$ noktası $(k+1)\pi + \arctan(\alpha)$ 'ya yaklaşmaktadır. *C*'nin değeri artıkça $x_{0,R}(k-2)$ ve $x_{0,F}(k)$ noktaları yakınlaşmaktadır. *C*'nin artan değerleri ile birlikte bu noktalar üst üste binecektir. Üst üste binme noktalarını,

$$x_{0,R}(k-2n) = x_{o,F}(k) \tag{2.46}$$

eşitliği ile elde edebiliriz. (2.44) ve (2.45)'teki eşitlikler kullanılarak (2.46) no'lu eşitlik,

$$\frac{1}{\pi} \left\{ \arccos\left(-\frac{1}{c}\right) + C \sin\left[\arccos\left(-\frac{1}{c}\right)\right] \right\} = 1 + n$$
(2.47)

ile yazılabilir. n = 1 için elde edeceğimiz C değeri 4.603'tür. Bundan sonra oluşabilecek diğer üst üste binme noktalarındaki C değerleri kolaylıkla hesaplanabilir.

Şekil 2.17. Orta şiddetli geri besleme durumunda, C = 3 ve $\alpha = 6$ değerleri için $x_F(t)$ 'nin $x_0(t)$ 'a göre eğrisinin $C(k \pm n)$ eşdeğer eğri parçaların birleşmesinden oluştuğunu göstermektedir.

Üst üste binme noktaları kararsızlığa yol açtığından girişimi bozmaktadır. 1 < C < 4.6 aralığı lazer diyodun davranışın kararlı olduğu ve sensör uygulamalarında kullanılan bölgedir.

 $x_F(t)$ eğrisinin Şekil 2.17'de görüldüğü üzere ...C(k - 2), C(k), C(k + 2)... eğri parçalarının birleşiminden oluştuğunu varsayarak sayısal çözümlenebilir.

k periyodunca $x_0(t)$ 'nin değer aralığı,

$$x_{0,F}(k-2) \le x_0(t) \le x_{0,R}(k) \tag{2.48}$$

olur. (2.44) ve (2.45) no'lu eşitlikler kullanılarak, (2.48) eşitsizliği

$$-\beta - Csin(\beta) \le x_0(t) - k\pi + \arctan(\alpha) \le \beta + Csin(\beta)$$
(2.49)

formunda yazılabilir. $x_F(t)$ 'yi tanımlayan aralık ise

$$x_{F,F}(k-2) \le x_F(t) \le x_{F,R}(k) \tag{2.50}$$

olur. (2.42) ve (2.43) no'lu eşitlikler kullanılarak, (2.50) eşitsizliği

$$-\beta \le x_F(t) - k\pi + \arctan(\alpha) \le \beta \tag{2.51}$$

formunda yazılabilir.

Şekil 2.18'deki blok şema kullanılarak C > 1 durumu için $x_0(t)$ 'nin değerlerine karşılık gelen $x_F(t)$ değerleri hesaplanabilir. Karşılaştırma blokları kullanılarak başlangıç periyodundan başlayarak yapılan karşılaştırmalarla $x_0(t)$ 'nin hangi C(k)eğrisinde olduğunu ve dolayısıyla *k*'nın değerini bulunacaktır.

İnterpolasyon için (2.38) no'lu eşitlikteki yaklaşım kullanıldığında başlangıç periyodu için

$$-\beta - Csin(\beta) \le x \le \beta + Csin(\beta) \tag{2.52}$$

$$-\beta \le y \le \beta \tag{2.53}$$

elde edildiğinden (2.53)'te tanımlanmış bölgede eşit aralıklarla tanımlanmış y_s 'ler için x_s 'ler elde edilebilir. Farklı geri besleme durumları için x_s değerlerine göre çizilmiş y_s eğrileri Şekil 2.19'da görülmektedir.

 $y = f_{INT}(x; x_S, y_S, C)$

Şekil 2.18. Orta şiddetli geri besleme durumunda, $x_0(t)$, C ve α değerleri kullanılarak $x_F(t)$ fazının elde edilmesini gösteren blok şeması (9).

Şekil 2.19. C > 1 durumu için x_s değerleri için y_s eğrileri. C = 1 sürekli eğri, C = 2 kesikli eğri ve C = 5 noktalı eğridir.

Şekil 2.20'de C = 3 ve $\alpha = 6$ için elde edilen çıkış gücü sinyali görülmektedir. C > 1 durumu için optik geri besleme girişiminde, her $\frac{\lambda_0}{2}$ genlik değişiminde bir girişim darbesi oluşturduğundan $5\lambda_0$ genlik değişiminde 10 girişim darbesi oluşturmuştur. Lazer diyodun çıkış sinyali testere dişli ve hareketin yönüne göre sağa veya sola eğimlidir. Bununla birlikte D(t) yerdeğişim sinyalinin artan bölünleri ile azalan bölümleri için oluşan girişim darbelerinin genlik seviyeleri farklıdır. Artan bölümleri için genlik seviyeleri pozitifte, azalan bölümler için negatif bölgededir.

Şekil 2.20. Orta şiddetli optik geri beslemeli lazer diyodun çıkış gücünün gösterimi.
(a) Yerdeğişim sinyalinin zamana bağlı değişimi, (b) C = 3 ve α = 6 için lazer diyodun optik çıkış gücünün zamana bağlı değişimi.

Şekil 2.21, 2.22 ve 2.23'te sırasıyla C = 6, C = 20 ve C = 100 için lazer diyot çıkışının simülasyonu görülmektedir. C > 4.6 şiddetli geribesleme için yapılan simülasyonda girişim darbe sayılarının her $\frac{\lambda_0}{2}$ yerdeğişimine denk gelmediğini ve geri besleme şiddeti arttıkça genliklerinin azaldığı görülmektedir. C = 100 çok şiddetli geribesleme durumunda artık girişim darbesi görülememekte; yer değişim frekansında bir osilasyon gözlemlenmektedir.

Şekil 2.21. Şiddetli optik geri beslemeli lazer diyodun çıkış gücünün gösterimi. (a) Yerdeğişim sinyalinin zamana bağlı değişimi, (b) C = 6 ve $\alpha = 6$ için lazer diyodun optik çıkış gücünün zamana bağlı değişimi.

Şekil 2.22. Şiddetli optik geri beslemeli lazer diyodun çıkış gücünün gösterimi. (a) Yerdeğişim sinyalinin zamana bağlı değişimi, (b) C = 20 ve α = 6 için lazer diyodun optik çıkış gücünün zamana bağlı değişimi.

Şekil 2.23. Şiddetli optik geri beslemeli lazer diyodun çıkış gücünün gösterimi. (a) Yerdeğişim sinyalinin zamana bağlı değişimi, (b) C = 100 ve $\alpha = 6$ için lazer diyodun optik çıkış gücünün zamana bağlı değişimi.

(2.35)'deki doğrusal olamayan faz değişimi eşitliğini taylor açılımıyla doğrusallaştırarak çözebiliriz. Birinci derece Taylor açılımıyla $x_F(0) = k\pi - \arctan(\alpha)$ etrafında doğrusallaştırma elde edilebilmektedir. Birinci derece Taylor açılımı

$$F(x) = F(x_0) + \dot{F}(x_0)(x - x_0)$$
(2.54)

ifade edersek

$$x_0(t) = k\pi - \arctan(\alpha) + (1 + C\cos(k\pi))(x_F - k\pi + \arctan(\alpha))$$
(2.55)

$$x_F(t) = \frac{x_0(t) - k\pi + \arctan(\alpha)}{1 + C\cos(k\pi)} + k\pi - \arctan(\alpha)$$
(2.56)

$$x_F(t) = \frac{x_0(t) + C\cos(k\pi)(k\pi - \arctan(\alpha))}{1 + C\cos(k\pi)}$$
(2.57)

$$x_F(t) = \frac{x_0(t) + (-1)^k C(k\pi - \arctan(\alpha))}{1 + (-1)^k C}$$
(2.58)

elde edilir (9). Bu çözüm ile k'ıncı periyodu belirleyen C<1 için (2.38) ve C>1 için (2.49) eşitlikleri kullanılarak sırasıyla zayıf ve orta şiddetli optik geri besleme sinyali oluşturulabilir. Şekil 2.24'te iki farklı çözümün C>1 için oluşturuduğu sinyaller ve farkı görülmektedir.

Taylor açılımı ile doğrusallaştırma kullanılarak yapılan modellemeye yaklaşık modelleme denilmektedir (9). Şekil 2.24'ten anlaşılacağı üzere eğriler üzerinden yapılan çözümleme ile yaklaşık modelleme arasındaki fark değişim noktalarında görülmektedir.

Şekil 2.24. C = 1.1 ve α = 6 için Gerçek ve Yaklaşık modelleme ile lazer diyodun optik çıkışının gösterimi. (a) Sürekli eğri gerçek ve noktalı eğri yaklaşık modellemeli çıkışın üst üstte, (b) İki sinyalin farkı sinyali.

Bu davranış modellerini kullanarak birden fazla frekansa sahip harici yansıtıcının yerdeğişim hareketinin neden olduğu optik girişimler simüle edilebilir. Şekil 2.25'te 150Hz ve 225Hz frekans bileşenlerine sahip ve sırasıyla 1417nm ve 780nm genlikli bir yerdeğişimin neden olduğu optik geri besleme girişimli çıkış sinyali görülmektedir.

Şekil 2.25. Birden fazla frekansla titreşen bir hedefle optik geri beslemeli lazer diyodun çıkış gücü. (a) Yerdeğişim sinyalinin zamana bağlı değişimi,
(b) C = 1.1 ve α = 6 için lazer diyodun optik çıkış gücünün zamana bağlı değişimi

2.4. Dalga boyu Modülasyonu Durumunda Optik Geri Besleme Girişimi

Lazer ile hedef arasındaki mesafe sabit tutularak üçgen dalga modülasyonlu bir akımla lazerin sürülmesi durumunda her $\frac{\lambda}{2}$ 'lik yerdeğişimde bir girişim darbesi üretilecektir. Eşik seviyesi üzerindeki sabit bir akımın üzerine üçgen modülasyonlu bir akımın eklenmesi durumunda çıkış gücü:

$$P = \eta_{PD}(I_{op} + \Delta I + m\cos(x_F(t)) - I_{th})$$
(2.59)

ile ifade edilebilir (11). Burada, I_{th} lazer eşik akımı, I_{op} lazer sürme akımı, $mcos(x_F(t))$ geri besleme eklentisi, ΔI akım modülasyonu, η_{PD} döüşüm verimliliği olarak kullanılmıştır.

Lazerin akımındaki değişimin dalga boyunu da etkilediğinden optik geri besleme durumunda tanımlanan faz değişimine dalga boyundaki değişimi tanımlayan bir parametre eklenmelidir. Bu durumda $x_0(t) = 2\pi \tau_{ext}(v_0 + \Delta I\Omega)$ olmak üzere faz değişimi:

$$\Delta \varphi_L = 2\pi \tau_{ext} \left(\nu - (\nu_0 + \Delta I\Omega) \right) + Csin(2\pi \nu \tau_{ext} + \arctan(\alpha))$$
(2.60)

ile ifade edilir (11). Burada, $\Delta I(mA_{p-p})$ akım modülasyon terimi, $\Omega(GHz/mA)$ frekans modülasyon terimi, ν_0 geri besleme olmadığı durumda lazer frekansı, ν geri beslemeli durumda lazer frekansı ve $\Delta \varphi_L$ faz değişimi olarak kullanılmıştır.

Faz farkı ve güç çıkışı analizlerine bu değişimleri de eklediğimizde elde edilen çıkış gücü çıkışı Şekil 2.26'da görülmektedir.

Şekil 2.26. Mesafe ölçümü için üçgen dalga modülasyonlu lazere optik geri besleme uygulanması durumunda çıkış gücünde oluşan değişim.

Bu simülasyonda, geri besleme şiddeti C = 0.5 olan zayıf geribesleme durumunda lazer ile dış hedef arasındaki mesafe $20\lambda/2$ alınmıştır.

Bu çıkış gücünün türevi Şekil 2.27'de görülmektedir. Üçgen dalganın pozitif eğimli olan bölgesinde girişim darbeleri pozitif işaretli, negatif eğimli olan bölgesinde negatif işaretlidir

Şekil 2.27. Mesafe ölçümü için üçgen dalga modülasyonlu lazere optik geri besleme uygulanması durumunda elde edilen çıkış gücü sinyalinin türevi.

Her bir darbe $\frac{\lambda}{2}$ 'lik bir yerdeğişimi göstermektedir. Pozitif ve negatif işaretli darbelerin sayısı birbirine eşit olup lazer ile hedef arasındaki mesafeyi vermektedir.

Bu bölümdeki simulasyonların program kodları EK 1-11 arasında verilmiştir.

3. ÖLÇÜM ve SENSÖR UYGULAMALARI

3.1 GİRİŞ

Optik geri besleme girişimi, *C* parametresine bağlı olarak dört ayrı kategoriye ayrılmıştı. Çok zayıf ve zayıf geri besleme şartlarında lazer diyot, tek modlu ışımaya devam etmektedir. Orta şiddetli geri besleme şartlarında, dış kavite modlarının etkisinin artmasıyla daha dar çizgi fonksiyonuna sahip ışıma oluşmaktadır. Spektral genişliğin azalmasıyla nedeniyle eşfazlı uzunluk (coherent length) artacaktır (10).

Eşfazlı uzunluk girişimin olabileceği en uzun mesafe olarak tanımlanabilir (1). Lazer diyotların eşfazlı uzunlukları diğer tip lazerlere nazaran düşüktür. Dalgaboyu 825nm ve spektral genişliği 0.01nm olan indis yönelimli (index-guided) bir lazer diyodun (3.1)'deki eşitlikle hesaplanan eşfazlı uzunluğu 7cm'dir (4).

$$L_{coh} = \frac{\lambda^2}{\delta \lambda} \tag{3.1}$$

Orta şiddetli geri besleme şartlarında, lazer diyot ile hedef arasındaki mesafe 7-8m iken ölçüm yapılabilmiştir (8).

Orta şiddetli geri besleme şartlarında, Şekil 2.20'de de görüldüğü üzere girişim sinyalinin genliğinde çok keskin iniş ve çıkışlar vardır. Bu durum, sinyal işleme açısında büyük kolaylıklar sağlamaktadır.

Temel olarak bir optik geri besleme sensörü, Şekil 3.1'de görüldüğü üzere lazer diyot ile monitör foto diyot içeren bir lazer diyot paketi, toplayıcı veya odaklayıcı mercek, foto diyot akımını voltaja dönüştüren trans-empedans yükselteci, filtre, sinyal işleme devresi ve istenilen parametre için hesap yapan ve gösteren bilgisayardan oluşmaktadır.

Şekil 3.1. Bir optik geri besleme girişim sensörünün temel konfigürasyonu.

Bu girişim sensörü ile yer değişim, mesafe, hız gibi fiziksel parametrelerin ölçümü çok hassas bir şekilde yapılabilmektedir. Geleneksel girişimölçerler ile karşılaştırıldığında;

- Lazer diyot hem ışık kaynağı hem de dedektör olarak kullanılması,
- Lazer diyot paketlerinin monitör foto diyot içermesi, detektör montajı ve ayarı ile ilgili sorunları ortadan kaldırarak ölçüm düzeneğini basitleştirmesi,
- Lazer diyotun önüne yerleştirilecek toplayıcı mercek ve optik zayıflatıcı haricinde optik elemana gereksinim duyulmaması,
- Monitör foto diyot içeren lazer diyot paketinin kompakt yapısı ve düşük maliyeti ile endüstriyel uygulamalara uygunluğunu

optik geri besleme sensörünün üstünlükleri olarak sayabiliriz. Bu tip sensörler, farklı parametre ölçümü ile birçok ticari üründe kullanılmaktadır. Şekil 3.2'deki uygulamada bir cep telefonunun menüsünün bu sensör aracılığıyla kontrol edilmektedir.

Şekil 3.2. Optik geri besleme sensörünün bir cep telefonunda kullanımı (12).

Endüstriyel izleme, mikro teknik ve ürün akış kontrolü gibi uygulamalarda yer değişim ölçümünde kullanılan optik geri besleme sensörü Şekil 3.3'te görülmektedir.

Şekil 3.3. ARCoptix ürünü bir yer değişim sensörü (13).

Şekil 3.4'teki sensörü, test cihazları, mouse'lar, oyun uygulamaları, tanımlama ve parmak izi uygulamaları, yazıcı ve cep telefonlarında kullanılabilmektedir.

Şekil 3.4. Philips tarafından geliştirilen "Twin-eye laser sensor" (14).

3.2. Ölçüm Uygulamaları

3.2.1. Yerdeğişim Ölçümü

Lazer diyot ekseninde hareket eden bir yansıtıcı hedefin δD 'lik yer değişimi optik geri besleme sensörü ile ölçülebilir. Şekil 3.1'deki blok şema, örnek bir yer değişim sensörüdür.

Yerdeğişim sensörlerinde genellikle lazer diyot sabit dc akımla sürülür. Ölçümü yapılan hedefin yüzeyi, ayna, köşeli küp, 3M ScotchliteTM tipi geri yansıtıcı olabildiği gibi pürüzlü de olabilir. Yansıtıcılı yüzeylerde araya optik zayıflatıcının kullanılması gerekebilir (10).

Girişim sinyalinde herbir darbe 2π 'lik bir faz değişimini ifade etmektedir.

$$\Delta(2\pi\nu\tau) = 2\pi\tag{3.2}$$

$$\nu\tau = \frac{c}{\lambda} \cdot \frac{2D}{c} = 1 \tag{3.3}$$

(3.2) ve (3.3) eşitlikleri sonucunda, her bir darbeye karşılık lazer demeti ekseni boyunca $D = \frac{\lambda}{2}$ 'lik yer değişim bulunur. Örneğin 630 nm dalga boyunda bir lazer kullanılması durumunda yaklaşık 325 nm çözünürlükle yer değişim ölçülebilir.

Yer değişim ölçüm sensörünün blok şeması görülmektedir. Girişim sinyalinin türevi ile elde edilen pozitif ve negatif darbelerin sayılması ile ölçüm gerçekleştirilir. Girişim sinyali ve türevinin osiloskop görüntüsü Şekil 3.6'dadır.

Şekil 3.5. Optik geri beslemeli lazer yer değişim sensörünün blok şeması (8).

Şekil 3.6. Yer değişim ölçümünde osiloskop ile elde edilen optik geri besleme sinyali (üstte) ve türevi (altta) (8).

Optik geri beslemeli girişim sinyalindeki darbelerin süresi 200 ns olduğundan hızlı op-amp'lar kullanılmalıdır. Bu yaklaşımlar kullanılarak, geri yansıtıcı kübik aynalı konfigürasyonla 1 metreden 0.4 m/s'ye kadar hızlı titreşimler ölçülebilmiştir.

Limitler genellikle elektronik bant genişliğinden kaynaklanır. Maksimum hedef mesafesi lazer diyotun eşfazlılık uzunluğu ile limitlidir. Orta güçte 780 nm dalga boyunda lazer diyot kullanılarak (genellikle CD okuyucularda kullanılır) 7-8 metre mesafeden ölçüm yapılabilir (2).

3.2.2. Hız Ölçümü

Lazer demeti keseninde hareket eden bir hedefin hızı doppler kaymasından hesaplanabilir. Hedefin hızı (3.4)'teki eşitlikle hesaplanabilir.

$$\nu = \frac{\lambda}{2} \cdot f_d \tag{3.4}$$

Burada, f_d doppler frekansıdır. Optik geri beslemeli girişim sinyali ve FFT ile elde edilmiş frekans spekturumunun osiloskop görüntüsü Şekil 3.7'dedir. FFT ile elde edilen maksimum genlikli frekans kullanılarak (3.4) eşitliğinden hedefin hızı hesaplanabilir.

Şekil 3.7. Optik geri beslemeli girişim sinyali ve FFT analizi (15).

3.2.3. Mesafe Ölçümü

Dc akım üzerine bindirilmiş üçgen dalga modülasyonlu bir akımla sürülen lazer diyotlu kendinden karışım sensörü ile hedefin uzaklığı ölçülebilir. Modüleli akım, lazer diyodun optik çıkış gücünü ve aynı zamanda frekansını da modüle etmektedir.

Zamana bağlı değişen bir dalganın $k = \frac{2\pi}{\lambda}$ olan dalga sayısında $\Delta k = -\frac{2\pi\Delta\lambda}{\lambda^2}$ 'lik kaymaya neden olur.

Şekil 3.8. Mesafe ölçümünde elde edilen girişim sinyali ve türevi (10).

Bunun cinsinden mesafe $D = \frac{\lambda^2}{2\Delta\lambda} \cdot N$ olacaktır (10). Üçgen dalga modülasyonlu çıkış gücü ve türevinin osiloskop görüntüsü Şekil 3.8'dedir. Bu metodun doğruluğu, akım modülasyonu aralığında dalga boyundaki değişimin doğrusallığına ve dolayısıyla mod atlamamasına bağlıdır.

3.3.Optik Geri Besleme Sinyalinin İyileştirilmesi

Optik geri besleme tabanlı sensörlerin performansı elde edilen girişim sinyalin kalitesi ile ilişkilidir. Girişim sinyalinin SNR (sinyal gürültü oranı) değeri genellikle lazer diyot, foto diyot ve elektronik devrelerinden oluşturduğu gürültüler nedeniyle düşüktür. Bu nedenle girişim sinyalinden bilgi elde etmek oldukça zorlaşabilir.

Girişim sinyalinin genliği, lazer diyot kavite uzunluğuna l, dış kavite uzunluğuna L, hedef yüzeyin yansıtıcılığı R_{ext} ve lazer diyotun tipine bağlıdır. Fotodiyotun algılayabileceği sinyalinin tepe değeri

$$S = \eta_{pd} \frac{q}{hv} P_0 \cdot m \tag{3.5}$$

ile hesaplanır (2). Burada, $\eta_{pd} = \eta_{co.}\eta_q$ sırasıyla fotodiyot kuplaj verimi ile kuantum veriminin çarpımı, q elektron yükü, h planck sabiti, v lazerin frekansı, P_0 lazerin çıkış gücü ve $m = \frac{2\kappa\tau_p}{\tau_c} = \frac{\varepsilon\tau_p c(1-R_2)}{l\cdot n\cdot\sqrt{A}\cdot\sqrt{R_2}}$ modülasyon indisidir. m modülasyon indisi, \sqrt{A} ile ters orantılı veya $\sqrt{R_{ext}}$ ile doğru orantılı olduğundan, hedefin yansıtıcılığı ayarlanarak kabul edilebilir SNR değeri elde edilebilir.

Sinyal genliğinin, optik zayıflama ve hedef yüzeyin yansıtıcılığına göre çizilmiş grafiği Şekil 3.9'da görülmektedir. Siyah kalın çizgiler, harici kavite mesafesinin artışına göre girişim sinyalinin genliğindeki azalmayı göstermektedir. İnce siyah çizgiler, aynı güçteki lazerler için, uzun kaviteli olanların daha düşük girişim sinyali olmaktadır.

Şekil 3.9. Sinyal genliğinin optik zayıflama ve hedef yüzeyin yansıtıcılığına göre grafiği (2).

Farklı lazer diyot tipleri için dış kavite zayıflaması A ve hedef yansıtıcılığı R_{ext} 'e göre hesaplanmış fotodiyot akım genliğinin eğrileri Şekil 3.10'da görülmektedir. Bu lazer diyotların dalga boyları 850 nm, çıkış güçleri 10 mW (VCSEL 3mW'tır), foto diyot verimliliği 0.016, kuplaj faktörleri 0.5, çizgi fonksiyonu iyileşme faktörleri 5 ve hedef ile mesafeleri 1m'dir (2). Lazerin tipine bağlı parametreler, (2) no'lu kaynakta verilmiştir.

Şekil 3.10. Farklı lazer diyot tipleri için dış kavite zayıflaması A ve hedef yansıtıcılığı R_{ext}'e göre hesaplanmış optik geri besleme sinyal genliği eğrileri (2).

Fabry-Perot ve grating kuplaj faktörü daha küçük olan DFB1 lazer diyotlarından genliği en büyük sinyal elde edilmiştir. $A = 10^7$ seviyesindeki yüksek zayıflamayı tolere edebilmeleri nedeniyle orta geri besleme durumu için en uygun lazerlerdir. Pürüzlü veya düşük yansıtıcılığı olan hedef yüzeylerinde bile doğru çalışabilirler. Genel olarak, kenar band bastırma oranı 10-15dB'den büyük olan her tip tek modlu lazer diyot iyi seviyede optik geri besleme girişim sinyali ürettiği yapılan testlerde görülmüştür (2).

SNR değeri, enjeksiyon akımına göre de değişiklik göstermektedir. C = 1 için enjeksiyon akımına göre genlik ve SNR eğrileri Şekil 3.11'de görülmektedir.

Şekil 3.11. C = 1 için bir F-P lazer diyotun farklı sürme akımına göre hesaplanmış optik geri besleme girişim sinyalinin genliği ve SNR eğrileri (2).

Sadece eşik değerinde SNR maksimum olmuştur. Daha sonra hızla minimum değerine düştükten sonra akım artışı ile birlikte tekrar yükselmiştir. Buna göre, eşik değeri ve biraz yukarısındaki akım değerleri en uygun çalışma bölgesi olduğu söylenebilir. Ancak pratikte bu bölgeler iki nedenden dolayı istenilen sonucu vermeyebilir. Birincisi, op-amp trans-empedans kullanıdığında düşük güç seviyelerini yükseltmek için gerekli yüksek geri besleme empedansı bant genişliliğini sınırlayacaktır. İkincisi, optik geri besleme girişimi, lazer diyotların tek modda veya kenar mod bastırma oranı 10-15 dB'den daha büyük olduğu zaman gerçekleşir. Bu durum genellikle F-P lazer diyotlarda eşik seviyesinde veya biraz üzerindeki akım seviyesinde sağlanamaz. Bu nedenlerden dolayı yüksek enjeksiyon akımı, en iyi çalışma bölgesidir (2).

Girişim sinyalinin içerdiği gürültüleri üç grupta toplayabiliriz. Bunlar, toplanır beyaz gürültüsü, parıltı impuls paraziti ve girişim sinyali zarfı içinde yavaş zamanlı salınımdır (16). Zayıf geri besleme durumunda, filtrelenmemiş ham girişim sinyali zayıf olacağından Şekil 3.12'de görüldüğü üzere toplanır beyaz gürültü miktarı çok fazladır.

Optik geri besleme şiddetini arttırdığımızda, girişim sinyalinin genliği de artacaktır. Bununla birlikte, Şekil 3.13'te görülen özellikle yüzeyi düzgün olmayan hedeflerde lazer spotunun benekli olmasından kaynaklı parıltı impuls parazitleri ve Şekil 3.14'te görülen sinyal zarfı üzerinde yavaş zamanlı salınımlar oluşacaktır.

Şekil 3.12. Toplanır beyaz gürültünün hakim olduğu ham girişim sinyali (16).

Şekil 3.13. Girişim sinyali üzerinde parıltı impuls parazitleri (16).

Bu sensörlerindeki gürültü problemini çözmek için donanımsal filterelerin yanısıra sayısal sinyal işleme algoritmaları (17) ve doğrusal olmayan sayısal filtreler (16)

üzerinde de çalışılmıştır. Parıltı etkisinden kaynaklı gürültülerin çıkarılması için median filtre, yüksek frekanslı ve yavaş zamanlı sakınımların çıkarılması için Kaiser penceresi tabanlı band geçiren filtre denemiştir. Birleşik filtre uygulamasıyla temiz bir girişim sinyali elde edilebileceği gösterilmiştir (16).

Şekil 3.14. Girişim sinyalinin zarfında yavaş zamanlı salınımlı gürültü (16).
4. OPTİK GERİBESLEMELİ LAZER TİTREŞİM SENSÖRÜNÜN SİMÜLASYONU

4.1. Giriş

Titreşim en basit haliyle bir denge pozisyonu etrafında bir nesnenin hareketi veya salınımı olarak tanımlanmaktadır (18). Titreşim her zaman uyarıcı bir kuvvetin etkisi altında oluşur. Bu nedenle titreşim sinyalinin genliği ve frekansı etki eden kuvvetlerin genliği ve frekansı hakkında bilgi verecektir. Titreşim analizi de titreşen nesnenin durumu, arızalı ise neden olan kuvvetlerin karakteristiklerini belirlemek için yapılmaktadır.

Bir titreşim sinyali, yer değişimin frekansa göre çizimi ile ifade edildiği gibi bu çizimin türevi olan hızın frekansa göre veya ikinci türevi de alınarak ivmenin frekansa göre çizimi ile gösterilebilmektedir. Diğer ifade ile aynı titreşim sinyali farklı görünümlere sahip üç farklı çizimle gösterilebilmektedir. Ancak düşük frekanslı titreşimlerin gösteriminde yer değişim-frekans, yüksek frekanslı titreşimlerde ivme-frekans çizimi kullanılmaktadır (18).

Bu bölümde, MATLAB ortamı kullanılarak, lazer ekseninde titreşen bir yüzeyin oluşturduğu optik geri besleme girişim sinyalinden, geliştirilen sinyal işleme tekniği ile 100nm'nin altında bir hassasiyetle yerdeğişim genliğinin zamana bağlı değişimi olarak titreşim sinyalinin tekrar yapılandırılmıştır. Titreşimin frekansı, tekrar yapılandırılan sinyalin FFT'si alınarak bulunmuştur. Gerçek şartlarda optik geribesleme sinyali gürültülü ihtiva edebileceğinden, geliştirilen sinyal işleme yazılımı, %40 SNR'li girişim sinyalleri içinde test edilmiştir.

4.2. 100nm Altında Hassasiyetle Titreşim Sinyalinin Tekrar Yapılandırılması

Titreşim sinyalinin tekrar yapılandırılması, girişim sinyalinin faz açma ile ayrık yapılandırılması ve minimizasyon ile sürekli sinyal haline dönüştürülmesi olarak iki ana kısımda incelenebilir (19,20,21).

4.2.1. Faz Açma ile Ayrık Yapılandırma

Faz açma, $0-\pi$ arasında değer alan faz sinyaline, süreksizlik noktalarında 2π ekleme veya 2π çıkarma işlemi olarak tanımlanabilir. Testere dişli optik geri besleme girişim sinyali ile aynı forma sahip faz sinyali, $\lambda/2$ 'nin katlarına denk düşen süreksizlik noktalarında eğimin yönüne göre faz açma işlemi yapılarak ayrık yapılandırılmıştır. Faz açma ile ayrık yapılandırma safhasının blok şeması Şekil 4.1'de görülmektedir.

Şekil 4.1. Faz açma ile ayrık yapılandırmanın blok şeması.

Örneklenmiş girişim sinyalinin ölçüm aralığı dışındaki frekans bileşenleri band geçiren filtre ile filtrelenmektedir. Filtrelemede, ölçüm doğruluğunu etkileyen girişim sinyalinin geçiş noktalarını korunması önemlidir. Bu nedenle doğru tekniğin uygulanması önemlidir. Bu durum etkilemektedir. Filtreleme işleminde, öncelikle ani darbeleri süzen 2 point median filtre ve sonra 75-27000Hz aralığında kaiser band geçiren filtre kullanılmıştır (13,14). Alt frekans seviyesi şebeke hattından kaynaklı düşük frekansları elemek, yüksek frekans seviyesi ise ölçüm aralığı kapsamındaki girişim sinyalinin geçiş noktalarını bozamayacak bir seviye olarak deneme yoluyla tespit edilmiştir.

Normalizasyon işlemi, sinyalin ortalama değerinin sıfırlanması ve $P[n]/P_{p-p}$ ile 0-1 arasında değerler almasını sağlanmaktadır. Böylece, bir sonraki adımda yapılacak arccos() hesabı için uygun değerler üretilmiş olmaktadır. Arccos() bloğu, giriş sinyalinden $[0,\pi]$ aralığında değişen faz sinyalini üretmektedir. Testere dişli sinyalin her bir tepesi geçiş noktası olarak tanımlanmaktadır. Darbe algılama algoritması bu geçiş noktalarını belirleyip bir vektöre yazmaktadır. Darbe algılama algoritması Şekil 4.2'de görülmektedir.

Şekil 4.2. Darbe algılama algoritması.

Her bir geçiş noktasında, $[0,\pi]$ aralığında değişen x_F ekleyerek veya çıkararak faz açma (phase unwrapping) elde edilmektedir. Faz açma işleminin çıkışı merdiven adımlı sinyaldir. Bu işlemle, sinyal işlemenin ilk bölümü olan yerdeğişimin kabaca yapılandırması tamamlanmış olmaktadır.

4.2.2. Minimizasyon ile Sürekliliğin Sağlanması

Minimizasyon işlemi, fonksiyonun bağlı olduğu parametrelerin değerlerini değiştirerek, fonksiyonun ard arda alacağı değerlerin farklarının karelerinin toplamının sıfıra yaklaştırılmasıdır. Bunun sonucunda, elde edilen parametre değerleri kullanılarak ayrık olan yerdeğişim sinyali sürekli hale getirilir.

Minimizasyon işleminin son aşamasında ise, filtreleme ve frekans analizi yapılmaktadır. Bu safhanın blok şeması Şekil 4.3'te görülmektedir. Minimizasyon işlemi temelde merdiven adımı olarak görülen kesikli faz sinyalinin sürekli sinyale dönüştürülmesidir. Ayrık yapılandırılmış x_F faz sinyalinin sürekliliği, (4.1)'de verilen fonksiyonu (cost function) minimum yapan C ve α parametrelerinin optimum değerlerinde sağlanabilecektir.

$$F = \sum (x[n] - x[n-1])^2$$
(4.1)

MATLAB'in "fminsearch" komutu bu iki parametrenin tahmininde kullanılmıştır.

Şekil 4.3. Sinyal işlemenin minimizasyon bölümü.

Minimizasyon sonrası elde edilen faz sinyali $\pi\lambda/4$ katsayısı ile çarpılarak yerdeğişim sinyali elde edilir. Ancak geçiş noktalarının ideal olarak tespit edilememesinden kaynaklı yüksek frekanslı bileşenler saçak şeklinde sinyal üzerinde görüldüğünden, elde edilen sinyale bant geçiren filtre uygulanmıştır.

Frekans analizi, elde edilen sinyalin içerdiği frekansları ve ağırlıkları gözlemlemek için yapılmıştır. MATLAB'ta FFT kullanılarak sinyalin frekans bileşenleri bulunmuştur.

4.3. Simülasyon Sonuçları

Sinyal işleme yazılımının doğruluğu ve hassasiyeti, simülasyon ile oluşturulan bir titreşim sinyali ile bu titreşim kullanılarak üretilen optik geri besleme girişim sinyalinden tekrar yapılandırılan titreşim sinyalinin farkından elde edilen hata miktarına göre test edilmiştir.

Öncelikle, tek frekanslı bir titreşimler ele alınmıştır. Optik geri besleme sinyalleri, 3.3'te belirtildiği üzere gürültülü olabileceğinden, gerçek şartlara yaklaşarak simülasyon yapabilmek için %40SNR'yi sağlayacak şekilde beyaz gürültü eklenerek testler tekrarlanmıştır. Daha sonra, genliği ve frekansı farklı iki sinüs sinyalinin toplamından oluşan bir titreşimden elde edilen girişim sinyali, gürültüsüz ve gürültülü olarak tanımlanarak simülasyon tamamlanmıştır. Tanımlanan bu durumlar, farklı genlik ve frekansı değerleri için testler tekrarlanmış ve sonuçları çizelgelerde verilmiştir.

Şekil 4.4'te, 300Hz frekansında ve 2025nm tepe genlikle titreşen bir harici yansıtıcıdan yapılan geribesleme ile elde edilen gürültüsüz girişim sinyalinin, ayrık faz yapılandırma ve darbe algılama algoritmaları kullanılarak kabaca yerdeğişim sinyalinin yapılandırılma safhaları görülmektedir.

Şekil 4.4. Tek frekanslı bir titreşim ile elde edilen optik geri beslemeli gürültüsüz girişim sinyaline, ayrık yapılandırma ve darbe algılama algoritması kullanılarak titreşimin kabaca yapılandırılması. (a) Yerdeğişim sinyali, (b) Optik geri beslemeli girişim sinyali, (c) Girişim sinyalinin nomalizasyon ve arccos() işlemleri sonrası elde edilen sinyalin türevi, (d) Darbe algılama algılama algoritması ile işlenmiş türev sinyali, (e) Ayrık faz yapılandırma algoritması ile kabaca yapılandırılmış titreşim sinyali.

Şekil 4.5'te, Şekil 4.4'te görülen kabaca yapılandırılmış titreşim sinyalinin minimizasyon işlemi ile sürekli hale dönüşütürülmesi ve FFT sonuçları görülmektedir. FFT sonuçları incelendiğinde yeniden yapılandırılan titreşim frekansının gerçek titreşimde olduğu gibi 300Hz çıktığı görülmektedir.

Şekil 4.6'da, gerçek ve yeniden yapılandırılan titreşim sinyalinin üst üste gösterimi ve fark sinyali görülmektedir. İki sinyal arasındaki fark yaklaşık 50nm'dir. Hem FFT sonucu hem de fark sinyali sonuçları dikkate alındığında gürültüsüz ve tek frekanslı bir titreşim, 100nm'nin altında bir hassasiyetle tekrar yapılandırılmıştır.

Şekil 4.5. Kabaca yapılandırılılan titreşim sinyalinin minimizasyon ile sürekli hale dönüştürülmesi. (a) Kabaca yapılandırılmış titreşim sinyali, (b) Minimizasyon işlemi sonrasında hesaplanan titreşim sinyali, (c) Hesaplanan titreşim sinyalinin FFT'si.

Şekil 4.6. Yeniden yapılandırılmış titreşim sinyali ile gerçek sinyal arasındaki fark gösterimi. (a) Kesikli eğri ile yeniden yapılandırılmış sinyal ve sürekli eğri ile gerçek sinyal üst üstte, (b) Bu iki sinyalin farkını gösteren eğri.

Çizelge 4.1. Gürültüsüz bir optik geri besleme sinyalinden tek frekanslı bir sinyalin tekrar yapılandırılması işleminde farklı frekans ve genlik değerleri için maksimum hata değerleri. (a) Farklı frekans değerleri, (b) Farklı genlik değerleri için maksimum hata değerleri.

S/N	Frekans	Maksimum
	Değerleri	Hata
1	150Hz	40nm
2	250Hz	40nm
3	350Hz	30nm
4	450Hz	30nm
5	550Hz	35nm
6	650Hz	35nm
7	700Hz	40nm
8	800Hz	43nm
9	1000Hz	48nm
10	1200Hz	60nm
11	1300Hz	400nm

S/N	Genlik	Maksimum
	Değerleri	Hata
1	500nm	80nm
2	750nm	63nm
3	1000nm	40nm
4	1750nm	45nm
5	2200nm	45nm
6	3150nm	55nm
7	4300nm	58nm
8	5050nm	77nm
9	5750nm	105nm
10	5925nm	80nm
11	6300nm	400nm

(a)

(b)

Tek frekanslı bir titreşimden elde edilen gürültüsüz girişim sinyali kullanılarak, yeniden yapılandırma işlemi farklı frekans ve genlik değerleri için uygulanmış ve bulunan maksimum hata miktarları Çizelge 4.1'de verilmiştir. Çizelge 4.1.a'da 2025nm sabit genlikli bir titreşim için 150Hz'den 1300Hz'e kadar farklı frekans değerlerindeki maksimum hata miktarları, Çizelge 4.1.b'de 300Hz sabit frekanslı bir titreşim için 500nm'den 6300nm'ye kadar farklı genlik değerlerindeki maksimum hata miktarları farklı genlik değerlerindeki maksimum hata miktarları görülmektedir.

Şekil 4.7'de görüldüğü üzere, 300Hz frekansında ve 2025nm tepe genlikle titreşen bir harici yansıtıcıdan yapılan geri besleme ile elde edilen girişim sinyaline %40 SNR olacak şekilde beyaz gürültü ekleyerek, ayrık faz yapılandırma ve darbe algılama algoritmaları kullanılarak kabaca yerdeğişim sinyali yapılandırılmıştır.

Şekil 4.7. Tek frekanslı bir titreşim ile elde edilen optik geri besleme girişim sinyaline gürültü eklenerek, ayrık yapılandırma ve darbe algılama algoritması kullanılarak titreşimin kabaca yapılandırılması. (a) Yerdeğişim sinyali, (b) Optik geri beslemeli girişim sinyali, (c) Girişim sinyalinin nomalizasyonu, filtreleme ve arccos() işlemleri sonrası elde edilen sinyalin türevi, (d) Darbe algılama algoritması ile işlenmiş türev sinyali, (e) Ayrık faz yapılandırma algoritması ile kabaca yapılandırılmış titreşim sinyali.

Şekil 4.8'de, Şekil 4.7'de görülen kabaca yapılandırılmış titreşim sinyalinin minimizasyon işlemi ile sürekli hale dönüşütürlmesi ve FFT sonuçları görülmektedir. FFT sonuçları incelendiğinde %40 SNR olacak şekilde beyaz gürültü eklenen girişim sinyali ile yeniden yapılandırılan titreşim frekansının gerçek titreşimde olduğu gibi 300Hz çıktığı görülmektedir.

Şekil 4.8. Kabaca yapılandırılılan titreşim sinyalinin minimizasyon ile sürekli hale dönüştürülmesi. (a) Kabaca yapılandırılmış titreşim sinyali, (b) Minimizasyon işlemi sonrasında hesaplanan titreşim sinyali, (c) Hesaplanan titreşim sinyalinin FFT'si.

Şekil 4.9'da, gerçek ve yeniden yapılandırılan titreşim sinyalinin üst üste gösterimi ve fark sinyali görülmektedir. İki sinyal arasındaki fark yaklaşık 50nm'dir. Hem FFT sonucu hem de fark sinyali sonuçları dikkate alındığında tek frekanslı bir titreşimden elde edilen %40 SNR'li bir girişim sinyalinden, 100nm'nin altında bir hassasiyetle yeniden titreşim sinyali yapılandırılmıştır.

Tek frekanslı bir titreşimden elde edilen %40 SNR'li girişim sinyali kullanılarak, yeniden yapılandırma işlemi farklı frekans ve genlik değerleri için uygulanmış ve bulunan maksimum hata miktarları Çizelge 4.2'de verilmiştir. Çizelge 4.2.a'da 2025nm sabit genlikli bir titreşim için 150Hz'den 1300Hz'e kadar farklı frekans değerlerindeki maksimum hata miktarları, Çizelge 4.2.b'de 300Hz sabit frekanslı bir titreşim için 500nm'den 6300nm'ye kadar farklı genlik değerlerindeki maksimum hata miktarları farklı genlik değerlerindeki maksimum hata miktarları görülmektedir.

- Şekil 4.9. Yeniden yapılandırılmış titreşim sinyali ile gerçek sinyal arasındaki fark gösterimi. (a) Kesikli eğri ile yeniden yapılandırılmış sinyal ve sürekli eğri ile gerçek sinyal üst üstte, (b) Bu iki sinyalin farkını gösteren eğri.
- Çizelge 4.2. %40 SNR'li bir optik geri besleme sinyalinden tek frekanslı bir sinyalin tekrar yapılandırılması işleminde farklı frekans ve genlik değerleri için maksimum hata değerleri. (a) Farklı frekans değerleri, (b) Farklı genlik değerleri için maksimum hata değerleri.

S/N	Frekans	Maksimum
	Değerleri	Hata
1	150Hz	55nm
2	250Hz	40nm
3	350Hz	30nm
4	450Hz	40nm
5	550Hz	40nm
6	650Hz	50nm
7	700Hz	55nm
8	800Hz	55nm
9	1000Hz	60nm
10	1200Hz	75nm
11	1300Hz	420nm

S/N	Genlik	Maksimum
	Değerleri	Hata
1	500nm	100nm
2	750nm	50nm
3	1000nm	40nm
4	1750nm	60nm
5	2200nm	40nm
6	3150nm	60nm
7	4300nm	90nm
8	5050nm	80nm
9	5750nm	100nm
10	5925nm	700nm
11	6300nm	750nm

(b)

Birden fazla frekans bileşeni olan titreşimler için de sinyal işleme programı test edilmiştir. Şekil 4.10'da, 150Hz ve 225Hz frekans bileşenlerine sahip ve sırasıyla 1417nm ve 780nm genliğe sahip iki sinyalin toplamından oluşan bir sinyalle titreşen bir harici yansıtıcıdan yapılan geri besleme ile elde edilen gürültüsüz girişim sinyali, ayrık faz yapılandırma ve darbe algılama algoritmaları kullanılarak kabaca titreşim sinyalinin yapılandırılma safhaları görülmektedir.

Şekil 4.10. Birden fazla frekanslı bir titreşim ile elde edilen optik geri beslemeli gürültüsüz girişim sinyaline, ayrık yapılandırma ve darbe algılama algoritması kullanılarak titreşimin kabaca yapılandırılması. (a) Yerdeğişim sinyali, (b) Optik geri beslemeli girişim sinyali, (c) Girişim sinyalinin nomalizasyon ve arccos() işlemleri sonrası elde edilen sinyalin türevi, (d) Darbe algılama algoritması ile işlenmiş türev sinyali, (e) Ayrık faz yapılandırma algoritması ile kabaca yapılandırılmış titreşim sinyali.

Şekil 4.11. Kabaca yapılandırılılan titreşim sinyalinin minimizasyon ile sürekli hale dönüştürülmesi. (a) Kabaca yapılandırılmış titreşim sinyali, (b) Minimizasyon işlemi sonrasında hesaplanan titreşim sinyali, (c) Hesaplanan titreşim sinyalinin FFT'si.

Şekil 4.12. Yeniden yapılandırılmış titreşim sinyali ile gerçek sinyal arasındaki fark gösterimi. (a) Kesikli eğri ile yeniden yapılandırılmış sinyal ve sürekli eğri ile gerçek sinyal üst üstte, (b) Bu iki sinyalin farkını gösteren eğri.

Şekil 4.11'de, Şekil 4.10'da görülen kabaca yapılandırılmış titreşim sinyalinin minimizasyon işlemi ile sürekli hale dönüşütürlmesi ve FFT sonuçları görülmektedir. FFT sonuçları incelendiğinde gürültüsüz girişim sinyali ile yeniden yapılandırılan titreşim frekansının gerçek titreşimde olduğu gibi 150Hz ve 225Hz çıktığı görülmektedir.

Şekil 4.12'de, gerçek ve yeniden yapılandırılan titreşim sinyalinin üst üste gösterimi ve fark sinyali görülmektedir. İki sinyal arasındaki fark yaklaşık 60nm'dir. Hem FFT sonucu hem de fark sinyali sonuçları dikkate alındığında gürültüsüz girişim sinyalinden, 100nm'nin altında bir hassasiyetle yeniden birden fazla frekans bileşenine sahip titreşim sinyali yapılandırılmıştır.

Çizelge 4.3. Gürültüsüz bir optik geri besleme sinyalinden iki frekanslı bir sinyalin tekrar yapılandırılması işleminde farklı frekans ve genlik değerleri için maksimum hata değerleri. (a) Farklı frekans değerleri, (b) Farklı genlik değerleri için maksimum hata değerleri.

S/N	Frekans	Maksimum	S/N	Genlik Değerleri	Maksimum
	Değerleri	Hata		_	Hata
1	150Hz,225Hz	90nm	1	500nm,750nm	80nm
2	250Hz,375Hz	75nm	2	800nm,1100nm	75nm
3	350Hz,525Hz	75nm	3	1200nm,2100nm	60nm
4	450Hz,675Hz	85nm	4	1700nm,2900nm	50nm
5	550Hz,825Hz	93nm	5	2075nm,3500nm	80nm
6	650Hz,925Hz	100nm	6	3575nm,4310nm	400nm
7	700Hz,1050Hz	105nm	7	4225nm,5210nm	430nm

(a)

(b)

İki frekanslı bir titreşimden elde edilen gürültüsüz girişim sinyali kullanılarak, yeniden yapılandırma işlemi farklı frekans ve genlik değerleri için uygulanmış ve bulunan maksimum hata miktarları Çizelge 4.3'te verilmiştir. Çizelge 4.3.a'da 1417nm ve 780nm sabit genlikli iki sinüs sinyalin toplamından oluşan bir titreşim için 150Hz'den 1050Hz'e kadar farklı frekans değerlerindeki maksimum hata miktarları, Çizelge 4.3.b'de 200Hz ve 300Hz sabit frekanslı iki sinüs sinyalin

toplamından oluşan bir titreşim için 500nm'den 5210nm'ye kadar farklı genlik değerlerindeki maksimum hata miktarları görülmektedir.

Şekil 4.13. Birden fazla frekanslı bir titreşim ile elde edilen optik geri beslemeli girişim sinyaline gürültü eklenerek, ayrık yapılandırma ve darbe algılama algoritması kullanılarak titreşimin kabaca yapılandırılması. (a) Yerdeğişim sinyali, (b) Optik geri beslemeli girişim sinyali, (c) Girişim sinyalinin nomalizasyon ve arccos() işlemleri sonrası elde edilen sinyalin türevi, (d) Darbe algılama algılama algoritması ile işlenmiş türev sinyali, (e) Ayrık faz yapılandırma algoritması ile kabaca yapılandırılmış titreşim sinyali.

Şekil 4.14. Kabaca yapılandırılılan titreşim sinyalinin minimizasyon ile sürekli hale dönüştürülmesi. (a) Kabaca yapılandırılmış titreşim sinyali, (b) Minimizasyon işlemi sonrasında hesaplanan titreşim sinyali, (c) Hesaplanan titreşim sinyalinin FFT'si.

Şekil 4.15. Yeniden yapılandırılmış titreşim sinyali ile gerçek sinyal arasındaki fark gösterimi. (a) Kesikli eğri ile yeniden yapılandırılmış sinyal ve sürekli eğri ile gerçek sinyal üst üstte, (b) Bu iki sinyalin farkını gösteren eğri.

Şekil 4.13'te, 300Hz ve 450Hz frekans bileşenlerine sahip ve sırasıyla 1417nm ve 780nm genliğe sahip iki sinyalin toplamından oluşan bir sinyalle titreşen bir harici yansıtıcıdan yapılan geribesleme ile elde edilen %40 SNR'li girişim sinyalinden, ayrık faz yapılandırma ve darbe algılama algoritmaları kullanılarak kabaca titreşim sinyalinin yapılandırılma safhaları görülmektedir.

Şekil 4.14'te, Şekil 4.13'te görülen kabaca yapılandırılmış titreşim sinyalinin minimizasyon işlemi ile sürekli hale dönüşütürülmesi ve FFT sonuçları görülmektedir. FFT sonuçları incelendiğinde %40 SNR'li girişim sinyali ile yeniden yapılandırılan titreşim frekansının gerçek titreşimde olduğu gibi 150Hz ve 225Hz çıktığı görülmektedir.

Şekil 4.15'de, gerçek ve yeniden yapılandırılan titreşim sinyalinin üst üste gösterimi ve fark sinyali görülmektedir. İki sinyal arasındaki fark yaklaşık 50nm'dir. Hem FFT sonucu hem de fark sinyali sonuçları dikkate alındığında %40 SNR'li girişim sinyalinden, 100nm'nin altında bir hassasiyetle yeniden birden fazla frekans bileşenine sahip titreşim sinyali yapılandırılmıştır.

İki frekanslı bir titreşimden elde edilen %40 SNR'li girişim sinyali kullanılarak, yeniden yapılandırma işlemi farklı frekans ve genlik değerleri için uygulanmış ve bulunan maksimum hata miktarları Çizelge 4.4'te verilmiştir. Çizelge 4.4.a'da 1417nm ve 780nm sabit genlikli iki sinüs sinyalin toplamından oluşan bir titreşim için 150Hz'den 1050Hz'e kadar farklı frekans değerlerindeki maksimum hata miktarları, Çizelge 4.4.b'de 200Hz ve 300Hz sabit frekanslı iki sinüs sinyalin toplamından oluşan bir titreşim için 500nm'den 4410nm'ye kadar farklı genlik değerlerindeki maksimum hata miktarları görülmektedir.

Çizelge 4.4. %40 SNR'li bir optik geri besleme sinyalinden iki frekanslı bir sinyalin tekrar yapılandırılması işleminde farklı frekans ve genlik değerleri için maksimum hata değerleri. (a) Farklı frekans değerleri, (b) Farklı genlik değerleri için maksimum hata değerleri.

S/N	Frekans	Maksimum	S	/N	Genlik Değerleri	Maksimum
	Değerleri	Hata				Hata
1	150Hz,225Hz	90nm	1		500nm,750nm	40nm
2	250Hz,375Hz	73nm	2	,	800nm,1100nm	40nm
3	350Hz,525Hz	60nm	3		1200nm,2100nm	50nm
4	450Hz,675Hz	70nm	4		1700nm,2900nm	60nm
5	550Hz,825Hz	77nm	5		2075nm,3500nm	77nm
6	650Hz,975Hz	90nm	6		3475nm,4260nm	400nm
7	700Hz,1050Hz	400nm	7		4025nm,4410nm	450nm

(a)

(b)

Gürütüsüz ve gürültülü, tek veya birden fazla frekans bileşenine sahip titreşimler için yapılan simülasyonlarda, bazı frekans ve genlik seviyelerinde ölçüm hassasiyetinin 100nm'nin çok üzerine çıktığı görülmüştür.

Şekil 4.16. (a) 300Hz, 6300nm genlikli bir titreşim sinyali, (b) Bu titreşimden elde edilen optik geribesleme girişim sinyali.

Bunun nedenini, Şekil 4.16 ve Şekil 4.17 incelenerek açıklanabilir. Şekil 4.16'daki girişim sinyalinde, titreşimin ileri veya geri hareketinin orta bölgelerine denk düşen testere dişli darbelerin seviyelerinin değiştiği görülebilmektedir. Bu durum, titreşim sinyali ile tekrar yapılandırma sonrasında elde edilen titreşimin frekansları arasındaki farkın büyümesine neden olmaktadır.

Şekil 4.17. (a) 300Hz frekansında ve 6300nm genlikli bir titreşimden elde edilen girişim sinyali, (b) Bu girişim sinyalinin arccos()'unun türevi.

Şekil 4.17'de girişim sinyali ve darbe algılama algoritmasında kullanılan türev sinyali görülmektedir. Şekil 4.17.b'deki türev sinyalinde, değişken genlikli darbeleri yakalamamızı engeleyen düşük frekanslı salınım görülebilmektedir. Bu iki faktörün toplam etkisi, geliştirilen tekrar yapılandırma tekniğinin 100nm hassasiyetini bazı frekans ve genlik seviyelerine sınırlamaktadır.

Bu bölümdeki simülasyonların program kodları EK-11, 12 ve 13'te verilmiştir.

4. SONUÇLAR

Optik geri beslemenin yarı iletken lazerlerin frekans ve çıkış gücünde meydana getirdiği değişimler, Lang-Kobayashi modeli ile analiz edilmiştir. Bu modelden de görüldüğü üzere, optik geri beslemenin etkisini belirleyen C parametresinin büyüklüğü, doğrusal olmayan materyal hassasiyeti olarak ta tanımlanan α faktöründen kaynaklanmaktadır. α faktörü, yarı iletken lazerlerde 3-7 değerlerini alabilirken diğer tip lazerlerde yaklaşık sıfırdır (22). Bu durum, özellikle optik geri besleme etkilerinden kaçınmak istenildiği durumlarda seçilecek lazer kaynağında aranılacak önemli bir parametreye işaret etmektedir.

Yarı iletken lazerlerde akım artışının frekansa etkisi bazı bölgelerde doğrusal, bazı bölgelerde de mod atlamalarla kendini göstermektedir. Benzer olarak akım sabit tutulsa bile optik geri besleme ile oluşan yük yoğunluğu ve elektrik alan değişimlerinden kaynaklı mod atlamalar oluşabilmektedir. Şiddetli geri besleme durumunda bu mod atlamalar rastgele oluşacağından yarı iletken lazeri kaotik bir duruma sokabilecektir. Bu durum, çıkış gücünde çok büyük düşüşler ve gürültü artışına neden olabilmektedir (23,24,25).

Orta şiddetli optik geri besleme rejimi, çıkış gücünde görülen salınımların testere dişli olması nedeniyle sensör uygulamalarına uygundur. Optik geri besleme girişimi, temelde lazerin dalgaboyunun yarısı hassasiyetinde ölçüm sağlarken, sinyal yapısının testere dişli olması ve hareket yönüne göre eğiminin değişmesi nedeniyle sinyal işleme teknikleri kullanılarak 100nm'nin altında ölçüm hassasiyeti elde edilebilmektedir.

Lang-Kobayashi modelinin sonuç denklemleri, sayısal yöntemlerle çözümü yapılarak optik geri beslemeli yarı iletken lazerlerin çıkış gücü ve faz değişimleri simüle edilebilmektedir. Tez çalışmasında kullanılan gerçek ve yaklaşık modellemelerle farklı C ve α değerleri için lazer çıkış güçleri incelenmiştir. Ayrıca, geliştirilen sinyal işleme teknikleri, bu modeller kullanılarak test edilebilmiştir.

Optik geri besleme girişim ölçerin ölçüm hassasiyetini arttırmak için geliştirilen sinyal işleme tekniği faz açma ile ayrık yapılandırma ve minimizasyon işlemine dayanmaktadır. Faz açma ile ayrık yapılandırma işlemindeki darbe algılama algoritması hassasiyeti belirleyen önemli bir süreçtir. Bu algoritmanın başarısı girişim sinyalinin SNR değeri ile oldukça ilişkili olup %40'ın altındaki SNR değerlerinde ölçüm hassasiyetini 100nm'nin üzerine çıkarmaktadır. Darbe algılama algoritmasında, kullanıcı tarafından belirlenen eşik seviyesinin optimum olması ölçüm hassasiyetini arttırmaktadır.

Sinyal işlemede, sinyalin gürültülerden filtrelenmesi yüksek hassasiyetin elde edilmesi için önemlidir. Optik geri besleme girişiminde, beyaz gürültü ve aydınlık farklılığının neden olduğu gürültü tipleri baskın olduğundan bunlara yönelik Kaiser ve Median sayısal filtreler kullanılmıştır. Filtrelerin parametreleri seçilirken süreksizlik noktalarının kaybedilmemesine dikkat edilmiştir. Sinyal işlemede kullanılan filtreler simülasyon ortamında oluşturulan gürültüyü eleyebilecek şekilde seçilmiştir.

Optik geri besleme esaslı temassız lazer sensörlerin geliştirilmesinde çalışmalar özellikle sinyal işleme teknikleri üzerinde yoğunlaşmıştır. Bunun yanısıra, VCSEL, Kuantum Kuyulu ve Kuantum Noktalı lazer diyotların optik geri besleme hassasiyetinin incelenmesine yönelik çalışmalarda dikkat çekmektedir (26,27,28,29).

KAYNAKLAR

- Meschede, D., Optics, Light and Lasers. 333-370. WILEY-VCH Verlag GmbH & Co. KGaA, Federal Republic of Germany, 2007.
- (2) Spencer, P., Rees, P., Pierce, I., Unlocking Dynamical Diversity. Theoretical Analysis. 23-54. Ed: by D.M.Kane and K.Alan Shore. John Wiley & Sons, Ltd, 2005.
- (3) Donati, S., Norgia, M., Giuliani, G., A Review Of Self-Mixing Techniques For Sensing Applications. The 17th Annual Meeting of the IEEE Vol.: 260 – 261, 2004.
- (4) Basics of laser diodes, <u>www.tektronix.com/optica</u> (Erişim tarihi:2010)
- (5) Laser Dynamics, <u>www.rp-photonics.com/laser_dynamics.html</u> (Erişim tarihi: 16.01.2010)
- (6) Sacher, J., Baums, D., Panknin, P., Elsässer, W. and Göbel, E., O., Intensity Instabilities of Semiconductor Lasers under Current Modulation, External Light Injection and Delayed Feedback. Phys. Rev. Vol:45(3): 1893-1905, 1992.
- Lang, R., Kobayashi, K., External Optical Feedback Effects On Semiconductor Injection Laser Properties. IEEE J.Quantum Electronics, vol. 16 (3): 347-355, 1980.
- (8) Donati, S., Giuliani, G., Unlocking Dynamical Diversity. Laser Interferometry.217-255. Ed: by D.M.Kane and K.Alan Shore. John Wiley & Sons, Ltd, 2005.
- (9) Plantier, G., Bes, C., Bosch, T., Behavioral Model Of A Self-Mixing Laser Diode. IEEE Journal Of Quantum Electronics, Vol. 41 (9): 1157-1167, 2005.

- (10) Bosch, T., An Overview Of Self-Mixing Sensing Applications. IEEE Conference Proceedings Vol.8: 385-392, 2004.
- (11) Gagnon, E., Rivest, J.F., Laser Range Imaging Using The Self-mixing Effect In A Laser Diode IEEE Transactions on Instrumentation and Measurement, Vol.48(3),1999.
- (12) VCSELs in Various Sensor Applications, www.finisar.com/download_Ni7Jv5VCSELs%20in%20Various%20Sensor%2
 OApplications.pdf (Erişim tarihi: 15.02.2010).
- (13) Direct Industry Catalog, <u>http://pdf.directindustry.com/pdf/arcoptix/laser-speed-sensor/54617-40755.html (Erişim tarihi: 02.02.2010).</u>
- (14) PLN2020 Twin-Eye Laser Sensor, <u>http://www.ic-on-line.cn/IOL/datasheet/</u> <u>pln2020_1296564.pdf</u> (Erişim tarihi:14.02.2010).
- (15) Bosch, T., Servagent, N., Donati, S., Optical Feedback Interferometry For Sensing Application. Optical Engineering Vol. 40 (1): 20-27, 2001.
- (16) Yu, Y., Xi, J., Chicharo, J.F., Improving the Performance in an Optical feedback Self-mixing Interferometry System using Digital Signal Preprocessing. IEEE International Symposium on Intelligent Signal Processing Issue: 1-6, 2007.
- (17) Scalise, L., Yu, Y., Giuliani, G., Plantier, G., Bosch, T., Self-Mixing Laser Diode Velocimetry: Application to Vibration and Velocity Measurement. IEEE Transactions On Instrumentation and Measurement Vol.53 (1): 223-232, 2004.
- (18) What is Vibration, <u>http://www.azimadli.com/ (Erişim Tarihi 05.10.2010)</u>.
- (19) Bes,C., Plantier, G., Bosch, T.,Displacement Measurements Using a Self-Mixing Laser Diode Under Moderate Feedback. IEEE Transaction on Instrumentation and Measurement, vol.55(4),1101-1105, 2006.

- (20) Zabit, U., Bosch, T., Bony, F., Adaptive Transition Detection Algorithm for a Self-Mixing Displacement Sensor. IEEE Sensors Journal, vol.9(12), 2009.
- (21) Zabit,U., Bony, F., Bosch, T., Optimisation of the Nelder-Mead Simplex Method for Its Implementation in A Self_Mixing Laser Displacement Sensor. S.C. Mukhopadhyay, G.S.Gupta (eds.), Smart Sensors and Sensing Technology,Springer 2008.
- (22) Ohtsubo, J., Semiconductor Laser, Stability, Instability, and Chaos, Second Edition, Springer, 2008.
- (23) Hong, Y. and Shore, K. A., Influence of Optical Feedback Time-Delay on Power-Drops in Vertical-Cavity Surface-Emitting Lasers IEEE Journal of Quantum Electronics, Vol. 41(8), 2005.
- (24) Moustafa F. A., Salah A., and Minoru Y., Optical Feedback-Induced Noise in Laser Diodes in Optical-Disc Systems, Micro-NanoMechatronics and Human Science, 2003 IEEE International Symposium on, Vol. 3(1331 – 1336), 2005.
- (25) Rana, F.,Noise and Dynamics in Semiconductor Laser, Doctor of Philosophy in Electrical Engineering at the Massachusetts Instutue of Technology,January 2003.
- (26) Chrostowski, L., Subrahmanyam, P. B., Zhou, Y., and Chang-Hasnain, C. J.,
 VCSEL tolerance to optical feedback, Electronics Letters, Vol:41(21), P: 1178

 1179, 2005.
- (27) Huyet, G., Sensitivity of quantum dot semiconductor lasers to optical feedback, Transparent Optical Networks, Proceedings of 2005 7th International Conference, Vol. 2(108), 2005.

- (28) Weidmann, D., Smith, K., and Ellison, B., Experimental investigation of high-frequency noise and optical feedback effects using a 9.7 _m continuous-wave distributed-feedback quantum-cascade laser, Applied Optics, Vol(6), 2007.
- (29) Lee, S. Tajima, N. Shindo, T. Takahashi, D. Nishiyama, N. Arai, S., High Optical-Feedback Tolerance of Distributed Reflector Lasers With Wirelike Active Regions for Isolator-Free Operation, Photonics Technology Letters, IEEE, Vol:21(20) P:1529-1531, 2009.

EKLER

EK-1

C=3 ve Üç Farklı Çizgi Genişliği İyileşme Faktörü için xF -x0 Eğrisi

```
C=3;
xf=0;
i=1;
for k=0:1100
    xf(i+1)=xf(i)+0.01;
    i=i+1;
\operatorname{end}
a=3;
x0=xf+C*sin(xf+atan(a));
plot(xf,x0,'b')
hold on;
a=7;
x0=xf+C*sin(xf+atan(a));
plot(xf,x0,'g')
hold on;
a=10;
x0=xf+C*sin(xf+atan(a));
plot(xf,x0,'r')
hold on
x0=xf;
plot(xf,x0,'k')
xlabel('xF(t) fazı birimi radyan')
ylabel('x0(t) fazı birimi radyan')
title({'C=3 için çizgigenişliği faktörü';'a=3 mavi eğri , a=7 yeşil
eğri a=10 kırmızı eğridir';'siyah eğri x0=xf'})
```

ЕК-2

Çok Zayıf Geri Besleme Durumunda x0-xF Eğrisi

```
function []= SM2(C,a)
i=0;
for k=0:0.01:20
    i=i+1;
    xf(i) = k;
x0(i) = xf(i) + C*sin(xf(i) + atan(a));
end
plot(x0, xf, 'r')
hold on
i=0;
for l=0:0.01:20
    i=i+1;
    xf(i)=l;
    x0(i)=xf(i);
end
plot(x0,xf,'b')
xlabel('x0(t) fazı birimi radyan')
ylabel('xF(t) fazı birimi radyan')
hold on
end
```

Optik Geri Besleme Olmaksızın Çıkış Gücü

```
f=100;
t=0:1/100000:0.04;
D=5*sin(2*pi*f*t);
subplot(2,1,1); plot(t,D)
title('Yerdeğişim Fonksiyonu D(t)')
ylabel('Dalgaboyu/2 ');
% Optik geribesleme olmaksızın veya çok zayıf geri besleme
% durumunda çıkış gücü
P0=1;
x0=2*pi*D;
Pt=P0*(1+0.01*cos(x0));
subplot(2,1,2);plot(t,Pt)
```

Zayıf Geri Besleme Durumlarında x0-xF Eğrileri

```
function []= SM4(C,a)
i=0;
for k=0:0.01:20
    i=i+1;
    xf(i)=k;
x0(i) = xf(i) + C*sin(xf(i) + atan(a));
end
plot(x0, xf, 'r')
hold on
i=0;
for l=0:0.01:20
    i=i+1;
    xf(i)=l;
    x0(i)=xf(i);
end
plot(x0,xf,'b')
xlabel('x0(t) fazı birimi radyan')
ylabel('xF(t) fazı birimi radyan')
hold on
end
```

Farklı Zayıf Geri Besleme Durumlarında x_s-y_s Eğrileri

```
C=0.2;
ys=-pi:0.002:pi;
xs=ys+C*sin(ys);
plot(xs/pi,ys/pi,'-');
hold on;
C=0.6;
ys=-pi:0.02:pi;
xs=ys+C*sin(ys);
plot(xs/pi,ys/pi,'--');
hold on;
C=1;
ys=-pi:0.02:pi;
xs=ys+C*sin(ys);
plot(xs/pi,ys/pi,':');
xlabel('xs faz1 [-pi,pi]')
ylabel('ys faz1 [-pi,pi]')
```

Zayıf Geri Besleme Durumlarında Yer Değişim Ölçüm Simülasyonu

```
function []=SM2(C,a)
% Hedefin sinusoidal olarak titreştiğini varsayalım.Titreşim
fonksiyonun
% tanımlanması
t=0:0.00001:0.01;
D=5*sin(2*pi*100*t);
subplot(2,1,1); plot(t,D)
title('Yer değişim Fonksiyonu D(t)')
ylabel('Dalga boyu/2 ');
% Optik geri besleme olmaksızın faz farkının tanımlanması
x0=2*pi*D;
% interpolasyonda kullanılacak -pi=<x0(t)=<pi ve -pi=<xf(t)=<pi</pre>
aralığında
% xs ve ys değerlerinin hesaplanması
ys=-pi:0.02:pi;
xs=ys+C*sin(ys);
% (k-1)*pi-atan(a)=<x0(t)=<(k+1)*pi-atan(a) eşitliği kullanılarak
% x0(t)'nin k.inci bölgede olduğunun hesaplanması
k=2*round((x0+atan(a))/(2*pi));
% x0(t) değerinin xs ve ys değerlerini hesapladığımız k=0 ıncı
periyottaki
% değerine çekilerek interpolasyon ile bu noktaya karşılık gelen
xf(t)
% değerinin hesaplanması
x=x0-(k*pi-atan(a));
y=interp1(xs,ys,x,'linear');
% k=0 da bulunan y değerini x0(t)'nin bulunduğu k ıncı bölgede
karşılığının
% hesaplanması
xf=y+k*pi-atan(a);
% Lazer çıkışının simüle edilmesi
P=2*(1+0.001*\cos(xf));
subplot(2,1,2);plot(t,P)
title('C=1 Seviyesinde Gerbeslemeli Çıkış')
ylabel('Çıkış Gücü ');
end
```

Farklı Orta Geri Besleme Durumlarında x0-xF Eğrileri

```
function []= SM1(C,a)
i=0;
for k=0:0.01:20
    i=i+1;
    xf(i)=k;
x0(i)=xf(i)+C*sin(xf(i));
end
plot(x0, xf, 'r')
hold on
i=0;
for l=0:0.01:20
    i=i+1;
    xf(i)=l;
    x0(i)=xf(i);
end
plot(x0,xf,'b')
xlabel('x0(t) fazı birimi radyan')
ylabel('xF(t) fazı birimi radyan')
hold on
end
```

Farklı Orta Geri Besleme Durumlarında x_s-y_s Eğrileri

```
C=1;
B=acos(-1/C)
D=B+C*sin(B);
ys=-B:0.02:B;
n=2*B/0.02;
for i=1:n
xs(i) = ys(i) + C*sin(ys(i))
if (xs(i) > -D)
    if(xs(i)<D)</pre>
    plot(xs(i), ys(i), 'b');
    hold on;
end
end
end
C=2;
B=acos(-1/C);
D=B+C*sin(B);
ys=-B:0.02:B;
n=2*B/0.02;
for i=1:n
xs(i) = ys(i) + C*sin(ys(i))
if (xs(i) > -D)
    if(xs(i)<D)</pre>
    plot(xs(i), ys(i), 'r');
    hold on;
    end
end
end
C=5;
B=acos(-1/C);
D=B+C*sin(B);
ys=-B:0.02:B;
n=2*B/0.02;
for i=1:n
xs(i) = ys(i) + C*sin(ys(i))
if (xs(i) > -D)
    if(xs(i)<D)</pre>
    plot(xs(i),ys(i),'g');
    hold on;
    end
end
end
```

Orta ve Şiddetli Geri Besleme Durumlarında Yer Değişim Ölçüm Simülasyonu

```
function []=SM9(P0,DB,C,a,d,f)
%C>1;
%a>5;
% Self-mixing uygulamalarında kuplaj katsayısı C birden büyük
olduğunda
% x0(t) ile xf(t) fazları arasında histerisisler oluşmaktadır.Bu
yüzden
% x0(t)'nin k ıncı periyodunda yeni aralıkları tanımlayarak çözümü
  simulasyonu yapacağız.
00
% Hedefin sinüsoidal titreştiğini varsayıyoruz. Titreşim fonksiyonun
% tanımlanması
t=0:0.00001:0.1;
D=d*sin(2*pi*f*t)*DB/2;
% geri besleme olmaksızın faz farkının x0(t)'nin hesaplanması
x0=2*pi*D/(DB/2);
% interpolasyon için xs ve ys değerlerinin hesaplanması.
Histerisisin
% yükselen kenarında ys=k*pi-atan(a)+B; düşen kenarında ys değeri
% ys=k*pi-atan(a)-B'dir. ys değeri bir k periyodunda -B ile B
arasında
% değişmektedir.
B=acos(-1/C);
ys=-B:0.001:B;
xs=ys+C*sin(ys);
% xf değerini hesaplarken x0(t)'nin
% k*pi-atan(a)-B-C*sin(B)=<x0(t)=< k*pi-atan(a)+B+C*sin(B)</pre>
eşitliğini
% sağlayan k değerini hesaplayarak x0(t)-k*pi+atan(a) işlemi ile
% interpolasyon yapacağımız k=0 bölgesine çekeceğiz. Elde edeceğimiz
V
% değerini tekrar k*pi-atan(a) ile toplayıp xf(t) değeri elde
edilecektir.
k1=0;
x(10001) = 0;
for i=1:10000
    k=k1;
if x0(i+1)>=x0(i)
    for j=1:30
        if x0(i)>k*pi-atan(a)+B+C*sin(B)
            k=k+2:
        end
    end
    x(i) = x0(i) - k*pi + atan(a);
```

```
y(i)=interp1(xs,ys,x(i),'linear');
    xf(i) = y(i) + k*pi-atan(a);
    k1=k;
else
    k=k1;
    for j=30:-1:1
        if x0(i) < k*pi-atan(a) -B-C*sin(B)
            k=k-2;
        end
         x(i) = x0(i) - k*pi+atan(a);
    y(i)=interp1(xs,ys,x(i),'linear');
    xf(i) = y(i) + k*pi-atan(a);
    end
end
k1=k;
end
% Optik güç çıkışı
m = 0.1;
Pt=P0*(1+m*cos(xf));
%Pt=m*cos(xf);
t1=length(Pt);
subplot(2,1,1); plot(t,D)
title('Yer değişim Fonksiyonu D(t)');
ylabel('Dalga boyu/2 ');
xlabel('Örnek sayısı');
subplot(2, 1, 2);
title('Ölçülen Lazer Çıkış Fonksiyonu Pt(t)');
ylabel('Optik Çıkış Gücü (mW)');
xlabel('Örnek sayısı');
plot(t(1:t1),Pt)
format long
fid=fopen('o optikcikis.txt', 'wt+');
fprintf(fid, '%f\n', Pt);
fclose(fid);
fid1=fopen('g yerdegisim.txt', 'r');% verilerin kaydedildiği
dosyanın açılması
fprintf(fid1, '%f\n',D);%dosya iceriğinin P vektörüne aktarılması
fclose(fid1);%dosyanın kapatılması
end
```

Orta Şiddetli Geri Besleme Şartlarında Yaklaşık Modelleme

```
function []=OP Uretim(P0,DB,C,a,d1,d2,f)
clc
%C'nin birden büyük olduğu durumlar için Taylor açılımı ile
%OP sinyali üretimi
% Hedefin titreşim fonksiyonun tanımlanması
%zaman dizisinin üretilmesi
t=0:0.00001:0.5;
%İki frekanslı titreşim sinyali
%D=d1*sin(2*pi*f*t)+d2*sin(3*pi*f*t);
%Tek frekanslı titreşim sinyali
D=d1*sin(2*pi*f*t);
% "Geribesleme olmaksızın" x0(t)faz sinyalinin hesaplanması
x0=2*pi*D/(DB/2);
%k değerleri için sınırların tanımlanması
% interpolasyon için xs ve ys değerlerinin hesaplanması.
Histerisisin
% yükselen kenarında ys=k*pi-atan(a)+B; düşen kenarında ys değeri
% ys=k*pi-atan(a)-B'dir. ys değeri bir k periyodunda -B ile B
arasında
% değişmektedir.
B=acos(-1/C);
%"Geribesleme varken" xf(t) faz sinyalinin hesaplanması
% xf değerini hesaplarken x0(t)'nin
% k*pi-atan(a)-B-C*sin(B)=<x0(t)=< k*pi--atan(a)+B+C*sin(B)</pre>
eșitliğini
% sağlayan k değerini hesaplayarak x0(t)-k*pi+atan(a) işlemi ile
% interpolasyon yapacağımız k=0 bölgesine çekeceğiz. Elde edeceğimiz
У
% değerini tekrar k*pi-atan(a) ile toplayıp xf(t) değeri elde
edilecektir.
k=0;
x(10001)=0;
   for i=1:10000
        if x0(i+1)>=x0(i)
```
```
if x0(i) \ge (k*pi-atan(a)+B+C*sin(B))
            k=k+2;
            end
        else
            if x0(i) \le (k*pi-atan(a) - B - C*sin(B))
            k=k-2;
            end
        end
    %Taylor açılımı ile bulunan faz sinyali
    xf(i) = (x0(i) + C*(k*pi-atan(a))) / (1+C);
    end
%Modüleli lazer çıkışının hesaplanması
m = 0.1;
Pt=P0*(1+m*cos(xf));
%Gürültü ekleneceği zaman komutlar aktif hale getirilecek
%Beyaz gürültü eklenmesi
%Pt=awgn(Pt,40,'measured');
%Specle gürültüsünün eklenmesi
%Pt = imnoise(Pt1, 'speckle');
%Elde edilen verilerin çizdirilmesi
subplot(2,1,1);
plot(t(1:1000),D(1:1000))
title('Ölçülen Hedefin Hareket Fonksiyonu D(t)');
ylabel('Yerdeğişim Genliği(nm)');
xlabel('zaman (s)')
N=length(Pt);
t=t(1:N);
subplot(2,1,2)
plot(t(1:1000), Pt(1:1000))
title('Ölçülen Lazer Çıkış Fonksiyonu Pt(t)');
ylabel('Optik Çıkış Gücü (mW)');
xlabel('zaman (s)');
%Dosyaya verilerin yazılması
format long;
fid1=fopen('g_yerdegisim.txt', 'wt+');
```

```
fprintf(fid1, '%f\n', D);
```

```
fclose(fid1);
```

```
fid2=fopen('o_optikcikis.txt', 'wt+');
fprintf(fid2,'%f\n',Pt);
fclose(fid2);
```

end

EK-11

Dalgaboyu Modülasyonu

```
% Bu program, dalgaboyu modüle edilmiş bir lazer diyot kullanılarak
% self-mixing mesafe ölçümünün simülasyonudur.
function []=SM41(C,a)
% Hedefin sabit uzaklıkta olduğu ve lazer diode akımının üçgen
modülasyonlu
% olduğu durumda lazer frekansının üçgen modülasyonlu olacaktır.
% t zaman aralığı dört periyottur.
% x modüleli dalgaboyudur.
t=0:0.0001:2*pi;
length(t)
x=(1-0.5*sawtooth(t,0.5));
for i=1:62832
x0(i)=2*pi*20*x(i);
end
% Optik geribesleme olmaksızın faz farkının tanımlanması
%x0=2*pi*D;
% interpolasyonda kullanılacak -pi=<x0(t)=<pi ve -pi=<xf(t)=<pi</pre>
aralığında
% xs ve ys değerlerinin hesaplanması
ys=-pi:0.0001:pi;
xs=ys+C*sin(ys);
% (k-1)*pi-atan(a)=<x0(t)=<(k+1)*pi-atan(a) eşitliği kullanılarak</pre>
% x0(t) 'nin k.inci bölgede olduğunun hesaplanması
k=2*round((x0+atan(a))/(2*pi));
% x0(t) değerinin xs ve ys değerlerini hesapladığımız k=0 ıncı
periyottaki
% değerine çekilerek interpolasyon ile bu noktaya karşılık gelen
xf(t)
% değerinin hesaplanması
x=x0-(k*pi-atan(a));
y=interp1(xs,ys,x,'linear');
% k=0 da bulunan y değerini x0(t)'nin bulunduğu k ıncı bölgede
karşılığının
% hesaplanması
```

```
xf=y+k*pi-atan(a);
```

```
% Lazer çıkışının simüle edilmesi
%P0=1+sawtooth(t,0.5);
P0=sawtooth(t,0.5);
for i=1:62832
P(i)=P0(i)+0.02*cos(xf(i));
```

```
end
figure
plot(P)
xlabel('zaman ');
ylabel('Çıkış Gücü');
```

```
y=diff(P);
figure
plot(y);
xlabel('zaman ');
ylabel('Çıkış Gücünün Türevi ');
```

```
end
```

EK-12

Titreşim Sinyalinin Tekrar Yapılandırılması

```
function []=Tekrar Yapilandirma()
clc
format long;
%Dosyalardan verilerin okunması
% Optik besleme(OP) girişim sinyali verilerinin okunması
fid=fopen('o_optikcikis.txt', 'r');
Pt=fscanf(fid, '%f');
fclose(fid);
% Simülasyonla üretilen titreşim sinyalinin verilerinin okunması
fid1=fopen('g_yerdegisim.txt', 'r');
Yer=fscanf(fid1, '%f');
fclose(fid1);
%OP girişim sinyalinden DC seviyenin filtrelenmesi
OD=mean(Pt);
Pt=Pt-OD;
% OP Girişim sinyalinden gürültünün filtrelenmesi
%fcuts=[25 50 22000 22500];
%Pt=Filtreleme(fcuts,Pt);
%Filtrelenmiş OP girişim sinyalinin normalizasyonu
Pt pp1=max(-Pt);
Pt pp2=max(Pt);
if Pt pp1>=Pt pp2
    Pt pp=Pt pp1;
else
    Pt_pp=Pt_pp2;
end
Pt=(Pt/Pt pp);
% Faz sinyalinin eldesi
xf=acos(Pt);
% Faz sinyalinin süreksizlik noktalarının bulunması
xf diff=diff(xf);
N=length(xf diff);
% Darbe serisinin eldesi için türev işlemi
% ile elde edilen darbeler için eşik değerinin verilmesi
```

```
esik pb=0.9;%1.74
esik p=esik pb;
%Darbe algılama algoritması için alt fonksiyon çağrılması
Y xf=xf;
vek=transition(esik p,N,xf diff);
vek=hums(N, vek);
% Ayrık faz yapılandırma için alt fonksiyon çağrılması
K xf=phase unwrapping(vek,Y xf,N);
% Optimizasyon için alt fonksiyon çağrılması
C = 0.5;
teta=4;
D=NonLineerRGS(C,teta,-K xf);
%Optimizasyon ile tekrar yapılandırılma işlemi tamamlanan titreşim
%sinyalinden yüksek frekanslı bileşenlerin filtrelenmesi
fcuts=[5 10 4500 4700];
F D=Filtreleme(fcuts,D);
[X3,F,N]=Frekans Analiz(F D);
% Ayrık Faz yapılandırma safhasına kadar her bir safhanın sonucunun
% çizdirilmesi
gosterim1(Yer,Pt,xf diff,vek,K xf);
gosterim2(K xf,F D,X3,F,N);
%Tekrar yapılandırılmış titreşim sinyalinin verilerinin kaydedilmesi
dosya(F D);
end
% Darbe algılama algoritması alt fonksiyonu
%Geçiş noktalarının tespiti
function [vek]=transition (esik_p,N,xf_diff)
    [p_pks,p_locs]=findpeaks(xf_diff,'minpeakheight',esik_p);
    [n pks,n locs]=findpeaks(-xf diff, 'minpeakheight', esik p);
    vek=zeros(1,N);
    pos N=length(p locs);
```

```
for i=1:pos N
        vek(p_locs(i))=1;
    end
    neg_N=length(n_locs);
    for i=1:neg N
        vek(n locs(i))=-1;
    end
end
% Darbe serisinin üretimesi için alt fonksiyon
function [vek]=hums(N,vek)
    hums=zeros(1,N);
    k1=0;
    k2=0;
    mem1=0;
    mem2=0;
    for j=1:N
        if (vek(j)==-1 && mem1==0) || mem1==1
            k1=k1+1;
            mem1=1;
            if vek(j) = -1
                 k1=0;
            end
            if vek(j) == 1
                hums(j) = k1;
                 k1=0;
                 mem1=0;
            end
        end
        if (vek(j)==1 && mem2==0) || mem2==1
             k2=k2+1;
              mem2=1;
              if vek(j)==1
                 k2=0;
             end
             if vek(j) = -1
                 hums(j) = k2;
                 k2=0;
                 mem2=0;
            end
        end
    end
```

deger max=(1/15) *max(hums);

```
for l=1:N
    if hums(l)>=deger_max
        n=hums(l);
        if vek(1) == 1
            hums(l)=1;
             hums (1-(n)) = -1;
             n=0;
        end
        if vek(1) ==-1
             hums(1) = -1;
             hums(1-(n))=1;
        end
    else hums(1) = 0;
    end
end
mem3=0;
k1=0;
k2=0;
mem4=0;
mem5=1;
for p=1:N
    if (hums(p)==1&&mem3==0) || mem3==1|| (hums(p)==1&&mem3==1)
        k1=k1+1;
        if (hums(p)==0&&mem3==1&&p==(N-1))
             for m=p:-1:p-k1
                 if vek(m) = -1
                     vek(m)=0;
                 end
             end
             k1=0;
       elseif (hums(p) == 1&&mem3==1)
            for m=p:-1:p-k1
                if vek(m) = -1
                 vek(m)=0;
                end
            end
            mem3=0;
```

```
96
```

```
mem5=0;
                k1=0;
             elseif hums(p) == -1 && mem3 == 1 && mem5 == 1
                     for m=p-k1:-1:1
                         if vek(m) == -1
                         vek(m)=0;
                         end
                     end
                     k1=0;
                     mem5=0;
                     mem3=0;
                     mem4=0;
             elseif hums(p) == -1&& mem3 == 1&&mem5 == 0
                     for m=p:-1:p-k1
                     vek(m) = 0;
                     end
                     mem3=0;
                     mem4=0;
                     k1=0;
             else
                    mem3=1;
             end
        end
        if (hums(p)==-1&&mem4==0) || mem4==1|| (hums(p)==-
1&&mem4==1)
             k2=k2+1;
             if (hums(p) == 0&&p==(N-1) &&mem4==1)
                 for m=p:-1:p-k2
                      if vek(m) == 1
                          vek(m)=0;
                      end
                 end
                 k2=0;
             elseif (hums(p) == -1&&mem4==1)
                 for m=p:-1:p-k2
                     if vek(m) == 1
                         vek(m) = 0;
                     end
```

```
end
                 mem4=0;
                 mem5=0;
                 k2=0;
            elseif hums(p) == 1&& mem4 == 1&&mem5 == 1
                    for m=p-k2:-1:1
                         if vek(m) == 1
                        vek(m)=0;
                         end
                    end
                   k2=0;
                   mem5=0;
                   mem4=0;
           elseif hums(p) == 1&& mem4 == 1&&mem5 == 0
                     for m=p:-1:p-k2
                          vek(m)=0;
                     end
                     mem4=0;
                     k2=0;
            else
                 mem4=1;
             end
        end
    end
% Ayrık faz yapılandırma için alt fonksiyon
function [Y xf]=phase unwrapping(vek,Y xf,N)
    k=0;
    for i=1:N
    if vek(i) ==1
    k=k-(2*pi);
    end
    if vek(i) == -1
    k=k+(2*pi);
    end
    Y_xf(i+1)=k+Y_xf(i+1);
    end
```

```
%FFT analizi için alt fonksiyon
```

end

end

```
function [X3,F,N]=Frekans Analiz(Y xf)
     N1=length(Y xf);
     N= 2^{nextpow2}(N1);
     w =blackman(N, 'periodic');
     Y xf(N1:N)=0;
     X=Y xf.*w;
     X1=fft(X,N);
     X2=fftshift(X1);
     X3=abs(X2);
     dt=1/100000;
     fmax=1/dt;
                   df=1/(N*dt);
     for k=1:N
          F(k) = -fmax/2+k*df;
     end
end
% Filtreleme için alt fonksiyon
function [Veri]=Filtreleme(fcuts,Veri)
    % Speckle gürültüsü için filtreleme
    Veri=medfilt1(Veri,2);
    %Band geçiş filtresi
    fsamp=100000;
   mags = [0 \ 1 \ 0];
    devs = [0.01 \ 0.05 \ 0.01];
    [n,Wn,beta,ftype] = kaiserord(fcuts,mags,devs,fsamp);
   n=1200;
   b = fir1(n, Wn, ftype, kaiser(n+1, beta), 'scale');
    Veri= filtfilt(b,1,Veri);
end
% Optimizasyon icin alt fonksiyon
function [D1]=NonLineerRGS(C,teta,K xf)
    DB=810;
    [x]=fminsearch(@fSSR,[C,teta],[],K xf);
    C=x(1)
    teta=x(2)
    xf=K xf;
    x0=xf+C*sin(xf+teta);
    D1=x0*DB/(4*pi);
```

```
end
```

```
%Verilerin yazılması
function dosya(F D)
     format long;
     fid1=fopen('O Disp.txt', 'wt+');
     fprintf(fid1, '%f\n', F D);
     fclose(fid1);
end
% Elde edilen verilerin çizilmesi
function gosterim1(Yer,Pt,xf diff,vek,K xf)
 subplot(5,1,1)
    plot(Yer(1:3000), 'b')
     %title();
     ylabel('D(n) (nm)');
    xlabel('Örnek Sayısı (a)');
     subplot(5,1,2)
     plot(Pt(1:3000), 'r')
     %title('Normalize Lazer Çıkış Sinyali');
     ylabel('P(n) (mW)');
     xlabel('Örnek Sayısı
                           (b)');
     subplot(5,1,3)
     plot(xf diff(1:3000), 'black')
     %title('Ayrık Yapılandırılmış Faz Sinyali');
     ylabel('xF diff (radyan/s)');
     xlabel('Örnek Sayısı (c)');
     subplot(5,1,4)
    plot(vek(1:3000), 'q')
     %title('Sürekli Yapılandırılmış Yerdeğişim Sinyali');
     ylabel('genlik (au)');
    xlabel('Örnek Sayısı
                           (d)');
     subplot(5,1,5)
     plot(K xf(1:3000), 'black')
     %title('Ayrık Yapılandırılmış Faz Sinyali');
     ylabel(' (radyan)');
     xlabel('Örnek Sayısı
                           (e)');
 end
  function gosterim2(K_xf,F_D,X3,F,N)
```

figure

```
subplot(3,1,1)
plot(K_xf(1:3000),'black')
%title('Ayrık Yapılandırılmış Faz Sinyali');
ylabel('K_xF(n)(radyan)');
xlabel('Örnek Sayısı (a)');
```

```
subplot(3,1,2)
plot(-F_D(1:3000),'g')
%title('H_D(n) Sinyali');
ylabel('H_D(nm)');
xlabel('Örnek Sayısı (b)');
subplot(3,1,3)
plot(F(N/2:N),X3(N/2:N));
%title('Yerdeğişim Sinyalinin FFT Analizi')
xlabel('Frekans [Hz] (c)'); ylabel('Genlik (au)')
```

end

EK-13

Fark Sinyalinin Hesaplanması

```
function Fark()
clc
format long;
%Dosyadan verilerin okunması
%Simülasyon ile üretilen titreşim sinyalinin verileri
fid=fopen('g yerdegisim.txt', 'r');% verilerin kaydedildiği dosyanın
acılması
gercek=fscanf(fid,'%f');%dosya içeriğinin P vektörüne aktarılması
fclose(fid);%dosyanın kapatılması
%Tekrar yapılandırılan titreşim sinyalinin verileri
fid1=fopen('0_Disp.txt', 'r');% verilerin kaydedildiği dosyanın
açılması
yaklasik=fscanf(fid1,'%f');%dosya içeriğinin P vektörüne aktarılması
fclose(fid1);%dosyanın kapatılması
%Çizdirilecek verilerin seçilmesi
gercek=gercek(1:3000);
yaklasik=yaklasik(1:3000);
%İki titreşim sinyali arasındaki fark verilerinin elde edilmesi
fark=gercek-yaklasik;
%Sonuçların çizdirilmesi
%İki titreşim sinyalinin üst üste çizdirilmesi
subplot(2,1,1)
plot(gercek)
hold on
plot(yaklasik, '-.')
xlabel('ornek sayısı')
ylabel('D(n) \& H D(n) (nm)')
%Elde edilen Fark sinyalinin çizdirilmesi
subplot(2,1,2)
plot(fark)
xlabel('ornek sayısı')
ylabel('F_D(n)(nm)')
```

```
end
```