

T.C. KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

FARKLI ANİZOTROPİK SAÇILMALARIN FARKLI YÖNTEMLERLE NÖTRON TRANSPORT TEORİSİNE UYGULAMALARI

ALİ ZAFER BOZKIR FİZİK ANABİLİM DALI

DOKTORA TEZİ

DANIŞMAN Prof. Dr. Recep Gökhan TÜRECİ

KIRIKKALE-2023

Ali Zafer BOZKIR tarafından hazırlanan "FARKLI ANİZOTROPİK SAÇILMALA-RIN FARKLI YÖNTEMLERLE NÖTRON TRANSPORT TEORİSİNE UYGULA-MALARI" adlı tez çalışması aşağıdaki jüri tarafından OY BİRLİĞİ / OY ÇOKLUĞU ile Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalında DOKTORA TEZİ olarak kabul edilmiştir.

Danışman: Prof. Dr. Recep Gökhan TÜRECİ	İmzo			
Fizik Anabilim Dalı, Kırıkkale Üniversitesi				
Bu tezin, kapsam ve kalite olarak Doktora Tezi olduğunu onaylıyorum/onay	lamıyorum			
Başkan: Prof. Dr. İlkay TÜRK ÇAKIR İmza Fizik Anabilim Dalı, Ankara Üniversitesi Bu tezin, kapsam ve kalite olarak Doktora Tezi olduğunu onaylıyorum/onaylamıyorum				
Üye: Prof. Dr. Abdullah AYDIN İmza Fizik Anabilim Dalı, Kırıkkale Üniversitesi Bu tezin, kapsam ve kalite olarak Doktora Tezi olduğunu onaylıyorum/onaylamıyorum				
Üye: Prof. Dr. İsmail Hakkı SARPÜN İmza Fizik Anabilim Dalı, Akdeniz Üniversitesi Bu tezin, kapsam ve kalite olarak Doktora Tezi olduğunu onaylıyorum/onaylamıyorum				
Üye: Doç. Dr. Onur KARAMAN İmza Fizik Anabilim Dalı, Akdeniz Üniversitesi Bu tezin, kapsam ve kalite olarak Doktora Tezi olduğunu onaylıyorum/onaylamıyorum				

Tez Savunma Tarihi: 09/06/2023

Jüri tarafından kabul edilen bu tezin Doktora Tezi olması için gerekli şartları yerine getirdiğini onaylıyorum.

Prof. Dr. Recep ÇALIN Fen Bilimleri Enstitüsü Müdürü

.....

ETİK BEYANI

Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü Tez Yazım Kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- Tez içinde sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar çerçevesinde elde ettiğimi,
- Tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak kurallarına uygun olarak sunduğumu,
- Tez çalışmasında yararlandığım eserlerin tümüne uygun atıfta bulunarak kaynak gösterdiğimi,
- Kullanılan verilerde herhangi bir değişiklik yapmadığımı,
- Bu tezde sunduğum çalışmanın özgün olduğunu,

bildirir, aksi bir durumda aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi beyan ederim.

Ali Zafer BOZKIR 09/06/2023

ÖZET

FARKLI ANİZOTROPİK SAÇILMALARIN FARKLI YÖNTEMLERLE NÖTRON TRANSPORT TEORİSİNE UYGULAMALARI

Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı, Doktora Tezi Danışman: Prof. Dr. Recep Gökhan TÜRECİ Haziran 2023, 111 sayfa

Bu tez çalışmasında yeni geliştirilen SVD yöntemi, saçılma fonksiyonunun Legendre açılımı ve Anlı-Güngör saçılma fonksiyonu için incelendi ve bu yöntem albedo problemine uygulandı. Sonuçların hem saçılma fonksiyonları açısından fiziksel anlamları hem de literatürde yer alan ve başarısı kanıtlanmış H_N ve F_N yöntemleri ile karşılaştırılması için, SVD yönteminin yarı-uzay albedo ve kiritiklik problemlerine ayrı ayrı uygulamaları yapıldı. Farklı saçılma durumları göz önüne alınarak bu kıyaslamanın geniş bir perspektifte olması sağlandı. Elde edilen sonuçlar çizelge ve grafik gösterim şeklinde sunularak sonuçların karşılaştırılması sağlandı. Elde edilen sonuçlara göre nümerik bir yöntem olan SVD yöntemi, yüksek yaklaşım sayısında H_N ve F_N yöntemleri gibi başarılı sonuçlar verdi. Fakat SVD yöntemindeki yüksek yaklaşım sayısı, yüksek mertebeden matrislerle çalışmayı gerektirdiğinden hesaplama süresinin uzamasına neden oldu. Ancak buna karşın SVD yöntemi nümerik bir yöntem olduğundan daha kısa cebirsel işlem gerektiren hesaplama özelliğine sahiptir.

Anahtar Kelimeler: Nötron transport denklemi, yarı-uzay albedo problemi, F_N yöntemi, H_N yöntemi, SVD yöntemi, lineer-triplet anizotropik saçılma, Anlı-Güngör saçılma fonksiyonu, yansıtıcılı kritiklik problemi

ABSTRACT

THE APPLICATIONS OF DIFFERENT ANISOTROPIC SCATTERINGS WITH DIFFERENT METHODS TO THE NEUTRON TRANSPORT THEORY

Kırıkkale University Graduate School of Natural and Applied Sciences Department of Physics, Ph. D. Thesis Supervisor: Prof. Dr. Recep Gökhan TÜRECİ June 2023, 111 pages

In this thesis, the newly developed SVD method was examined for the Legendre expansion of scattering function and the Anlı-Güngör scattering function and this method was applied to the albedo problem. In order to compare the results with both the physical meanings of the scattering functions and the proven successful H_N and F_N methods in the literature, the SVD method was applied separately to the half-space albedo and criticality problems. Considering the different scattering situations, this comparison was made to be in a broad perspective. The obtained results were presented in the form of tables and graphics, and the results were compared. According to the obtained results, in the high number of approximations the SVD methods. However, the high number of approximations in the SVD method caused the computation time to be prolonged as it required working with higher order matrices. However, since the SVD method is a numerical method, it has a feature that requires shorter algebraic operations.

Key Words: Neutron transport equation, half-space albedo problem, F_N method, H_N method, SVD method, linear-triplet anisotropic scattering, Anlı-Güngör scattering function, reflected criticality problem

TEŞEKKÜR

Bu çalışmanın gerçekleştirilmesinde, değerli bilgilerini benimle paylaşan, her türlü desteği ve kolaylığı sağlayan saygıdeğer danışman hocam Sayın Prof. Dr. Recep Gökhan TÜRECİ'ye,

Bu tezdeki makalelerin ortaya çıkmasında çok önemli rol oynayan TÜBİTAK 2221 Programı (Konuk Bilim İnsanı Destekleme Programı) ile bana çok büyük destek olan TÜBİTAK'a,

TÜBİTAK 2221 Programının uygulanması zamanında ve sonrasında bilgi ve tecrübesini benimle paylaşan değerli hocam Sayın Prof. Dr. Dinesh Chandra SAHNI'ye,

Doktora tezim süresince TİK üyeleri olarak görev yapan ve bilimsel konularda daha fazla ilerlemeye beni teşvik eden kıymetli hocalarım Sayın Prof. Dr. Abdullah AYDIN ve Sayın Prof. Dr. İsmail Hakkı SARPÜN'e,

Nükleer fizik derslerinden çok faydalandığım kıymetli hocam Sayın Prof. Dr. Mahmut BÖYÜKATA'ya,

Doktora eğitimim süresince bana birçok yönden destek olan değerli arkadaşım Sayın Doç. Dr. Salih ÖKTEN'e,

Doktora eğitimim esnasında iki farklı lisede öğretmenlik görevimi yaptım. Dolayısıyla bu tez sürecinde bana her türlü kolaylığı sağlayan okul müdürlerim Murat TERLEMEZ ve Selami BOLAT'a,

Her zaman maddi ve manevi olarak beni destekleyen ve benim için kolaylıklar sağlayan eşime ve aileme teşekkürlerimi sunarım.

Ali Zafer BOZKIR Haziran 2023

İÇİNDEKİLER DİZİNİ

Sayfa

ÖZH	ET		iii
ABSTRACT			
TEŞ	SEKKÜI	8	v
İÇİN	NDEKİL	ER DİZİNİ	vi
ÇİZ	ELGEL	ER DİZİNİ	/iii
ŞEK	KİLLER	DİZİNİ	х
SİM	IGELER	DIZINI	xi
1.	GİRİŞ		1
	1.1.	Nötron Transport Denklemi	1
	1.2.	Nötron Transport Denkleminin Türetilmesi	6
	1.3.	Tek Hızlı Yaklaşım	8
	1.4.	Zamandan Bağımsız Yaklaşım	10
	1.5.	Homojen Uzay Yaklaşımı	10
	1.6.	Düzlem Geometri Yaklaşımı	11
	1.7.	Saçılma Fonksiyonunun Legendre Açılımı	13
	1.8.	Anlı-Güngör Saçılma Fonksiyonu	14
2.	CASE	YÖNTEMİYLE TRANSPORT DENKLEMİNİN ÇÖZÜMÜ	16
	2.1.	İzotropik Saçılma için Case Özfonksiyonları	16
	2.2.	Saçılmanın Legendre Açılımının Case Yöntemine Uygulanması	21
		2.2.1. Saf Triplet Saçılma için Case Özfonksiyonları	23
		2.2.2. Lineer-Triplet Saçılma için Case Özfonksiyonları .	25
	2.3.	Anlı-Güngör Saçılmasının Case Yöntemine Uygulanması	26
		2.3.1. Anlı-Güngör Saçılması için Case Özfonksiyonları .	27
3.	F _N YĊ	ÖNTEMİ için YARI UZAY ALBEDO PROBLEMİ	29
	3.1.	İzotropik Saçılma için F_N Yöntemi	29
	3.2.	Saf Triplet Saçılma için F_N Yöntemi	32
	3.3.	Anlı-Güngör Saçılma Fonksiyonu için F_N Yöntemi	33
4.	H _N Y	ÖNTEMİ için YARI UZAY ALBEDO PROBLEMİ	35
	4.1.	İzotropik Saçılma için H_N Yöntemi	35

	4.2.	Saf Triplet Saçılma için H _N Yöntemi		
	4.3.	Lineer-Triplet Saçılma için H_N Yöntemi		
5.	SVD Y	VD YÖNTEMİ için YARI UZAY ALBEDO PROBLEMİ 4		
	5.1.	İzotropik	x Saçılma için SVD Yöntemi	40
		5.1.1.	Midpoint (Ortanokta) Yaklaşımı	40
		5.1.2.	Lineer Yaklaşım	43
	5.2. Saf Triplet Saçılma için SVD Yöntemi			46
		5.2.1.	Midpoint (Ortanokta) Yaklaşımı	48
		5.2.2.	Lineer Yaklaşım	50
	5.3.	Lineer-T	riplet Saçılma için SVD Yöntemi	55
		5.3.1.	Lineer Yaklaşım	55
	5.4.	Anlı-Gü	ngör Saçılma Fonksiyonu için SVD Yöntemi	58
		5.4.1.	Lineer Yaklaşım	59
6.	SVD Y Şartı	(ÖNTEM) LARI için	İYLE İZOTROPİK SAÇILMA ve YANSITICI SINIR KRİTİK SLAB KALINLIĞI	64
	6.1. Midpoint (Ortanokta) Yaklaşımı			66
	6.2.	Lineer Y	aklaşım	68
6.3. Kritik Kalınlık Değerlerinin Ortalama Serbest Yol (mfp) Biri- minden cm'ye Dönüştürülmesi				71
7.	7. SONUÇLAR ve TARTIŞMA			74
KAYNAKLAR				76
EKLER				79
	EK-1.	Küresel H	Harmoniklerin Toplama Kuralına Uygulanması	79
	ЕК-2.	Sürekli D	ağılım Fonksiyonunun Belirlenmesi	81
EK–3. Akım İfadesi Kullanılarak Albedonun Belirlenmesi 83				83
EK–4. Uç Noktalara Yakın Tekil İntegral Denklemin Çözümü 84				84
EK–5. SVD Yönteminin Geliştirilmesi				85
EK–6. Saf Triplet Anizotropik Saçılma için Sayısal Sonuçlar 8				86
	EK-7.	Lineer-Tr	iplet Anizotropik Saçılma için Sayısal Sonuçlar	88
	EK-8.	Anlı-Gün	gör Saçılma Fonksiyonu için Sayısal Sonuçlar	96
EK–9. Kritik Slab Kalınlığı için Sayısal Sonuçlar				99
ÖZ	GEÇMİŞ	.		110

ÇİZELGELER DİZİNİ

ÇİZELGE

Sayfa

2.1. İzotropik saçılmada kesikli özdeğerler	20
5.1. $c = 0.8$ ve değişen f_3 için albedo değerleri	54
5.2. Farklı $7f_3$ değerleri için $3f_1$ aralığı	56
5.3. $0.7 \le c \le 0.9$ ve $-1 \le t \le 1$ için kesikli özdeğerler	62
5.4. $F_N N = 11$ ve SVD $N = 10.000$ için albedo β değerleri	62
6.1. U ve Pu için makroskopik tesir kesiti değerleri (0,0253 eV)	73
E6.1. Değişen c ve f_3 için kesikli özdeğerler	86
E6.2. $c = 0,5$ ve değişen f_3 için albedo değerleri	86
E6.3. $c = 0,7$ ve değişen f_3 için albedo değerleri	86
E6.4. $c = 0.9$ ve değişen f_3 için albedo değerleri	87
E7.1. Değişen c , $7f_3$ ve $3f_1$ için kesikli özdeğerler	88
E7.2. $c = 0,7$ 'de değişen $7f_3$ ve $3f_1$ için albedo değerleri	89
E7.3. $c = 0,8$ 'de değişen $7f_3$ ve $3f_1$ için albedo değerleri	90
E7.4. $c = 0.9$ 'da değişen $7f_3$ ve $3f_1$ için albedo değerleri	91
E7.5. $c = 0.99$ 'da değişen $7f_3$ ve $3f_1$ için albedo değerleri	92
E7.6. $c = 0,999$ 'da değişen $7f_3$ ve $3f_1$ için albedo değerleri	93
E7.7. $c = 0,9999$ 'da değişen $7f_3$ ve $3f_1$ için albedo değerleri	94
E7.8. $c = 0.8$ ve $c = 0.999$ için H _N ve SVD yöntemleriyle elde edilen çıkış dağılımları	95
E8.1. 0,7 $\leq c \leq$ 0,9 ve $-1,0 \leq t \leq -0,2$ için SVD yöntemi ile albedo değerleri	96
E8.2. 0,7 $\leq c \leq$ 0,9 ve 0,2 $\leq t \leq$ 1,0 için SVD yöntemi ile albedo değerleri	96
E8.3. 0,7 $\leq c \leq$ 0,9 ve $-1,0 \leq t \leq -0,2$ için F _N yöntemi ile albedo değerleri	97
E8.4. 0,7 $\leq c \leq$ 0,9 ve 0,2 $\leq t \leq$ 1,0 için F_{N} yöntemi ile albedo değerleri $% c \leq c \leq$ 0,9 ve 0,2 $\leq t \leq$ 1,0 için F_{N} yöntemi ile albedo değerleri $c \leq c \leq$	98
E9.1. <i>mfp</i> (2b) ve <i>cm</i> (d) cinsinden SVD Midpoint yaklaşımı için birincil kritik kalınlık değerleri	99
E9.2. $mfp(2b)$ ve $cm(d)$ cinsinden SVD Lineer yaklaşımı için birincil kritik kalınlık değerleri	100
E9.3. $mfp(2b)$ ve $cm(d)$ cinsinden H_N yöntemi için birincil kritik kalınlık değerleri	101

E9.4. <i>mfp</i> (2b) ve cm (d) cinsinden SVD Midpoint yaklaşımı için ikincil kritik kalınlık değerleri	102
E9.5. $mfp(2b)$ ve $cm(d)$ cinsinden SVD Lineer yaklaşımı için ikincil kritik kalınlık değerleri	103
E9.6. $mfp(2b)$ ve $cm(d)$ cinsinden H_N yöntemi için ikincil kritik kalınlık değerleri	104
E9.7. <i>mfp</i> (2b) ve cm (d) cinsinden SVD Midpoint yaklaşımı için üçüncül kritik kalınlık değerleri	105
E9.8. $mfp(2b)$ ve $cm(d)$ cinsinden SVD Lineer yaklaşımı için üçüncül kritik kalınlık değerleri	106
E9.9. $mfp(2b)$ ve $cm(d)$ cinsinden H_N yöntemi için üçüncül kritik kalınlık değerleri	107

ŞEKİLLER DİZİNİ

ŞEKİL

1.1. a. va	• Polar açısı θ ve azimut açısı ϕ b. Nötronların içinden geçtiği arsayılan, boyu $v dt$ ve taban alanı dS olan silindir	2
1.2. a. si	• Yarısı gaz ile doldurulmuş kap b. Ortam içerisindeki hedef çekirdeklerin imetrik dağılımı	11
2.1. İz üz	zotropik saçılmada $c < 1$ değerleri için kesikli özdeğerlerin grafik zerinde gösterimi	19
2.2. İz üz	zotropik saçılmada $c > 1$ değerleri için kesikli özdeğerlerin grafik zerinde gösterimi	19
5.1. M	Aidpoint yaklaşımı için eşit uzunluklu ağ noktalarının gösterimi	41
5.2. c	= 0,8 ve N = 10 için H _N yöntemiyle β ile f_3 karşılaştırması	54
5.3. D	Değişen c ve $N=11$ için F_{N} yöntemiyle albedo eta ile t karşılaştırması	63
5.4. İn ka	nönü saçılma fonksiyonu için albedo β ile d (geri kaçaklı) ve b (ileri açaklı) karşılaştırması	63
E2.1. μ	$\nu = \nu$ durumunun bir doğru parçası üzerinde gösterilmesi	81
E6.1. N b. ka	$V = 10$ için H _N yöntemiyle a. $c = 0,5$ için β ile f_3 karşılaştırması . $c = 0,7$ için β ile f_3 karşılaştırması c. $c = 0,9$ için β ile f_3 arşılaştırması d. $f_3 = 0,14$ için β ile c karşılaştırması	87
E9.1. <i>N</i> in ka 2 <i>l</i> ka f .	$N = 1000$ SVD Midpoint yaklaşımıyla a. $c_U = 1,1750$ için bir- ncil kalınlık 2b ile R karşılaştırması b. $c_U = 1,1750$ için birincil alınlık d ile R karşılaştırması c. $c_{Pu} = 2,1934$ için birincil kalınlık b ile R karşılaştırması d. $c_{Pu} = 2,1934$ için birincil kalınlık d ile R arşılaştırması e. $c_U = 1,1750$ için ikincil kalınlık 2b ile R karşılaştırması c $c_U = 1,1750$ için ikincil kalınlık d ile R karşılaştırması	08
E9.2. <i>N</i> in ka 2 <i>l</i> <i>R</i> ka	$V = 1000$ SVD Midpoint yaklaşımıyla a. $c_{Pu} = 2,1934$ için ik- ncil kalınlık 2b ile R karşılaştırması b. $c_{Pu} = 2,1934$ için ikincil alınlık d ile R karşılaştırması c. $c_U = 1,1750$ için üçüncül kalınlık b ile R karşılaştırması d. $c_U = 1,1750$ için üçüncül kalınlık d ile R karşılaştırması e. $c_{Pu} = 2,1934$ için üçüncül kalınlık 2b ile R arşılaştırması f. $c_{Pu} = 2,1934$ için üçüncül kalınlık d ile R karşılaştırması	109

SİMGELER DİZİNİ

$a_\ell, \ell=0,1,,N$	Kuvvet serisi açılımının katsayıları	
$a_{0\pm} \equiv A(\pm\nu_0), A(\nu)$	Genel çözümde kullanılan keyfi açılım katsayıları	
$A_n(\nu_0), A_n(\nu)$	F_N ve H_N yöntemleri için ara fonksiyonlar	
b	Ortalama serbest yol biriminde kritik kalınlığın yarısı	
B(u')	SVD yönteminde kullanılan $A(\nu')$ 'ye bağlı açılım katsayısı	
B_1, B_2, B_3, B_4	$A(\nu')$ çözümü ile ilgili sabitler	
b_1, b_2, b_3, b_4	B_1, B_2, B_3, B_4 sabitlerinin çözümü ile ilgili vektörler	
$B_n(\nu_0), B_n(\nu)$	F_{N} ve H_{N} yöntemleri için ara fonksiyonlar	
β	Albedo; SVD yönteminde kullanılan bir parametre	
с	Tek hızlı yaklaşımda ikincil nötron sayısı	
$c(ec{r},ec{v})$	İkincil nötron sayısı	
d	cm biriminde kritik kalınlık	
$\delta_{i,j}$	Kronecker delta fonksiyonu	
δ_j	SVD Midpoint yaklaşımında alt aralık uzunluğunun yarısı	
$\delta(u - \mu)$	Dirac delta sembolü	
e	Doğal logaritma tabanı	
$f_\ell, \ell=0,1,,L$	Saçılma katsayıları	
f_0	İzotropik saçılma katsayısı	
f_1	Lineer anizotropik saçılma katsayısı	
f_2	Kuadratik anizotropik saçılma katsayısı	
f_3	Triplet anizotropik saçılma katsayısı	
f_0,f_1,f_2	Singüler integral denklem için kullanılan ara terimler	
$f(\widehat{\Omega}'\cdot\widehat{\Omega},\vec{r,v})$	Saçılma olasılığını tanımlayan saçılma fonksiyonu	
$f(\mu,\mu')$	Düzlem geometride saçılma fonksiyonu	
$\mathbf{g_k}, \mathbf{k}=1,2,,6$	Singüler integral denklem için kullanılan ara terimler	
g(u')	Singüler integral denklem için kullanılan ara fonksiyon	
$h(u_0)$	Singüler integral denklem için kullanılan ara fonksiyon	
$\mathbf{H} = H_{i,j}$	Singüler integral denklem için kullanılan kare matris	
J	Albedo için sonuçları veren akım ifadesi	
$K(\xi)$	F_N yöntemi için ara fonksiyonlar	
$\ell(ec{r},ec{v})$	Ortalama serbest yol	
$L_n(\xi)$	H_N yöntemi için ara fonksiyonlar	
$\lambda(u)$	Sürekli özdeğerlerin dağılım fonksiyonu	
$\Lambda(u_0)$	Kesikli özdeğerlerin dağılım fonksiyonu	

$M_n(\xi)$	F_N yöntemi için ara fonksiyonlar
$M(\nu,\mu), G(\nu,\mu)$	Case özfonksiyonlarının genel tanımında kullanılan terimler
$\mu = \cos \theta$	Düzlem geometride gelen nötronların ilerleme doğrultusu
$\mu' = \cos \theta'$	Düzlem geometride saçılan nötronların ilerleme doğrultusu
N(u)	Sürekli özdeğerlerin diklik tanımına ait fonksiyon
$N(u_0)$	Kesikli özdeğerlerin diklik tanımına ait fonksiyon
ν	Sürekli özdeğer; fisyon başına üretilen nötron sayısı
$ u_0$	Kesikli özdeğer
ξ	$ u_0$ veya $ u \in [0,1]$
p_1, p_2	Singüler integral denklem için kullanılan ara terimler
Р	Cauchy prensip değer sembolü
$P_\ell(\widehat{\Omega}'\cdot\widehat{\Omega})$	Legendre polinomu
$Q(x,\mu)$	Düzlem geometride x konumunda bulunan kaynak terimi
$r = \vec{r} $	Üç boyutlu uzayda konum değişkeni
R	Kritik salbın yüzeyleri için yansıma katsayısı
$\sigma(\vec{r},\vec{v})$	Makroskobik tesir kesiti
$\sigma_{ m t}$	Makroskobik toplam tesir kesiti
$\sigma_{ m at}$	Makroskobik toplam yakalama tesir kesiti
$\sigma_{ m st}$	Makroskobik toplam saçılma tesir kesiti
σ_{a}	Makroskobik ışımalı yakalama tesir kesiti
$\sigma_{ m f}$	Makroskobik fisyon tesir kesiti
$\sigma_{ m s}$	Makroskobik elastik saçılma tesir kesiti
$\sigma_{ m in}$	Makroskobik elastik olmayan saçılma tesir kesiti
$\Sigma(ec{r},ec{v})$	Mikroskobik tesir kesiti
$\Sigma^i_{ m t}$	Mikroskobik toplam tesir kesiti (i cinsinden çekirdek için)
Σ_{a}^{i}	Mikroskobik ışımalı yakalama tesir kesiti
$\Sigma^i_{ m f}$	Mikroskobik fisyon tesir kesiti
$\Sigma^i_{ m s}$	Mikroskobik elastik saçılma tesir kesiti
$\Sigma_{ m in}^i$	Mikroskobik elastik olmayan saçılma tesir kesiti
t	Zaman değişkeni; saçılma parametresi
u(u)	Singüler integral denklem için kullanılan ara terim
U	SVD yönteminde kullanılan ortogonal matris
$\mathbf{U}^{\mathbf{T}}$	U matrisinin transpozu
$v = \vec{v} $	Nötron hızının büyüklüğü
V	SVD yönteminde kullanılan ortogonal matris
$\mathbf{V}^{\mathbf{T}}$	V matrisinin transpozu
W	SVD yönteminde kullanılan diyagonal matris

$\mathbf{W}_{N,N}$	Diyagonal matrisin son elemanı		
x	Ortalama serbest yol biriminde tanımlı konum değişkeni		
$\mathbf{x} = x_i = A(\nu_i)$	$A(\nu'),\nu'\in[0,1]$ fonksiyonu için çözüm vektörü		
$y_k, k = 1, 2,, 6$	$\mathbf{g}_{\mathbf{k}}$ terimlerinin bireysel çözümleri		
z	metre biriminde tanımlı konum değişkeni		
$\phi_\ell(u), h_\ell(u)$	Nötron akısının Legendre polinomları cinsinden momenti		
$\phi(u,\mu),\phi_ u(\mu)$	Sürekli Case özfonksiyonu		
$\phi(\pm\nu_0,\mu),\phi_{0\pm}(\mu)$	Kesikli Case özfonksiyonları		
$\Psi(b,\mu)$	x = b yüzeyinden çıkan akı		
$\Psi(b,-\mu)$	x = b yüzeyinden giren akı		
$\Psi(-b,-\mu)$	x = -b yüzeyinden çıkan akı		
$\Psi(-b,\mu)$	x = -b yüzeyinden giren akı		
$\Psi(0,\mu)$	x = 0 yüzeyinden giren akı		
$\Psi(0,-\mu)$	x = 0 yüzeyinden çıkan akı		
$\Psi(\vec{r},\vec{v},t)$	Nötronların açısal yoğunluğu		
$\widehat{\Omega} = \vec{v}/v$	Üç boyutlu uzayda gelen nötronların ilerleme doğrultusu		
$\widehat{\Omega}'$	Üç boyutlu uzayda saçılan nötronların ilerleme doğrultusu		
$\vec{\nabla}$	Üç boyutlu uzayda gradyent operatörü		

1. GİRİŞ

Transport denklemi, Boltzmann'ın başlangıçta gazların kinetik teorisi çerçevesinde geliştirilen ünlü denkleminin doğrusal bir versiyonudur (bu nedenle, transport denklemine lineer Boltzmann denklemi de denir). Bu denklem, yedi bağımsız değişkeni içeren bir integro-diferansiyel denklemdir.

Nötron transportu, nötronların fiziksel bir sistemdeki atom çekirdekleri boyunca yayıldığı süreçtir. Bu süreçte nötronlar, madde yani atom çekirdeği ile farklı şekillerde etkileşir. Bu etkileşmelerin özellikleri şu şekilde özetlenebilir. Bu etkileşmeler, nötronların bir çarpışma bölgesinden diğerine akmasını; nötronların çekirdeklerden saçılmasını; nötronların çekirdek tarafından yakalanmasını; ve bir çekirdeğin bölünerek iki veya daha fazla nötronun yayıldığı fisyon olaylarının nötronlar tarafından başlatılmasını içerir. Etkileşmelerin önemi, etkileşme olasığını belirleyen tesir kesitlerine bağlıdır. Tesir kesitlerinin oranı olarak ifade edilebilen ikincil nötron sayısı, etkileşmenin türüne göre belirlenir. Bu bölümde nötron transport sürecini tanımlayan matematiksel denklemler geliştirilecektir. (Edt. Cacuci 2010)

1.1. Nötron Transport Denklemi

Nötron transport denkleminin amacı, nötron transport denkleminin çözümünden elde edilen nötron dağılımın belirlemektir. Nötron dağılımı; kısaca açısal yoğunluk olarak adlandırılan, $\Psi(\vec{r}, \vec{v}, t)$ fonksiyonu ile verilir. Bu fonksiyon, t zamanında hızları \vec{v} civarındaki, yani \vec{v} ile $\vec{v} + d\vec{v}$ bölgesindeki d^3v hacim elemanı içinde ve konumları \vec{r} civarındaki, yani \vec{r} ile $\vec{r} + d\vec{r}$ bölgesindeki d^3r hacim elemanı içindeki nötron sayısını tanımlar. \vec{v} hız vektörü, $\vec{v} = v \hat{\Omega}$, şeklinde tanımlanır. Burada $\hat{\Omega}$, hızın yönünü tanımlayan birim vektördür. $\hat{\Omega}$ birim vektörü, Şekil 1.1.a.'daki gibi z eksenine göre θ polar açısı ve x eksenine göre ϕ azimut açısı ile tanımlanır.

 $\vec{j}(\vec{r}, \vec{v}, t)$ ile gösterilen açısal akım,

$$\vec{j}(\vec{r}, \vec{v}, t) = \vec{v} \Psi(\vec{r}, \vec{v}, t)$$
 (1.1)

ile verilir.

Hızları d^3v hacim elemanı içinde kalan dt zamanında, dS yüzey elemanından dik olarak geçen nötron sayısı

$$\vec{j}(\vec{r},\vec{v},t)\cdot\hat{n}\,dS\,d^3v\,dt\tag{1.2}$$

ile verilir. Eşitlik 1.2, tabanı dS olan, uzunluğu v dt olan ve ekseni \vec{v} 'ye paralel olan Şekil 1.1.b.'deki gibi bir silindir çizilerek kolayca kanıtlanabilir.

Şekil 1.1. a. Polar açısı θ ve azimut açısı ϕ b. Nötronların içinden geçtiği varsayılan, boyu $v\,dt$ ve taban alanıdSolan silindir

Daha sonra dt zaman aralığı içinde dS yüzeyinden geçen nötron sayısı; silindir içindeki hızları, d^3v hacmi içinde \vec{v} civarında bulunan nötron sayısı olacaktır. Silindirin hacmi $\vec{v} dt \cdot \hat{n} dS$ olduğundan ve uygun hızdaki nötron yoğunluğu $\Psi(\vec{r}, \vec{v}, t) d^3v$ olduğundan, bu silindir içindeki bu tür nötronların sayısı

$$\vec{v} \cdot \hat{n} \Psi(\vec{r}, \vec{v}, t) \, d^3 v \, dt \, dS = \vec{j} \cdot \hat{n} \, d^3 v \, dt \, dS \tag{1.3}$$

ile verilir.

Ayrıca enerji bağımlı yoğunluk $\rho(\vec{r},v,t)$ ve yoğunluk $\rho(\vec{r},t)$ tanımları

$$\rho(\vec{r}, v, t) = \int d\Omega \,\Psi(\vec{r}, \vec{v}, t) \tag{1.4}$$

ve

$$\rho(\vec{r},t) = \int d^3v \,\Psi(\vec{r},\vec{v},t) \tag{1.5}$$

ile verilir. $\rho(\vec{r}, t) d^3r$; nötron hızından bağımsız olarak, \vec{r} noktasında d^3r hacmi içindeki toplam nötron sayısını temsil eder.

 $\rho(\vec{r}, v, t) d^3r v^2 dv$; nötron hızlarının yönünden bağımsız olarak, v ile v + dv arasındaki hızlarda olan d^3r hacmi içindeki toplam nötron sayısını temsil eder.

Benzer şekilde, $\vec{J}(\vec{r}, v, t)$ ve $\vec{J}(\vec{r}, t)$ akımları; $\vec{j}(\vec{r}, \vec{v}, t)$ 'nin integrali, sırasıyla, $d\Omega$ ve d^3v üzerinden alınarak

$$\vec{J}(\vec{r},v,t) = \int d\Omega \, \vec{j}(\vec{r},\vec{v},t) \tag{1.6}$$

ve

$$\vec{J}(\vec{r},t) = \int d^3v \, \vec{j}(\vec{r},\vec{v},t)$$
(1.7)

şeklinde tanımlanabilir. Bundan sonra dt zaman aralığında dS yüzeyinden geçen nötronların net sayısı,

$$\vec{J}(\vec{r},t) \cdot \hat{n} \, dS \, dt \tag{1.8}$$

ile verilir.

Mevcut nötron popülasyonundan bağımsız olan kaynaklar tarafından ortama dahil edilen nötronlar, bir açısal kaynak yoğunluğu ile tanımlanabilir.

tile t+dtaralığında \vec{v} hızında d^3v hacminde ve \vec{r} noktasında d^3r hacminde üretilen nötron sayısı

$$q(\vec{r}, \vec{v}, t) \, d^3 r \, d^3 v \, dt \tag{1.9}$$

ile verilir. Ayrıca, $q(\vec{r}, v, t)$ ve $q(\vec{r}, t)$ nicelikleri; $q(\vec{r}, \vec{v}, t)$ 'nin integrali, sırasıyla, $d\Omega$ ve d^3v üzerinden alınarak tanımlanabilir.

Bölgedeki mevcut olan atom çekirdekleri hesaba katılırsa, nötronlar, çarpışmalara maruz kalacaktır. \vec{v} hızındaki bir nötron için çarpışmalar arasındaki ortalama mesafenin, yani ortalama serbest yolun, $\ell(\vec{v})$ olduğunu varsayalım. (ℓ 'nin, hedef çekirdeğin hızının değil, nötron hızının bir fonksiyonu olduğu varsayımı; nötron hızının, çekirdeğin hızından çok daha büyük olduğu anlamına gelir ve çekirdek hızı göz ardı edilebilir. Bu ihmal; çok düşük (yani termal) enerjili nötronlar için veya ortalama serbest yol, rezonans olaylarında olduğu gibi, hızın oldukça değişen bir fonksiyonu ise doğru değildir. Bununla birlikte, ortalama serbest yol, çekirdeğin termal hareketleri üzerinden bir ortalama olarak tanımlanırsa, bu sınırlamalar, burada geliştirilen teori bağlamında bile kaldırılabilir.) \vec{v} hızındaki bir nötron, ortalama olarak, saniyede v/ℓ tane çarpışmaya maruz kalacağından, \vec{r} konumunda ve \vec{v} hızındaki nötronlar için çarpışma oranı,

$$\frac{v}{\ell(\vec{r},\vec{v})}\Psi(\vec{r},\vec{v},t)\,d^3r\,d^3v \tag{1.10}$$

ile verilir. (Burada nükleer reaktörlerin uzun süreli reaktivite etkilerini içeren problemlerle ilgilenilmediğinden, ℓ 'nin zaman içinde sabit olduğu varsayılır.) Ortalama serbest yolun, çarpma işlemine göre tersine, makroskopik tesir kesiti denir ve $\sigma(\vec{r}, \vec{v})$ sembolü ile gösterilir ve

$$\sigma(\vec{r}, \vec{v}) = \ell^{-1}(\vec{r}, \vec{v}) = \frac{1}{\ell(\vec{r}, \vec{v})}$$
(1.11)

şeklinde ifade edilir. Bu nicelik, mevcut tüm çekirdeklerin tesir kesitlerinin ağırlıklı toplamıdır; yani,

$$\sigma(\vec{r}, \vec{v}) = \sum_{i} N^{i}(\vec{r}) \Sigma_{t}^{i}(\vec{v})$$
(1.12)

şeklinde ifade edilir. Burada, $N^i(\vec{r})$, \vec{r} 'deki *i* cinsinden olan çekirdeklerin sayı yoğunluğudur, yani cm³'teki sayısıdır; ve Σ_t^i , *i* cinsinden olan çekirdeklerin toplam mikroskobik nötron tesir kesitidir. Bu mikroskobik tesir kesiti, aslında her biri, nötronçekirdek sistemindeki çarpışma ile indüklenen farklı bir reaksiyonu gösteren, çok bileşenlerin toplamıdır. Böylece, tipik bir durum için,

$$\Sigma_{\rm t}^i = \Sigma_{\rm s}^i + \Sigma_{\rm a}^i + \Sigma_{\rm in}^i + \Sigma_{\rm f}^i \tag{1.13}$$

yazılabilir. Burada, kısmi tesir kesitleri; sırasıyla elastik saçılma, ışımalı yakalama, elastik olmayan saçılma ve fisyon için mikroskobik tesir kesitleridir. Kısmi makroskobik tesir kesitleri, benzer şekilde tanımlanabilir; örneğin,

$$\sigma_{\rm s} = \sum_{i} N^i \Sigma^i_{\rm s} \tag{1.14}$$

ve diğerleri de bunun gibi yazılabilir. Daha sonra \vec{r} noktasında \vec{v} hızındaki nötronlar için saçılma reaksiyon oranı,

$$v \Psi(\vec{r}, \vec{v}, t) \sigma_{\rm s}(\vec{r}, \vec{v}) d^3r d^3v$$
 (1.15)

şeklinde verilirken, fisyon reaksiyon oranı; σ_s , σ_f ile değiştirilerek benzer bir ifade ile elde edilir.

Bir çarpışma meydana geldiğinde, sonuç olarak $c(\vec{r}, \vec{v})$ ile gösterilen, ikincil nötronlar ortaya çıkacaktır. Bu ikincil nötronlar; \vec{v} hızındaki bir nötron tarafından, \vec{r} noktasında çarpışma başına üretilen nötronların ortalama sayısıdır.

Açıkça, bir soğurma çarpışması için, c = 0; bir saçılma çarpışması için c = 1; bir fisyon çarpışması için, $c = \nu$ olur. Burada ν , fisyon başına üretilen nötron sayısıdır. ²³⁵U için bu değer $\nu = 2,5$ 'tir. Belirli bir \vec{r} konumundaki c değeri, elbette, \vec{r} noktasında bulunan malzemelere ve onların tesir kesitlerine bağlıdır. Fisyon olmaması durumunda (yani, $\sigma_{\rm f} = 0$),

$$c(\vec{r}, \vec{v}) = \frac{\sigma_{\rm s}(\vec{r}, \vec{v}) + \sigma_{\rm in}(\vec{r}, \vec{v})}{\sigma(\vec{r}, \vec{v})}$$
(1.16)

yazılabilir. Fisyon varsa, bu ifadenin payına $\nu \sigma_f(\vec{r}, \vec{v})$ terimi eklenmelidir. Yeni üretimin olmaması durumunda, $\sigma_f = \sigma_s = \sigma_{in} = 0$, böylece c = 0 olur. Daha sonra $\sigma(\vec{v'}, t' \rightarrow \vec{v}, t; \vec{r})$, şeklinde bir fonksiyon tanımlanır. Buna göre: d^3v' hacim elemanı içindeki $\vec{v'}$ hızına sahip nötronların neden olduğu, t' anında meydana gelen çarpışmalar nedeniyle, t civarında dt zaman aralığı içinde \vec{v} hızındaki d^3v hacim elemanı içinde üretilen, \vec{r} noktasındaki d^3r hacim elemanı içindeki olası nötron sayısı

$$v' \,\sigma(\vec{v'}, t' \to \vec{v}, t; \vec{r}) \,\Psi(\vec{r}, \vec{v'}, t') \,d^3v' \,d^3r \,d^3v \,dt \tag{1.17}$$

ile verilir.

Burada, çarpışma sonucunda üretilen nötronların, çarpışma noktasında ortaya çıkması, mükemmel bir yaklaşımdır. Ayrıca, ikincil nötronların çarpışma anında ortaya çıktığını varsayabiliriz, yani, $\sigma = \sigma(\vec{v'} \to \vec{v}, \vec{r})$. Burada Eşitlik 1.12, 1.16 ve 1.17'den

$$\int \sigma(\vec{v'} \to \vec{v}, \vec{r}) \, d^3v = c(\vec{r}, \vec{v'}) \, \sigma(\vec{r}, \vec{v'}) \tag{1.18}$$

yazılabilir.

Genellikle, söz konusu sistemde tüm çarpışma olaylarının rotasyonel değişmezliğe sahip olduğu varsayılır, bu durumda $\sigma(\vec{v'} \rightarrow \vec{v})$, sadece v', v ve $\hat{\Omega'} \cdot \hat{\Omega}$ 'ya, yani birincil ve ikincil nötronların hızına ve yörüngeleri arasındaki açıya bağlı olabilir. Bundan sonra Eşitlik 1.18'den, böyle bir durumda, c ve σ , sadece v' büyüklüğüne bağlı olabilir, yönüne bağlı değildir.

Ayrıca $\sigma(\vec{v'} \to \vec{v})$ 'nin; $c(\vec{r}, \vec{v})$ ve $\sigma(\vec{r}, \vec{v})$ gibi mutlak pozitif olması gerektiğine dikkat edilmelidir. Ayrıca, sonra gelen iki nicelik de sınırlandırılacaktır.

 $\sigma(\vec{v'} \to \vec{v})$ 'ye katkıda bulunan olağan süreçler; elastik saçılma, elastik olmayan saçılma ve fisyondur. Bu süreçlerin her biri için, $\sigma(\vec{v'} \to \vec{v})$; ikincil nötronların enerji spektrumunu temsil eden normalize edilmiş bir $f(\vec{v'} \to \vec{v})$ fonksiyonu ile bir $\sigma(\vec{v'})$ tesir kesitinin çarpımı olarak yazılabilir.

Daha sonra sadece elastik saçılma katkısı için $f(\vec{v'} \rightarrow \vec{v})$ fonksiyonunun, teori tarafından yeterince tahmin edilebileceği bulunmuştur. Bununla birlikte, fisyon katkısı için, iyi yarı-deneysel veriler mevcuttur; elastik olmayan saçılma katkısı için, genellikle seyrek deneysel verilerin ve oldukça hatalı teorilerin bir kombinasyonu kullanılmak zorundadır.

Tesir kesitin kendisinin büyüklüğü [yani, $\sigma(\vec{v'})$], bazı özel durumlarda, teoriden elde edilebilir. Bununla birlikte, genellikle mevcut olan çok sayıda deneysel tesir kesiti verilerine dayanılır.

Artık herhangi bir sistemdeki nötron dağılımını açıklayan bir denklem elde etmek için gerekli olan tüm nicelikler tanımlanmıştır. (Case and Zweifel 1967)

1.2. Nötron Transport Denkleminin Türetilmesi

Nötronların davranışını tanımlayan temel yasa, esasen bir denge denklemidir. Gerçekte bu denklem, Boltzmann denkleminin lineer hale getirilmiş bir şeklidir. Burada, faz uzayının küçük bir hacim elemanı içindeki nötron sayısının süreklilik denklemine uymasından yola çıkarak, basit bir türetme yapılabilir. Burada, \vec{r} noktası etrafında Syüzeyli küçük bir V hacmi içerisine yerleştirilen, d^3v içinde \vec{v} civarında hıza sahip nötron sayısının dt zamanındaki dN değişimi ele alınır. Bu ifade,

$$dN = d^3 v \, dt \int_V \frac{\partial \Psi(\vec{r}, \vec{v}, t)}{\partial t} d^3 r \tag{1.19}$$

şeklinde yazılabilir. Ayrıca dN değişimi,

dN = -(a) dtsüresinde S yüzeyinden dışarı çıkan net nötron sayısı -(b) dtsüresinde V hacmi içinde yaşanan çarpışma sayısı +(c) dtsüresinde V hacmi içinde çarpışmalar tarafından üretilen \vec{v} hızlı ikincil nötronların sayısı +(d) dtsüresinde V içinde kaynaklar tarafından üretilen

$$\vec{v}$$
 hızlı nötronların sayısı (1.20)

şeklinde bir denge bağıntısı kullanılarak da yazılabilir. (a) ve (d) terimleri, sırasıyla, hız değişikliği olmaksızın d^3r hacim elemanından ayrılan ve giren nötronları hesaba katar; (b) ve (c) terimleri, sırasıyla, konum değişikliği olmaksızın d^3v hız elemanından ayrılan ve giren nötronları hesaba katar. Eşitlik 1.20'deki dört terim, matematiksel olarak ifade edilebilir. Eşitlik 1.2'den,

$$(a) = d^{3}v \, dt \int_{S} \vec{j}(\vec{r}, \vec{v}, t) \cdot \hat{n}_{0} \, dS$$
(1.21)

elde edilir. Burada \hat{n}_0 , dS yüzeyinin dışa doğru normalidir. Eşitlik 1.21, Gauss teoreminin (Diverjans teoremi) uygulanmasıyla bir hacim integraline

$$(a) = d^3 v \, dt \int_V \vec{\nabla} \cdot \vec{j} \, d^3 r \tag{1.22}$$

şeklinde dönüştürülebilir. Benzer şekilde, Eşitlik 1.10'dan

$$(b) = d^{3}v \, dt \int_{V} \frac{v \,\Psi(\vec{r}, \vec{v}, t)}{\ell(\vec{r}, \vec{v})} d^{3}r$$
(1.23)

elde edilir. Ayrıca Eşitlik 1.17'den,

$$(c) = d^{3}v \, dt \iint_{V} v' \, \Psi(\vec{r}, \vec{v'}, t) \, \sigma(\vec{v'} \to \vec{v}, \vec{r}) \, d^{3}v' \, d^{3}r \tag{1.24}$$

elde edilir. Son olarak Eşitlik 1.9'dan,

$$(d) = d^3 v \, dt \int_V q(\vec{r}, \vec{v}, t) \, d^3 r \tag{1.25}$$

elde edilir. Burada, V hacminin keyfi olduğuna dikkat edildikten (ve bir miktar yer değişikliği yapıldıktan) sonra, Eşitlik 1.19 ve 1.20'den,

$$\frac{\partial \Psi(\vec{r}, \vec{v}, t)}{\partial t} + \vec{v} \cdot \vec{\nabla} \Psi(\vec{r}, \vec{v}, t) + v \,\sigma(\vec{r}, \vec{v}) \,\Psi(\vec{r}, \vec{v}, t)$$
$$= q(\vec{r}, \vec{v}, t) + \int d^3 v' \,\sigma(\vec{v'} \to \vec{v}, \vec{r}) \,v' \,\Psi(\vec{r}, \vec{v'}, t)$$
(1.26)

elde edilir. Eşitlik 1.26 elde edilirken, ortak diferansiyeller iptal edilmiş, ℓ^{-1} için σ yazılmıştır. Ayrıca, $\vec{\nabla} \cdot \vec{v} \Psi = \vec{v} \cdot \vec{\nabla} \Psi$ özdeşliği kullanılmıştır. Bu özdeşlik doğrudur, çünkü \vec{v} bağımsız bir değişkendir.

Burada Eşitlik 1.26'nın sol tarafındaki birinci terim, faz uzayının küçük bir hacim elemanı içinde, nötronların zamana göre değişim sayısını verir. İkinci terim, faz uzayının küçük bir hacim elemanı içinden, çarpışma yapmadan çıkan nötronların sayısını verir. Üçüncü terim, faz uzayının küçük bir hacim elemanı içinden, çekirdeklerle çarpışma yaparak çıkan nötronların sayısını verir. Sağ tarafındaki birinci terim, faz uzayının küçük bir hacim elemanı içinde, kaynak tarafından üretilen nötronların sayısını verir. İkinci terim, faz uzayının küçük bir hacim elemanı içinde, nötronların şayısını verir. İkinci terim, faz uzayının küçük bir hacim elemanı içinde, nötronların çekirdeklerle çarpışmaları sonucunda üretilen ikincil nötronların sayısını verir. (Case and Zweifel 1967)

1.3. Tek Hızlı Yaklaşım

Bu yaklaşımda nötron hızının büyüklüğünün, ortalama olarak bir çarpışmada değişmediği varsayılır, böylece $\sigma(\vec{v'} \to \vec{v}, \vec{r})$ fonksiyonu

$$\sigma(\vec{v'} \to \vec{v}, \vec{r}) = \sigma(\widehat{\Omega}' \cdot \widehat{\Omega}, \vec{r}, v) \frac{\delta(v - v')}{v^2}$$
(1.27)

şeklinde yazılabilir. Bu durumda Eşitlik 1.18

$$\sigma(\vec{r}, v) c(\vec{r}, v) = \int d\Omega \,\sigma(\widehat{\Omega}' \cdot \widehat{\Omega}, \vec{r}, v) = \int d\Omega' \,\sigma(\widehat{\Omega}' \cdot \widehat{\Omega}, \vec{r}, v) \tag{1.28}$$

şeklinde yazılabilir. Burada σ 'nın rotasyonel değişmezliğinin açıkça sergilendiğine dikkat edilmelidir.

Bir çarpışmada nötron hızının büyüklüğünün değişmediği varsayımı oldukça radikal gibi görünse de, reaktör içerisindeki reaktör kaynakları, aynı enerjilerde nötron yayınladıkları için, tek hızlı yaklaşım, çok fazla pratik uygulaması olan iyi bir yaklaşımdır. Özellikle, Eşitlik 1.26'daki transport denkleminin, örneğin v_1 'den v_2 'ye v üzerinden integralinin alındığını varsayalım. Bu şekilde,

$$\Psi(\vec{r}, \hat{\Omega}, t) = \int_{v_1}^{v_2} v^2 \, dv \, \Psi(\vec{r}, \vec{v}, t) \tag{1.29}$$

integrali alınmış açısal yoğunluk için

$$\frac{\partial \Psi(\vec{r}, \hat{\Omega}, t)}{\partial t} + v \,\hat{\Omega} \cdot \vec{\nabla} \,\Psi(\vec{r}, \hat{\Omega}, t) + \overline{v \,\sigma(\vec{r}, v)} \,\Psi(\vec{r}, \hat{\Omega}, t)
= q(\vec{r}, \hat{\Omega}, t) + \int d\Omega' \,\Psi(\vec{r}, \hat{\Omega}', t) \,\overline{\sigma(\hat{\Omega}' \cdot \hat{\Omega}, \vec{r}, v) \,v}$$
(1.30)

şeklinde bir denklem elde edilir. Burada $q(\vec{r}, \hat{\Omega}, t)$, yukarıdaki Eşitlik 1.29'a benzer bir denklem vasıtasıyla $q(\vec{r}, \vec{v}, t)$ ile ilişkilidir ve çizgili nicelikler "nötron spektrumu", yani $\Psi(\vec{r}, \vec{v}, t)$ 'nin \vec{v} 'ye bağımlılığı, üzerindeki uygun ortalamalardır. Böyle bir "ortalama alma" prosedürü; tüm tesir kesitleri, nötron hızının büyüklüğünden bağımsız olmadığı sürece kesin değildir. Bu nedenle, tek hızlı yaklaşıma, "sabit tesir kesit yaklaşımı" da denir. Bununla birlikte, Eşitlik 1.30'u, Ψ 'nin açısal, uzaysal ve zamansal davranışının makul bir açıklaması yapan, bazı uygun nötron spektrumunun bulunabileceği varsayımı, örneğin, nükleer reaktör tasarımında sıklıkla kullanılan çok gruplu yaklaşımı temelidir.

Tek hızlı yaklaşıma olan ilgi iki yönlüdür. Birincisi, çoğunlukla genel durumda elde edilemeyen transport denklemine, çoğu durumda analitik çözümler elde etmemizi sağlar; ikincisi, yukarıda belirtildiği gibi, çok fazla pratik uygulaması vardır.

$$f(\widehat{\Omega}' \cdot \widehat{\Omega}, \vec{r}, v) = \frac{\sigma(\widehat{\Omega}' \cdot \widehat{\Omega}, \vec{r}, v)}{c(\vec{r}, v)\sigma(\vec{r}, v)}$$
(1.31)

ile tanımlanan bir $f(\widehat{\Omega}' \cdot \widehat{\Omega}, \vec{r}, v)$ fonksiyonuyla uğraşmak, $\sigma(\widehat{\Omega}' \cdot \widehat{\Omega}, \vec{r}, v)$ fonksiyonu ile uğraşmaktan daha uygun olacaktır. Eşitlik 1.28 sayesinde $f(\widehat{\Omega}' \cdot \widehat{\Omega}, \vec{r}, v)$ 'nin bire normalize edildiği görülür ve bu fonksiyon, saçılma fonksiyonu olarak adlandırılır.

f cinsinden, tek hızlı transport denklemi

$$\frac{\partial \Psi(\vec{r}, \widehat{\Omega}, t)}{\partial t} + v \,\widehat{\Omega} \cdot \vec{\nabla} \,\Psi(\vec{r}, \widehat{\Omega}, t) + v \,\sigma(\vec{r}, v) \,\Psi(\vec{r}, \widehat{\Omega}, t)
= q(\vec{r}, \widehat{\Omega}, t) + v \,\sigma(\vec{r}, v) \,c(\vec{r}, v) \int \Psi(\vec{r}, \widehat{\Omega}', t) \,f(\widehat{\Omega}' \cdot \widehat{\Omega}, \vec{r}, v) \,d\Omega' \quad (1.32)$$

şeklinde yazılır. σ , c ve f'nin (ve bu nedenle Ψ 'nin) v'ye olan bağımlılığının, \bar{v} 'ye parametrik bir bağımlılık olduğu anlaşılmalıdır, bu bağımlılığın gelecekte açıkça belirtilmesi gerekmeyecektir (Case and Zweifel 1967). Buna göre, saçılma fonksiyonu,

$$f(\widehat{\Omega}' \cdot \widehat{\Omega}, \vec{r}, v) \to f(\widehat{\Omega}' \cdot \widehat{\Omega}, \vec{r})$$

şeklinde yazılabilir. Ayrıca, Eşitlik 1.18'den hemen sonraki açıklamaya göre, söz konusu sistemde tüm çarpışma olaylarının rotasyonel değişmezliğe sahip olduğu varsayılır. Bu durumda $\sigma(\vec{v'} \rightarrow \vec{v}, \vec{r})$ fonksiyonu $\sigma(\vec{v'} \rightarrow \vec{v})$ şeklinde yazılabilir. Yani, $\sigma(\vec{v'} \to \vec{v})$, sadece v', v ve $\hat{\Omega}' \cdot \hat{\Omega}$ 'ya, yani birincil ve ikincil nötronların hızına ve yörüngeleri arasındaki açıya bağlıdır. Bu durumda, saçılma fonksiyonu,

$$f(\widehat{\Omega}' \cdot \widehat{\Omega}, \vec{r}) \to f(\widehat{\Omega}' \cdot \widehat{\Omega})$$

şeklinde gösterilebilir. Buna göre, tek hızlı transport denklemi

$$\frac{\partial \Psi(\vec{r}, \hat{\Omega}, t)}{\partial t} + v \,\hat{\Omega} \cdot \vec{\nabla} \,\Psi(\vec{r}, \hat{\Omega}, t) + v \,\sigma(\vec{r}) \,\Psi(\vec{r}, \hat{\Omega}, t)
= q(\vec{r}, \hat{\Omega}, t) + v \,\sigma(\vec{r}) \,c(\vec{r}) \int \Psi(\vec{r}, \hat{\Omega}', t) \,f(\hat{\Omega}' \cdot \hat{\Omega}) \,d\Omega'$$
(1.33)

şeklinde yazılabilir.

1.4. Zamandan Bağımsız Yaklaşım

Nötronların yaklaşık 12 dakikalık yarı ömrü, 10^{-22} saniyede gerçekleşen nükleer tepkimelere göre, çok daha uzundur. Zamandan bağımsız yaklaşım, şöyle bir örnekle açıklanabilir. Ortasından bir sürgü ile ikiye bölünmüş olan Şekil 1.2.a.'daki gibi bir kabın yarısı, gaz ile doludur. Kabın ortasındaki sürgünün kaldırılmasıyla, gaz tanecikleri, kabın boş olan bölmesine doğru bir akım oluşturur. Ancak belirli bir süre sonra gaz tanecikleri, kabın her tarafına eşit olarak dağılırlar. Dolayısıyla, kabın orta bölgesindeki gaz moleküllerinin sağa veya sola hareketleri, zamanla değişmeyecek bir biçimde, yaklaşık olarak eşit miktarda olur. Nötronların zaman içerisindeki hareketleri, bu olaya benzer şekilde, değişmediği kabul edilir. Böylece transport denklemi için zamandan bağımsız bir yaklaşım uygulanabilir. Bu durumda, $\partial \Psi/\partial t = 0$ olurken, zamandan bağımsız transport denklemi, Eşitlik 1.33'ten,

$$v\,\widehat{\Omega}\cdot\vec{\nabla}\,\Psi(\vec{r},\widehat{\Omega}) + v\,\sigma(\vec{r})\,\Psi(\vec{r},\widehat{\Omega})$$

= $q(\vec{r},\widehat{\Omega}) + v\,\sigma(\vec{r})\,c(\vec{r})\int d\Omega'\,\Psi(\vec{r},\widehat{\Omega}')\,f(\widehat{\Omega}'\cdot\widehat{\Omega})$ (1.34)

şeklinde yazılabilir (Türeci 2010).

1.5. Homojen Uzay Yaklaşımı

Nötronların etkileştikleri ortamı oluşturan çekirdeklerin, ortam içerisindeki dağılımlarının Şekil 1.2.b.'deki gibi simetrik olduğu düşünülürse, ikincil nötron sayısı, bu ortam içinde sabit olur. Bu yaklaşıma homojen uzay yaklaşımı denir. Bu durumda $c(\vec{r}) = c$ olarak alınabilir (Türeci 2010).

Şekil 1.2. a. Yarısı gaz ile doldurulmuş kap b. Ortam içerisindeki hedef çekirdeklerin simetrik dağılımı

1.6. Düzlem Geometri Yaklaşımı

Nötron transport denklemi, reaktörün özelliğine göre düzlem, silindirik ve küresel geometrilerde çözülebilir. Bu tez çalışmasında düzlem geometri için yazılan nötron transport denkleminin çözümleri üzerinde durulacaktır. Bu geometride birbirine paralel düzlemlerde çözümlerin aynı olduğu kabul edilir (Türeci 2005). Düzlem geometri için

$$\vec{\nabla} \to \frac{\partial}{\partial z} \hat{z},$$

$$\vec{r} \to r \, \hat{z},$$

$$\hat{\Omega} \cdot \hat{z} = \cos \theta = \mu,$$

 $d\Omega = d\mu \, d\phi,$

$$\Psi(\vec{r},\widehat{\Omega}) \to \Psi(z,\mu),$$

$$\sigma(\vec{r}) \to \sigma(z)$$

ve

$$q(\vec{r}, \hat{\Omega}) \to q(z, \mu)$$

tanımları kullanılırsa Eşitlik 1.34,

$$\mu \frac{\partial \Psi(z,\mu)}{\partial z} + \sigma(z) \Psi(z,\mu)$$

= $\frac{1}{v} q(z,\mu) + \sigma(z) c \int_0^{2\pi} d\phi' \int_{-1}^1 d\mu' \Psi(z,\mu') f(\widehat{\Omega}' \cdot \widehat{\Omega})$ (1.35)

şeklinde yazılabilir. Burada, optik yol uzunluğu, yani, z_1 ve z noktaları arasındaki ortalama serbest yolların sayısı, (Bell ve Glasstone 1970)

$$x = \int_{z_1}^z \sigma(z') \, dz'$$

şeklinde tanımlanarak (Burada z_1 , bazı uygun keyfi z değeridir. Optik kalınlık ise, bir nötron ortalama serbest yolunun birimi cinsinden ölçülen z_1 ve z arasındaki mesafedir (Case and Zweifel 1967).)

$$\frac{\partial \Psi(z,\mu)}{\partial z} = \sigma(z) \frac{\partial \Psi(x,\mu)}{\partial x}$$

ve

$$Q(x,\mu) = \frac{q(z,\mu)}{v\,\sigma(z)}$$

eşitlikleri kullanılıp gerekli düzenlemelerden sonra Eşitlik 1.35,

$$\mu \frac{\partial \Psi(x,\mu)}{\partial x} + \Psi(x,\mu) = Q(x,\mu) + c \int_0^{2\pi} d\phi' \int_{-1}^1 d\mu' \Psi(x,\mu') f(\widehat{\Omega}' \cdot \widehat{\Omega}) \quad (1.36)$$

şeklinde yazılabilir. Burada saçılma fonksiyonu

$$f(\widehat{\Omega}' \cdot \widehat{\Omega}) = \sum_{\ell=0}^{L} \frac{2\ell+1}{4\pi} f_{\ell} P_{\ell}(\widehat{\Omega}' \cdot \widehat{\Omega})$$
(1.37)

ile verilen saçılma fonksiyonunun Legendre açılımıdır (Mika 1961). EK–1'de (Case and Zweifel 1967, s. 272) verilen Legendre polinomlarının toplama kuralı

$$P_{\ell}(\widehat{\Omega}' \cdot \widehat{\Omega}) = P_{\ell}(\mu) P_{\ell}(\mu')$$

+2
$$\sum_{m=1}^{\ell} \frac{(\ell-m)!}{(\ell+m)!} P_{\ell m}(\mu) P_{\ell m}(\mu') \cos\left[m(\phi-\phi')\right]$$
(1.38)

şeklinde verilir. Eşitlik 1.37 ile 1.38'in, Eşitlik 1.36'da kullanılmasıyla

$$\mu \frac{\partial \Psi(x,\mu)}{\partial x} + \Psi(x,\mu) = Q(x,\mu) + c \int_0^{2\pi} d\phi' \int_{-1}^1 d\mu' \Psi(x,\mu') \sum_{\ell=0}^L \frac{2\ell+1}{4\pi} \\ \times f_\ell \bigg[P_\ell(\mu) P_\ell(\mu') + 2 \sum_{m=1}^\ell \frac{(\ell-m)!}{(\ell+m)!} P_{\ell m}(\mu) P_{\ell m}(\mu') \cos\big[m(\phi-\phi')\big] \bigg]$$
(1.39)

elde edilir. Burada ϕ' üzerinden alınan integralin, $\cos \left[m(\phi - \phi')\right]$ terimini sıfır yaptığı görülür. Bu durumda Eşitlik 1.39,

$$\mu \frac{\partial \Psi(x,\mu)}{\partial x} + \Psi(x,\mu) = Q(x,\mu) + c \int_0^{2\pi} d\phi' \int_{-1}^1 d\mu' \Psi(x,\mu') \sum_{\ell=0}^L \frac{2\ell+1}{4\pi} f_\ell P_\ell(\mu) P_\ell(\mu')$$
(1.40)

şekline indirgenir. Eşitlik 1.40, daha kapalı bir formda,

$$\mu \frac{\partial \Psi(x,\mu)}{\partial x} + \Psi(x,\mu) = Q(x,\mu) + \frac{c}{2} \int_{-1}^{1} \Psi(x,\mu') f(\mu,\mu') \, d\mu'$$
(1.41)

şeklinde yazılabilir. Burada $f(\mu,\mu')$

$$f(\mu,\mu') = \sum_{\ell=0}^{L} (2\ell+1) f_{\ell} P_{\ell}(\mu) P_{\ell}(\mu')$$
(1.42)

şeklinde tanımlanmıştır.

1.7. Saçılma Fonksiyonunun Legendre Açılımı

Saçılma fonksiyonunun Legendre açılımı (Mika 1961), Eşitlik 1.42 ile verilir. Burada f_{ℓ} , saçılma katsayıları ve $P_{\ell}(\mu)$ ile $P_{\ell}(\mu')$, ℓ -inci mertebeden Legendre polinomlarıdır. Burada L, saçılmanın mertebesini belirler. L = 0, L = 1, L = 2 ve L = 3 için saçılma fonksiyonunun Legendre açılımı (Mika 1961) aşağıdaki gibi yazılabilir.

L=0için izotropik saçılma $f_0=1$

$$f(\mu, \mu') = f_0 P_0(\mu) P_0(\mu') = 1, \qquad (1.43)$$

L=1için lineer anizotropik saçılma $f_0=1,\,f_1\in [-1/3,1/3]$

$$f(\mu, \mu') = 1 + 3f_1 P_1(\mu) P_1(\mu') = 1 + 3f_1 \mu \mu', \qquad (1.44)$$

L=2için kuadratik anizotropik saçılma $f_0=1,\,f_1=0,\,f_2\in [-0.2,0.4]$

$$f(\mu,\mu') = 1 + 5f_2 P_2(\mu) P_2(\mu') = 1 + 5f_2 \left(-\frac{1}{2} + \frac{3}{2}\mu^2\right) \left(-\frac{1}{2} + \frac{3}{2}{\mu'}^2\right) (1.45)$$

ve L = 3 için triplet anizotropik saçılma $f_0 = 1, f_1 = f_2 = 0, f_3 \in [-1/7, 1/7]$

$$f(\mu,\mu') = 1 + 7f_3 P_3(\mu) P_3(\mu') = 1 + 7f_3 \left(-\frac{3}{2}\mu + \frac{5}{2}\mu^3\right) \left(-\frac{3}{2}\mu' + \frac{5}{2}{\mu'}^3\right) (1.46)$$

ile verilir.

Saçılma fonksiyonunun Legendre açılımında (Mika 1961) ilk terim, Eşitlik 1.43 ile verilen saçılma fonksiyonu için izotropik saçılma durumudur. $f(\mu, \mu') = 1$ şeklinde sabittir ve hiçbir açıya bağlı değildir. İkinci terim, Eşitlik 1.44 ile verilen saçılma fonksiyonu için lineer anizotropik saçılma durumudur. Nötronlar, hedef çekirdekle çarpışma yaptıktan sonra saçılma açısı ile doğru orantılı bir şekilde saçılırlar. Üçüncü ve dördüncü terim, sırasıyla Eşitlik 1.45 ve 1.46 ile verilen saçılma fonksiyonları için kuadratik ve triplet anizotropik saçılma durumudur. Nötronlar, hedef çekirdekle etkileşmeden sonra saçılma açısının bir fonksiyonu şeklinde saçılırlar (Türeci 2010).

1.8. Anlı-Güngör Saçılma Fonksiyonu

Anlı-Güngör saçılma fonksiyonu

$$f(\mu, \mu') = \sum_{\ell=0}^{L} t^{\ell} P_{\ell}(\mu) P_{\ell}(\mu')$$
(1.47)

şeklinde tanımlanır. Burada t, saçılma parametresi $-1 \le t < 0$ ile $0 < t \le 1$ şeklinde verilen bir tanım aralığına sahiptir. Anlı-Güngör saçılma fonksiyonu, t = 0için izotropik saçılmaya dönüşür. Eşitlik 1.47'de $P_{\ell}(\mu)$ ve $P_{\ell}(\mu')$, ℓ -inci mertebeden Legendre polinomlarıdır (Anli et. al. 2005; Anli and Gungor 2007) ve L, saçılmanın mertebesini belirler. L = 0, L = 1, L = 2 ve L = 3 için Anlı-Güngör saçılma fonksiyonu aşağıdaki gibi yazılabilir.

L=0için izotropik saçılma

$$f(\mu, \mu') = t^0 P_0(\mu) P_0(\mu') = 1,$$

L = 1için lineer anizotropik saçılma

$$f(\mu, \mu') = 1 + t^1 P_1(\mu) P_1(\mu'),$$

L = 2için lineer kuadratik anizotropik saçılma

$$f(\mu, \mu') = 1 + t^1 P_1(\mu) P_1(\mu') + t^2 P_2(\mu) P_2(\mu')$$

ve L = 3 için lineer kuadratik triplet anizotropik saçılma

$$f(\mu, \mu') = 1 + t^1 P_1(\mu) P_1(\mu') + t^2 P_2(\mu) P_2(\mu') + t^3 P_3(\mu) P_3(\mu')$$

ile verilir.

Anlı-Güngör saçılma fonksiyonu kullanılarak Case özfonksiyonlarının genel yapısı, Türeci ve Bülbül (2022) tarafından türetilmiştir. Bu tezde yapılan çalışmalardan bir tanesi, Anlı-Güngör saçılma fonksiyonu kullanılarak L = 2 için yarı uzay albedo probleminin çözülmesidir (Bozkır, Türeci and Sahni 2022a).

2. CASE YÖNTEMİYLE NÖTRON TRANSPORT DENKLEMİNİN ÇÖZÜMÜ

Nötron transport denkleminin çözümünde S_N yöntemi (Carlson 1955), Case yöntemi (Case 1960; Case and Zweifel 1967), C_N yöntemi (Benoist and Kavenoky 1968; Kavenoky 1978), F_N yöntemi (Grandjean and Siewert 1979; Siewert and Benoist 1979) gibi pek çok yarı analitik yöntem kullanılmıştır. Bu tez çalışmasında Case yöntemi, F_N yöntemi, H_N yöntemi (Tezcan, Kaşkaş and Güleçyüz 2003) ve SVD (Singular Value Decomposition) yöntemi (Sahni, Tureci and Bozkir 2019, 2020) ile inceleme yapıldı.

Case yöntemi; tek hızlı nötronlar için homojen uzay ve düzlem geometride yazılan lineer nötron transport denklemini çözmede kullanılan bir yöntemdir. Kenneth Case, değişkenlerine ayırma yöntemiyle transport denkleminin çözümünü yazmıştır ve bu, Case yöntemi olarak bilinir (Türeci 2005).

2.1. İzotropik Saçılma için Case Özfonksiyonları

Homojen uzay, zamandan bağımsız, kaynak terimi olmayan, izotropik, tek hızlı nötronlar için düzlem geometride nötron transport denklemi, Eşitlik 1.41'den

$$\mu \frac{\partial \Psi(x,\mu)}{\partial x} + \Psi(x,\mu) = \frac{c}{2} \int_{-1}^{1} \Psi(x,\mu') \, d\mu' \tag{2.1}$$

şeklinde yazılır. Burada $\Psi(x, \mu)$, x noktası ve μ doğrultusundaki nötron akısıdır. x değişkeni, ortalama serbest yol biriminde optik kalınlık anlamına gelir. c, çarpışma başına ortalama ikincil nötron sayısıdır. μ , gelen nötronların ilerleme doğrultusunun kosinüsüdür. μ' , çarpışmadan sonra saçılan nötronların ilerleme doğrultusunun kosinüsüdür.

Eşitlik 2.1, değişkenlerine ayırma yöntemi ile çözülebilir. Burada,

$$\Psi(x,\mu) = A(x) B(\mu) \tag{2.2}$$

şeklinde tanımlanır. Eşitlik 2.2, Eşitlik 2.1'de kullanılırsa

$$\mu \frac{1}{A(x)} \frac{\partial A(x)}{\partial x} + 1 = \frac{c}{2} \frac{1}{B(\mu)} \int_{-1}^{1} B(\mu') \, d\mu'$$
(2.3)

elde edilir. Bu ifadede yer alan integral terimi, sadece μ' terimine bağlı olduğundan, integralin sonucu sabit bir sayıya eşittir. Bu sabit sayı "bir" alınır ve normalizasyon olarak bilinir. Normalizasyon şartı,

$$\int_{-1}^{1} B(\mu') \, d\mu' = 1 \tag{2.4}$$

şeklinde ifade edilir. Eşitlik 2.3'teki x değişkenini eşitliğin sol tarafında, μ değişkenini eşitliğin sağ tarafında toplamak için düzenleme yapılırsa

$$\frac{1}{A(x)}\frac{\partial A(x)}{\partial x} = \frac{c}{2\mu}\frac{1}{B(\mu)} - \frac{1}{\mu}$$
(2.5)

elde edilir. Burada Eşitlik 2.5'in her iki tarafı da aynı sabite eşit olmalıdır. Bu sabit, α olarak seçilirse Eşitlik 2.5,

$$\frac{1}{A(x)}\frac{\partial A(x)}{\partial x} = \frac{c}{2\mu}\frac{1}{B(\mu)} - \frac{1}{\mu} = \alpha = -\frac{1}{\nu}$$
(2.6)

şeklinde gösterilebilir. Eşitlik 2.6 üzerinde gerekli düzenlemeler yapılarak A(x) ve $B(\mu)$

$$A(x) = e^{-x/\nu}$$

ve

$$B(\mu) = \frac{c\nu}{2} \frac{1}{\nu - \mu}$$

şeklinde ifade edilir. Böylece Eşitlik 2.1'in çözümü, Eşitlik 2.2 kullanılarak

$$\Psi(x,\mu) = \frac{c\nu}{2} \frac{1}{\nu - \mu} e^{-\frac{x}{\nu}}$$
(2.7)

şeklinde yazılabilir. Fakat Eşitlik 2.7 ile verilen çözüm, Eşitlik 2.1'in genel çözümü değildir. Genel çözümü elde edebilmek için Eşitlik 2.4 ile verilen normalizasyon integrali

$$\frac{c\nu}{2} \int_{-1}^{1} \frac{1}{\nu - \mu} d\mu = 1$$
(2.8)

şeklinde kullanılmalıdır. Eşitlik 2.8 ile verilen normalizasyon integrali çözülürken iki durum ile karşılaşılır. Birinci durumda $\nu \notin [-1, 1]$ 'dir. Burada $\mu \in [-1, 1]$ olduğundan integralin hesaplanmasında herhangi bir sorun olmaz. Çünkü paydayı sıfır yapacak bir değer, yani singüler nokta oluşmaz. İkinci durumda $\nu \in [-1, 1]$ 'dir. Burada yine $\mu \in [-1, 1]$ olduğundan, ν 'nün μ 'ye eşit ($\nu = \mu$) olduğu durumlarda, integral içindeki ifade, bir singüler noktaya sahip olacaktır.

Birinci Durum: $\nu \notin [-1, 1]$ durumu (kesikli durum)

Burada, normalizasyon şartındaki integralin alınmasında, ν ve μ 'nün değer aralıkları farklı olduğundan herhangi bir singüler nokta oluşmaz. Eşitlik 2.8 ile verilen normalizasyon şartı kullanılarak, kesikli durum için $\Lambda(\nu)$ dağılım fonksiyonu,

$$\Lambda(\nu) = 1 - \frac{c\nu}{2} \int_{-1}^{1} \frac{1}{\nu - \mu} d\mu = 0$$
(2.9)

şeklinde elde edilir ve Eşitlik 2.9,

$$1 - \frac{c\nu}{2}\ln\left(\frac{1+1/\nu}{1-1/\nu}\right) = 0$$
(2.10)

şeklinde yazılabilir. Eşitlik 2.10'un analitik bir çözümü yoktur. Bu nedenle sayısal olarak çözümlenmelidir. Newton-Raphson yönteminin kullanılmasıyla Eşitlik 2.10'un, c < 1 için iki reel kökünün ve c > 1 için iki kompleks kökünün olduğu görülür. (Şekil 2.1., Şekil 2.2. ve Çizelge 2.1.)

Bu köklere, kesikli özdeğerler adı verilir ve kesikli özdeğerlere karşılık gelen kesikli özfonksiyonlar

$$\phi(\pm\nu_0,\mu) = \pm \frac{c\nu_0}{2} \frac{1}{\pm\nu_0 - \mu}$$
(2.11)

şeklindedir. Eşitlik 2.10, c < 1 için $\nu = \pm \nu_0$ şeklinde iki reel ve c > 1 için ise $\nu = \pm i\nu_0$ şeklinde iki kompleks köke sahiptir.

İkinci Durum: $\nu \in [-1, 1]$ durumu (sürekli durum)

Burada ν ve μ 'nün her ikisi de aynı aralıkta olduğu için reel eksen üzerinde bir singüler nokta oluşumu vardır.

Sürekli özdeğer, ν simgesi ile gösterilir ve [-1, 1] aralığında değerler alır. Sürekli özdeğere karşılık gelen sürekli özfonksiyon

$$\phi(\nu,\mu) = \frac{c\nu}{2} \mathbf{P} \frac{1}{\nu-\mu} + \lambda(\nu) \,\delta(\nu-\mu) \tag{2.12}$$

ile verilir. Burada singüler nokta oluşumunu engellemek için dağılım fonksiyonu ile Dirac delta fonksiyonunun çarpımı, $\lambda(\nu) \, \delta(\nu - \mu)$ şeklinde kullanılmıştır. Dirac

Şekil 2.1. İzotropik saçılmada c<1 değerleri için kesikli özdeğerlerin grafik üzerinde gösterimi

Şekil 2.2. İzotropik saçılmada c > 1 değerleri için kesikli özdeğerlerin grafik üzerinde gösterimi

c	$\pm \nu_0$	с	$\pm i u_0$
0,1	1,000000004122306	1,1	1,756651966318386
0,2	1,000090886543841	1,2	1,198265001513299
0,3	1,002592888793223	1,3	0,946000224918223
0,4	1,014585815927429	1,4	0,793768296596219
0,5	1,044382033760833	1,5	0,689130503018409
0,6	1,102132021151094	1,6	0,611619827208478
0,7	1,206804253985286	1,7	0,551335211649361
0,8	1,407634309062772	1,8	0,502808798531837
0,9	1,903204856044849	1,9	0,462734740754404
0,99	5,796729451301933	2,0	0,428977908964179

Çizelge 2.1. İzotropik saçılmada kesikli özdeğerler (Türeci 2010)

delta terimi, $\nu \neq \mu$ için "sıfır" olurken, $\nu = \mu$ için "bir" olur. Burada $\lambda(\nu)$, sürekli özdeğerler için dağılım fonksiyonudur ve **P**, Cauchy prensip değeri temsil eder. Eşitlik 2.12,

$$\int_{-1}^{1} \phi(\nu, \mu) \, d\mu = 1 \tag{2.13}$$

ile verilen normalizasyon şartını sağlamalıdır. Eşitlik 2.12, Eşitlik 2.13'te yerine yazılarak $\lambda(\nu)$ sürekli dağılım fonksiyonu

$$\lambda(\nu) = 1 - \frac{c\nu}{2} \int_{-1}^{1} \mathbf{P} \frac{d\mu}{\nu - \mu}$$
(2.14)

şeklinde elde edilir. Eşitlik 2.14'teki integralin çözümünde singüler nokta vardır. Dolayısıyla Eşitlik 2.14'ün çözümünde Cauchy prensip değer hesabı kullanılmalıdır. Eşitlik 2.14'ten (Bkz. EK–2)

$$\lambda(\nu) = 1 - \frac{c\nu}{2} \ln\left(\frac{1+\nu}{1-\nu}\right) = 1 - c\nu\operatorname{Arctanh}(\nu)$$
(2.15)

elde edilir.

Eşitlik 2.1 için genel çözüm elde etmek amacıyla, kesikli ve sürekli özdeğerler incelenmiştir. Bu özdeğerlere karşılık gelen özfonksiyonların lineer birleşimleriyle, Eşitlik 2.1 için genel çözüm ifadesi

$$\Psi(x,\mu) = A(\nu_0) \phi(\nu_0,\mu) e^{-x/\nu_0} + A(-\nu_0) \phi(-\nu_0,\mu) e^{x/\nu_0} + \int_{-1}^{1} A(\nu) \phi(\nu,\mu) e^{-x/\nu} d\nu, \quad \mu \in [-1,1]$$
(2.16)

şeklinde elde edilmiştir. Dolayısıyla Eşitlik 2.16; tek hızlı, homojen uzayda, kaynak terimi içermeyen ve Eşitlik 2.1 ile verilen nötron transport denkleminin genel çözümüdür. Burada $\phi(\pm \nu_0, \mu)$ ve $\phi(\nu, \mu)$, sırasıyla, kesikli ve sürekli özfonksiyonlardır. Bunlar Case'in özfonksiyonları olarak bilinir. $A(\pm \nu_0)$ ve $A(\nu)$, $\nu \in [-1, 1]$ keyfi açılım katsayılarıdır.

Case özfonksiyonlarının, kendi aralarında diklik bağıntıları vardır. Kesikli ve sürekli özfonksiyonlar için diklik bağıntıları,

$$\int_{-1}^{1} \mu \,\phi(\pm \nu_0, \mu) \,\phi(\pm \nu_0, \mu) \,d\mu = N(\pm \nu_0), \tag{2.17}$$

$$\int_{-1}^{1} \mu \,\phi(\nu,\mu) \,\phi(\nu',\mu) \,d\mu = N(\nu) \,\delta(\nu'-\nu), \tag{2.18}$$

$$\int_{-1}^{1} \mu \,\phi(\pm \nu_0, \mu) \,\phi(\mp \nu_0, \mu) \,d\mu = 0 \tag{2.19}$$

ve

$$\int_{-1}^{1} \mu \,\phi(\nu,\mu) \,\phi(\pm \nu_0,\mu) \,d\mu = 0, \tag{2.20}$$

ile verilir. Burada $N(\nu_0)$ ve $N(\nu)$ ifadeleri

$$N(\nu_0) = \frac{c\nu_0^3}{2} \left[\frac{c}{\nu_0^2 - 1} - \frac{1}{\nu_0^2} \right], \quad N(-\nu_0) = -N(\nu_0)$$
(2.21)

ve

$$N(\nu) = \nu \left[\left[\lambda(\nu) \right]^2 + \frac{c^2 \pi^2 \nu^2}{4} \right] \quad \text{ve} \quad N(-\nu) = -N(\nu)$$
 (2.22)

şeklinde verilir. İzotropik saçılmadan sonra anizotropik saçılma için saçılma fonksiyonunun Legendre açılımı (Mika 1961) ve Anlı-Güngör saçılma fonksiyonu kullanılarak Case yöntemi incelenecektir.

2.2. Saçılma Fonksiyonunun Legendre Açılımının Case Yöntemine Uygulanması

Anizotropik saçılma durumu için saçılma fonksiyonunun Legendre açılımı (Mika 1961) tanımı, Eşitlik 1.42 ile verilir. Kaynak teriminin olmadığı durum için Eşitlik 1.41,

$$\mu \frac{\partial \Psi(x,\mu)}{\partial x} + \Psi(x,\mu) = \frac{c}{2} \int_{-1}^{1} \Psi(x,\mu') f(\mu,\mu') d\mu'$$
(2.23)

şeklinde yazılır. Eşitlik 1.42, Eşitlik 2.23'te kullanılarak nötron transport denklemi,

$$\mu \frac{\partial \Psi(x,\mu)}{\partial x} + \Psi(x,\mu) = \frac{c}{2} \sum_{\ell=0}^{L} (2\ell+1) f_{\ell} P_{\ell}(\mu) \int_{-1}^{1} \Psi(x,\mu') P_{\ell}(\mu') d\mu' \quad (2.24)$$

şeklinde elde edilir. Transport denkleminin çözümünün

$$\Psi(x,\mu) = \phi(\nu,\mu) e^{-x/\nu}$$
(2.25)

şeklinde olduğuna dikkat çekerek bu çözüm, Eşitlik 2.24'te kullanılırsa

$$(\nu - \mu) \phi(\nu, \mu) = \frac{c\nu}{2} \sum_{\ell=0}^{L} (2\ell + 1) f_{\ell} P_{\ell}(\mu) \phi_{\ell}(\nu)$$
(2.26)

elde edilir. Burada $\phi_{\ell}(\nu)$

$$\phi_{\ell}(\nu) = \int_{-1}^{1} \phi(\nu, \mu') P_{\ell}(\mu') d\mu'$$
(2.27)

şeklinde tanımlanır. Bu integralin sonucunda, sadece sürekli özdeğere bağlı bir ifade ortaya çıkar. Buradaki $\phi(\nu, \mu)$ özfonksiyonu, anizotropik saçılmalı duruma ait bir özfonksiyondur. Eşitlik 2.26, $P_k(\mu)$ ile çarpılıp $\mu \in [-1, 1]$ aralığında μ üzerinden integrali alındıktan sonra,

$$\int_{-1}^{1} P_{\ell}(\mu) P_{k}(\mu) d\mu = \frac{2}{2\ell+1} \delta_{\ell k}, \quad \text{burada} \quad \begin{cases} \ell = k \quad \text{için} \quad \delta_{\ell k} = 1\\ \ell \neq k \quad \text{için} \quad \delta_{\ell k} = 0 \end{cases}$$
(2.28)

ve

$$\mu P_{\ell}(\mu) = \frac{\ell+1}{2\ell+1} P_{\ell+1}(\mu) + \frac{\ell}{2\ell+1} P_{\ell-1}(\mu), \quad \ell = 1, 2, 3, \dots$$
 (2.29)

eşitlikleri kullanılarak,

$$\phi_{k+1}(\nu) = \frac{2k+1}{k+1}\nu(1-cf_k)\phi_k(\nu) - \frac{k}{k+1}\phi_{k-1}(\nu)$$
(2.30)

şeklinde verilen bir tekrarlama bağıntısı elde edilir. Eşitlik 2.27'de, $\ell = 0$ ve $\ell = 1$ sırasıyla kullanılarak ve normalizasyon dikkate alınarak $\phi_0(\nu)$ ve $\phi_1(\nu)$

$$\phi_0(\nu) = 1 \tag{2.31}$$

ve

$$\phi_1(\nu) = \nu(1 - c) \tag{2.32}$$
şeklinde bulunur. Bu durumda, c, ν ve k'nin bilinen fonksiyonları olan, daha yüksek $\phi_k(\nu)$ 'ler, Eşitlik 2.30'dan bulunabilir. Özellikle

$$\phi_2(\nu) = \frac{3\nu^2}{2}(1 - cf_1)(1 - c) - \frac{1}{2}$$
(2.33)

ve

$$\phi_3(\nu) = \frac{1}{6} \Big[15\nu^3(1-c) - \nu(9-4c) \Big]$$
(2.34)

vb. elde edilebilir. (Burada $f_0 = 1$ gerçeği kullanılmıştır.) Eşitlik 2.26,

$$\phi(\nu,\mu) = \frac{c\nu}{2} \frac{M(\nu,\mu)}{\nu-\mu}$$
(2.35)

şeklinde de yazılabilir. Burada $M(\nu, \mu)$ fonksiyonu

$$M(\nu,\mu) = \sum_{\ell=0}^{L} (2\ell+1) f_{\ell} P_{\ell}(\mu) \phi_{\ell}(\nu)$$
(2.36)

ile verilir. Eşitlik 2.35, saçılma fonksiyonunun Legendre açılımı (Mika 1961) için Case özfonksiyonlarını verir.

Sonuç olarak saçılmanın mertebesi (L = 1, 2, 3, ...) değişirse, Case özfonksiyonları, dağılım fonksiyonları ve diklik bağıntılarında kullanılan ifadeler de değişir. Örneğin, Case özfonksiyonları, L = 1 ve L = 2 için birbirinden farklıdır. L = 1 için lineer anizotropik saçılma (Mika 1961), L = 2 için saf kuadratik anizotropik saçılma (Türeci and Türeci 2007) ve L = 3 için saf triplet anizotropik saçılma (Türeci 2007) durumları için saçılma fonksiyonunun Legendre açılımı (Mika 1961), Case özfonksiyonları, dağılım fonksiyonları ve diklik bağıntılarında kullanılan ifadeler, Türeci (2010)'de verilmiştir.

2.2.1. Saf Triplet Saçılma için Case Özfonksiyonları

Tek hızlı, zamandan bağımsız ve homojen ortam nötron transport denklemi Eşitlik 2.23 ile verilir. Eşitlik 2.23'te verilen $f(\mu, \mu')$, Eşitlik 1.42 ile verilen saçılma fonksiyonunun Legendre açılımıdır (Mika 1961). Saf triplet saçılmalı Case özfonksiyonlarını yazmak için Eşitlik 1.42'de L = 3 ve $f_1 = f_2 = 0$ kullanılarak

$$f(\mu, \mu') = 1 + 7f_3 P_3(\mu) P_3(\mu')$$
(2.37)

elde edilir. Böylece Eşitlik 2.37, izotropik ve triplet saçılmanın (Türeci 2007) birleşimi olan saf triplet saçılmadır. Burada Eşitlik 2.34–2.36 dikkate alınarak sürekli ve kesikli Case özfonksiyonları kolayca yazılabilir. Sürekli özdeğerler için sürekli Case özfonksiyonu

$$\phi(\nu,\mu) = \frac{c\nu}{2} \mathbf{P} \frac{1 + \gamma(5\mu^3 - 3\mu)}{\nu - \mu} + \lambda(\nu)\delta(\nu - \mu), \quad \nu \in [-1,1]$$
(2.38)

şeklinde yazılır. Burada γ ve $\lambda(\nu)$,

$$\gamma = \frac{7f_3}{12} \Big[15\nu^3 (1-c) - \nu(9-4c) \Big]$$
(2.39)

ve

$$\lambda(\nu) = 1 + \gamma c\nu (5\nu^2 - 4/3) - c\nu (1 + 5\gamma\nu^3 - 3\gamma\nu) \operatorname{Arctanh}(\nu)$$
(2.40)

ile verilir. Kesikli özdeğerler için kesikli Case özfonksiyonu

$$\phi(\pm\nu_0,\mu) = \frac{c\nu_0}{2} \frac{1\pm\gamma_0(5\mu^3 - 3\mu)}{\nu_0 \mp \mu}, \quad \nu_0 \notin [-1,1]$$
(2.41)

şeklinde yazılır. Burada γ_0 ,

$$\gamma_0 = \frac{7f_3}{12} \Big[15\nu_0^3 (1-c) - \nu_0 (9-4c) \Big]$$
(2.42)

ile verilir. $\nu_0 \notin [-1, 1]$,

$$\ln\left(\frac{1+1/\nu_0}{1-1/\nu_0}\right) = \frac{2}{c\nu_0} \frac{1+5c\gamma_0{\nu_0}^3 - (4/3)c\gamma_0\nu_0}{1+5\gamma_0{\nu_0}^3 - 3\gamma_0\nu_0}$$
(2.43)

ile verilen transandantal denklemin köküdür. Sahni and Tureci (2018), Eşitlik 2.43'ün köklerini araştırmışlar ve $c \leq 1$ için yalnızca bir çift kesikli kök $\pm \nu_0$ olduğunu bulmuşlardır.

Case özfonksiyonları için diklik bağıntıları Eşitlik 2.17–2.20 ile verilir. Ancak saf triplet saçılma için $N(\nu_0)$ ve $N(\nu)$ ifadeleri

$$N(\nu_{0}) = \frac{c^{2}}{\nu_{0}^{2} - 1} \left[\frac{\nu_{0}^{3}}{2} + \frac{4}{3} \gamma_{0} \nu_{0}^{2} - \frac{58}{3} \gamma_{0} \nu_{0}^{4} + 20 \gamma_{0} \nu_{0}^{6} - 4 \gamma_{0}^{2} \nu_{0}^{3} + \frac{311}{6} \gamma_{0}^{2} \nu_{0}^{5} - \frac{400}{3} \gamma_{0}^{2} \nu_{0}^{7} + \frac{175}{2} \gamma_{0}^{2} \nu_{0}^{9} \right] - \frac{c \nu_{0}}{2} \left(1 - 9 \gamma_{0} \nu_{0} + 35 \gamma_{0} \nu_{0}^{3} \right) \left(1 + 5 \gamma_{0} c \nu_{0}^{3} - \frac{4}{3} \gamma_{0} c \nu_{0} \right)$$
(2.44)

ve

$$N(\nu) = \nu \left[\lambda(\nu)\right]^2 + \frac{c^2 \pi^2 \nu^3}{4} \left(1 + 5\gamma \nu^3 - 3\gamma \nu\right)^2$$
(2.45)

şeklinde verilir. Eşitlik 2.23 ile ifade edilen transport denkleminin genel çözümü, bu özfonksiyonlar cinsinden Eşitlik 2.16'da verildiği gibidir. Ancak Eşitlik 2.16'daki Case özfonksiyonları, Eşitlik 2.38 ve 2.41 ile verilir. Eşitlik 2.16'da verilen $A(\pm\nu_0)$ ve $A(\nu)$, $\nu \in [-1, 1]$ açılım katsayıları, sınır şartları uygulanarak belirlenir (Bozkır, Türeci and Sahni 2022b).

2.2.2. Lineer-Triplet Saçılma için Case Özfonksiyonları

Burada Eşitlik 2.23 ile verilen nötron transport denklemi kullanıldı. Lineer-triplet saçılma durumu için saçılma fonksiyonunun Legendre açılımı (Mika 1961), Case özfonksiyonları, dağılım fonksiyonları ve diklik bağıntılarında kullanılan ifadeler,

$$f(\mu, \mu') = 1 + 3f_1 P_1(\mu) P_1(\mu') + 7f_3 P_3(\mu) P_3(\mu'), \qquad (2.46)$$

$$\phi(\nu_0,\mu) = \frac{c\nu_0}{2} \frac{\left[1 + \alpha(\nu_0)\mu + \beta(\nu_0)\mu^3\right]}{\nu_0 - \mu},$$
(2.47)

$$\alpha(\nu_0) = w_1(\nu_0) - 3w_3(\nu_0), \quad \beta(\nu_0) = 5w_3(\nu_0), \quad (2.48)$$

$$w_1(\nu_0) = 3f_1(1-c)\nu_0, \qquad (2.49)$$

$$w_3(\nu_0) = \frac{7f_3}{12} \left[15\nu_0^3 (1 - cf_1)(1 - c) - (9 - 4c)\nu_0 \right],$$
(2.50)

$$\phi(\nu,\mu) = \frac{c\nu}{2} \mathbf{P} \frac{\left[1 + \alpha(\nu)\mu + \beta(\nu)\mu^3\right]}{\nu - \mu} + \lambda(\nu)\delta(\nu - \mu), \qquad (2.51)$$

$$\alpha(\nu) = w_1(\nu) - 3w_3(\nu), \quad \beta(\nu) = 5w_3(\nu)$$
(2.52)

$$w_1(\nu) = 3f_1(1-c)\nu, \qquad (2.53)$$

$$w_3(\nu) = \frac{7f_3}{12} \left[15\nu^3 (1 - cf_1)(1 - c) - (9 - 4c)\nu \right],$$
(2.54)

$$\Lambda(\nu_0) = \ln\left(\frac{1+1/\nu_0}{1-1/\nu_0}\right) - \frac{2}{c\nu_0} \frac{1+c\nu_0 \left[\alpha(\nu_0) + \beta(\nu_0)\nu_0^2 + \beta(\nu_0)/3\right]}{1+\alpha(\nu_0)\nu_0 + \beta(\nu_0)\nu_0^3}, \quad (2.55)$$

$$\lambda(\nu) = 1 + c\nu \left[\alpha(\nu) + \beta(\nu)\nu^{2} + \beta(\nu)/3 \right] - c\nu \left[1 + \alpha(\nu)\nu + \beta(\nu)\nu^{3} \right] \operatorname{Arctanh}(\nu), \qquad (2.56)$$

$$N(\nu_{0}) = \frac{c^{2}\nu_{0}^{3}}{2} \frac{\left[1 + 2\left[\alpha(\nu_{0}) + \beta(\nu_{0}) \right]\nu_{0} + \left[\alpha(\nu_{0}) + \beta(\nu_{0}) \right]^{2} \right]}{\nu_{0}^{2} - 1} - \frac{c^{2}\nu_{0}}{2} \left[1 + 3\alpha(\nu_{0})\nu_{0} + 7\beta(\nu_{0})\nu_{0}^{3} \right] + \frac{c^{2}\nu_{0}^{2}}{2} \left[\alpha(\nu_{0}) + 7\beta(\nu_{0})\nu_{0}^{2} \right] + \frac{c^{2}\nu_{0}^{2}}{2} \left[7\beta(\nu_{0})\nu_{0} \left(\frac{\alpha(\nu_{0})}{3} + \frac{\beta(\nu_{0})}{5} \right) + \frac{\beta(\nu_{0})}{3} \right] \qquad (2.57)$$

ve

$$N(\nu) = \nu \left[\lambda(\nu)\right]^2 + \frac{c^2 \pi^2 \nu^3}{4} \left[1 + \alpha(\nu)\nu + \beta(\nu)\nu^3\right]^2$$
(2.58)

ile verilir.

Sürekli ve kesikli özdeğerlere karşılık gelen özfonksiyonlar, Eşitlik 2.17–2.20 ile verilen diklik bağıntılarına uyarlar. Bu özfonksiyonlar cinsinden, Eşitlik 2.23 ile ifade edilen transport denkleminin genel çözümü, Eşitlik 2.16'da verildiği gibidir. Ancak Eşitlik 2.16'daki Case özfonksiyonları, Eşitlik 2.47 ve 2.51 ile verilir (Türeci, Sahni, Aydın and Bozkır 2023).

2.3. Anlı-Güngör Saçılma Fonksiyonunun Case Yöntemine Uygulanması

Anizotropik saçılma durumu için Anlı-Güngör saçılma fonksiyonu tanımı, Eşitlik 1.47 ile verilir. Saçılma fonksiyonunun Legendre açılımı (Mika 1961) için yapılan işlemler, benzer şekilde burada da yapıldı. Eşitlik 1.47'yi, Eşitlik 2.23'te yerine yazarak nötron transport denklemi,

$$\mu \frac{\partial \Psi(x,\mu)}{\partial x} + \Psi(x,\mu) = \frac{c}{2} \sum_{\ell=0}^{L} t^{\ell} P_{\ell}(\mu) \int_{-1}^{1} \Psi(x,\mu') P_{\ell}(\mu') d\mu'$$
(2.59)

şeklinde elde edilir. Eşitlik 2.25, Eşitlik 2.59'da kullanılırsa

$$(\nu - \mu) \phi(\nu, \mu) = \frac{c\nu}{2} \sum_{\ell=0}^{L} t^{\ell} P_{\ell}(\mu) h_{\ell}(\nu)$$
(2.60)

elde edilir. Burada $h_{\ell}(\nu)$

$$h_{\ell}(\nu) = \int_{-1}^{1} \phi(\nu, \mu') P_{\ell}(\mu') d\mu'$$
(2.61)

ile verilir. Eşitlik 2.60, $P_k(\mu)$ ile çarpılıp $\mu \in [-1, 1]$ aralığında μ üzerinden integrali alındıktan sonra, Eşitlik 2.28 ve 2.29 kullanılarak

$$h_{k+1}(\nu) = \frac{\nu(2k+1-ct^k)}{k+1}h_k(\nu) - \frac{k}{k+1}h_{k-1}(\nu)$$
(2.62)

şeklinde verilen bir tekrarlama bağıntısı elde edilir. Eşitlik 2.61'de, $\ell = 0$ ve $\ell = 1$ sırasıyla kullanılarak ve normalizasyon dikkate alınarak $h_0(\nu) = \phi_0(\nu) = 1$ ve $h_1(\nu) = \phi_1(\nu) = \nu(1-c)$ olduğu görüldü. Bu durumda, c, ν ve k'nin bilinen fonksiyonları olan, daha yüksek $h_k(\nu)$ 'ler, Eşitlik 2.62'den bulunabilir. Özellikle

$$h_2(\nu) = \frac{1}{2}\nu^2(1-c)(3-ct) - \frac{1}{2}$$
(2.63)

ve

$$h_3(\nu) = \frac{1}{6}\nu \Big[\nu^2 (1-c)(3-ct)(5-ct^2) + c(4+t^2) - 9\Big]$$
(2.64)

vb. elde edilebilir. Eşitlik 2.60,

$$\phi(\nu,\mu) = \frac{c\nu}{2} \frac{G(\nu,\mu)}{\nu-\mu}$$
(2.65)

şeklinde de yazılabilir. Burada $G(\nu, \mu)$ fonksiyonu

$$G(\nu,\mu) = \sum_{\ell=0}^{L} t^{\ell} P_{\ell}(\mu) h_{\ell}(\nu)$$
(2.66)

ile verilir. Eşitlik 2.65, Anlı-Güngör saçılma fonksiyonu için Case özfonksiyonlarını verir (Türeci ve Bülbül 2022).

Sonuç olarak saçılmanın mertebesi (L = 1, 2, 3, ...) değişirse, saçılma fonksiyonunun Legendre açılımında (Mika 1961) olduğu gibi Case özfonksiyonları, dağılım fonksiyonları ve diklik bağıntılarında kullanılan ifadeler de değişir. L = 2 durumunda, Anlı-Güngör saçılma fonksiyonu, izotropik, lineer ve kuadratik saçılmanın bir bileşimidir ve bu durumdaki Anlı-Güngör saçılma fonksiyonu, Case özfonksiyonları, dağılım fonksiyonları ve diklik bağıntılarında kullanılan ifadeler, Bozkır et. al. (2022a)'da verilmiştir.

2.3.1. Anlı-Güngör Saçılma Fonksiyonu için Case Özfonksiyonları

İkinci mertebe saçılma durumu (L = 2) için Anlı-Güngör saçılma fonksiyonu, Case özfonksiyonları, dağılım fonksiyonları ve diklik bağıntılarında kullanılan ifadeler,

$$f(\mu,\mu') = 1 + t P_1(\mu)P_1(\mu') + t^2 P_2(\mu)P_2(\mu'), \qquad (2.67)$$

$$\phi(\pm\nu_0,\mu) = \frac{c\nu_0}{2} \frac{1 - b(\nu_0) \pm a(\nu_0)\mu + 3b(\nu_0)\mu^2}{\nu_0 \mp \mu},$$
(2.68)

$$a(\nu_0) = \nu_0 (1 - c)t, \qquad (2.69)$$

$$b(\nu_0) = \frac{t^2}{4} \Big[\nu_0^2 (1-c)(3-ct) - 1 \Big], \qquad (2.70)$$

$$\phi(\nu,\mu) = \frac{c\nu}{2} \mathbf{P} \frac{1 - b(\nu) + a(\nu)\mu + 3b(\nu)\mu^2}{\nu - \mu} + \lambda(\nu)\,\delta(\nu - \mu), \tag{2.71}$$

$$a(\nu) = \nu(1-c)t,$$
 (2.72)

$$b(\nu) = \frac{t^2}{4} \Big[\nu^2 (1-c)(3-ct) - 1 \Big], \qquad (2.73)$$

$$\lambda(\nu) = 1 + a(\nu)c\nu + 3b(\nu)c\nu^{2} -c\nu \Big[1 - b(\nu) + a(\nu)\nu + 3b(\nu)\nu^{2}\Big] \operatorname{Arctanh}(\nu), \qquad (2.74)$$

$$N(\nu_{0}) = \left(\frac{c\nu_{0}}{2}\right)^{2} \left\{ \frac{2\nu_{0}}{\nu_{0}^{2}-1} \left[\left[a(\nu_{0}) \right]^{2} + 2a(\nu_{0}) \left[1+2b(\nu_{0}) \right] \nu_{0} + \left[1+2b(\nu_{0}) \right]^{2} \right] + 2a(\nu_{0}) + 2a(\nu_{0})b(\nu_{0}) + 30b(\nu_{0})\nu_{0} - \frac{2}{c\nu_{0}} \left[1-b(\nu_{0}) + 3a(\nu_{0})\nu_{0} + 15b(\nu_{0})\nu_{0}^{2} \right] \right\}$$
(2.75)

ve

$$N(\nu) = \nu \left[\lambda(\nu)\right]^2 + \frac{c^2 \pi^2 \nu^3}{4} \left[1 - b(\nu) + a(\nu)\nu + 3b(\nu)\nu^2\right]^2$$
(2.76)

şeklinde verilir. $\nu_0 \notin [-1, 1]$,

$$\ln\left(\frac{1+1/\nu_0}{1-1/\nu_0}\right) = \frac{2}{c\nu_0} \frac{1+a(\nu_0)c\nu_0 + 3b(\nu_0)c{\nu_0}^2}{1-b(\nu_0) + a(\nu_0)\nu_0 + 3b(\nu_0){\nu_0}^2}$$
(2.77)

ile verilen transandantal denklemin (Sahni and Tureci 2018) köküdür.

Sürekli ve kesikli özdeğerlere karşılık gelen özfonksiyonlar, Eşitlik 2.19 ve 2.20 ile verilen diklik bağıntılarına uyarlar. Ancak Eşitlik 2.19 ve 2.20'deki özfonksiyonlar Eşitlik 2.68 ve 2.71 ile verilir. Bu özfonksiyonlar cinsinden, Eşitlik 2.23 ile ifade edilen transport denkleminin genel çözümü Eşitlik 2.16 ile verilir (Bozkır et. al. 2022a).

3. F_N YÖNTEMİNİN YARI UZAY ALBEDO PROBLEMİNE UYGULANMASI

Reaktör çekirdekleri genellikle bir nötron reflektörü ile çevrilir. Bu reflektör, çekirdeğin dış kenarlarında bulunan yakıt düzenekleri bölgesinde termal akı dağılımının düzgün olmasını, yani çok fazla değişmemesini sağlar. Ayrıca bu nötron reflektörü; reaktör çekirdeğinden dışarı doğru kaçan nötron sızıntısını en aza indirir, reaktörün kritik boyutlarını ve kritik kütlesini azaltır ve reaktör çekirdeğine giden soğutucu akış yolunu kısaltır. Nötron reflektörü, çoğaltmayan bir ortam olmasına rağmen reaktör çekirdeği çoğaltan bir ortamdır. Bu özel arayüzde, nötron reflektörünü temsil etmek için bir albedo sınır koşulu uygulanabilir. Reaktör mühendisliğinde albedo, bir yüzeyden çıkan net nötron akımının aynı yüzeyden giren net nötron akımına oranı olarak tanımlanır. (Lamarsh 1966; Lamarsh and Baratta 2001)

Yarı-uzay albedo problemi, farklı saçılma fonksiyonları ve farklı yöntemlerle incelenmiştir. Bu yöntemlerden bazıları S_N yöntemi (Carlson 1955), Case yöntemi (Case 1960; Case and Zweifel 1967), Varyasyon yöntemi (Pomraning 1965), C_N yöntemi (Benoist and Kavenoky 1968; Kavenoky 1978), F_N yöntemi (Grandjean and Siewert 1979; Siewert and Benoist 1979) ve H_N yöntemi (Tezcan et. al. 2003) şeklinde ifade edilebilir. Daha önce yapılan çalışmalarda saçılma fonksiyonunun Legendre açılımı (Mika 1961) ve İnönü saçılma fonksiyonu (İnönü 1973) kullanılmıştır.

Bu bölümde yarı uzay albedo problemi, farklı saçılma fonksiyonları kullanılarak F_N yöntemiyle çözüldü. F_N yöntemi, Case özfonksiyonları ve bunlar arasındaki diklik bağıntıları kullanılarak bir matris denklemi elde edilmesine dayanır. Bu matris denklemi, $\nu \in [0, 1]$ aralığının eşit bölmelere ayrılması ile elde edilir.

3.1. İzotropik Saçılma için F_N Yöntemi

Yarı uzay albedo probleminde, bir yarı uzay ortam dikkate alınır ve x = 0'da bir sınır vardır. Bu sınırın sol tarafı boşluk, sağ tarafı ise ortamdır. Ortamdaki saçılma, izotropik saçılmadır. Homojen uzayda, zamandan bağımsız, kaynak terimi olmayan, izotropik, tek hızlı nötronlar için düzlem geometride nötron transport denklemi, Eşitlik 2.1 ile verilir. Gelen nötron dağılımının izotropik olması durumu

$$\Psi(0,\mu) = 1, \quad \mu \in (0,1] \tag{3.1}$$

şeklinde verilir. Eşitlik 2.16'nın çözümü yakınsak olmalıdır, yani bütün $\mu \in [-1, 1]$ değerlerinde $x \to \infty$ için $\Psi(x, \mu) \to 0$ olmalıdır. Bu sınır şartı,

$$A(-\nu_0) = 0; \quad A(\nu) = 0, \quad \nu \in [-1, 0)$$
 (3.2)

ile verilen açılım katsayılarının sıfır olduğunu gösterir. Dolayısıyla $\mu \in [-1, 1]$ için

$$\Psi(x,\mu) = A(\nu_0) \,\phi(\nu_0,\mu) \,e^{-x/\nu_0} + \int_0^1 A(\nu) \,\phi(\nu,\mu) \,e^{-x/\nu} \,d\nu \tag{3.3}$$

elde edilir. Burada $\phi(\nu_0, \mu)$ ve $\phi(\nu, \mu)$, Eşitlik 2.11 ve 2.12 ile verilir. Çıkan açısal akı $\Psi(0, -\mu)$ genellikle bir kuvvet serisi olarak

$$\Psi(0, -\mu) = \sum_{\ell=0}^{N} a_{\ell} \mu^{\ell}, \quad 0 < \mu \le 1$$
(3.4)

şeklinde genişletilebilir. Burada a_{ℓ} , $\ell = 0, 1, ..., N$ katsayıları henüz belirlenmemiştir. Albedo β , x = 0'daki çıkan net akımın giren net akıma oranı olarak tanımlanır ve

$$\beta = \frac{\int_0^1 \mu \Psi(0, -\mu) d\mu}{\int_0^1 \mu \Psi(0, \mu) d\mu} = 2 \sum_{\ell=0}^N a_\ell \frac{1}{\ell+2}$$
(3.5)

şeklinde ifade edilir. Eşitlik 3.5'te yalnızca a_ℓ katsayıları bilinmeyendir. Eşitlik 3.3'te x = 0 yazılıp $\mu \rightarrow -\mu$ dönüşümü yapılarak

$$\Psi(0,-\mu) = A(\nu_0)\,\phi(\nu_0,-\mu) + \int_0^1 A(\nu)\,\phi(\nu,-\mu)\,d\nu, \quad \mu \in [-1,1]$$
(3.6)

elde edilir. Bundan sonra Eşitlik 3.6, $\mu \phi(\xi, \mu)$, $\xi = \nu_0$ veya $\nu \in [0, 1]$, ile çarpılıp, $\mu \in [-1, 1]$ üzerinden integrali alınarak,

$$\int_{0}^{1} \mu \,\phi(\xi,\mu) \,\Psi(0,-\mu) \,d\mu = K(\xi) \tag{3.7}$$

elde edilir. Burada $K(\xi)$,

$$K(\xi) = \int_0^1 \mu \,\phi(-\xi,\mu) \,\Psi(0,\mu) \,d\mu \equiv \frac{c\xi}{2} A_0(\xi).$$
(3.8)

ile verilir. Burada $A_m(\xi)$,

$$A_m(\xi) = \frac{2}{c\,\xi} \int_0^1 \mu^{m+1} \phi(-\xi,\mu) \, d\mu, \tag{3.9}$$

$$A_m(\xi) = -\xi A_{m-1}(\xi) + \frac{1}{m+1}, \quad m \ge 1$$
(3.10)

ve

$$A_0(\xi) = 1 - \xi \ln\left(1 + 1/\xi\right) \tag{3.11}$$

şeklinde verilir. Eşitlik 3.4 ve 3.8, Eşitlik 3.7'de kullanılarak F_{N} denklemleri,

$$\sum_{\ell=0}^{N} a_{\ell} B_{\ell}(\xi) = \frac{2}{c\xi} K(\xi) \equiv A_0(\xi), \quad \xi = \nu_0 \quad \text{veya} \quad \nu \in [0, 1]$$
(3.12)

şeklinde elde edilir. Burada $B_m(\xi)$,

$$B_m(\xi) = \frac{2}{c\,\xi} \int_0^1 \mu^{m+1} \phi(\xi,\mu) \, d\mu, \qquad (3.13)$$

$$B_m(\xi) = \xi B_{m-1}(\xi) - \frac{1}{m+1}, \quad m \ge 1$$
(3.14)

ve

$$B_0(\xi) = \frac{2}{c} - 1 - \xi \ln\left(1 + 1/\xi\right)$$
(3.15)

şeklinde verilir. Daha sonra ξ_i ile verilen N + 1 tane $\xi \in \nu_0 \cup [0, 1]$ değeri seçilir ve Eşitlik 3.12,

$$\sum_{\ell=0}^{N} a_{\ell} B_{\ell}(\xi_i) = A_0(\xi_i), \quad i = 0, 1, 2, ..., N$$
(3.16)

şeklinde yazılır. Bundan sonra, Eşitlik 3.16'da ξ_i 'yi seçmek için basit bir şema kullanılır. Böylece, $\xi_0 = \nu_0$, $\xi_1 = 0$, $\xi_2 = 1$ ve geri kalan ξ_i , [0,1] aralığında eşit olarak yerleştirilir. Buradaki a_ℓ , $\ell = 0, 1, 2, ..., N$ katsayıları, Eşitlik 3.16'dan hesaplanabilir. Burada Eşitlik 3.16'da verilen matris denklemlerinde $A_0(\xi_i)$ için Eşitlik 3.11 ve $B_\ell(\xi_i)$ için Eşitlik 3.14 ve 3.15 kullanılmalıdır. Bu kesimde F_N yöntemi için albedo β , Eşitlik 3.5 ile verilir (Grandjean and Siewert 1979; Siewert and Benoist 1979).

3.2. Saf Triplet Saçılma için F_N Yöntemi

Bu kesimde saçılma fonksiyonunun Legendre açılımının (Mika 1961) saf triplet saçılma durumu kullanılarak yarı uzay albedo problemi F_N yöntemiyle çözüldü. Saf triplet saçılma için çözülen yarı uzay albedo problemi, Kesim 3.1 ile verilen izotropik saçılma için çözülen probleme benzerdir. Anizotropik saçılma durumu için nötron transport denklemi, Eşitlik 2.23 ile verilir. Eşitlik 2.23'ün genel çözümü Eşitlik 2.16 ile aynıdır, fakat burada Case özfonksiyonları farklıdır. Dolayısıyla diklik bağıntılarında kullanılan ifadeler de değişir. Çıkan açısal akı $\Psi(0, -\mu)$ genellikle bir kuvvet serisi olarak Eşitlik 3.4 şeklinde genişletilebilir. Burada farklı bir yaklaşımla çıkan açısal akı, Legendre fonksiyonlarının bir serisi olarak

$$\Psi(0, -\mu) = \sum_{n=0}^{N} a_n P_n(\mu), \quad 0 < \mu \le 1$$
(3.17)

şeklinde genişletildi. Burada $P_n(\mu)$, *n*-inci mertebeden Legendre polinomlarıdır. Albedo, x = 0'daki toplam çıkan akımın toplam giren akıma oranı olarak tanımlanır. Eşitlik 3.1 ve 3.17 kullanılarak albedo β

$$\beta = \frac{\int_0^1 \mu \Psi(0, -\mu) \, d\mu}{\int_0^1 \mu \Psi(0, \mu) \, d\mu} = 2 \sum_{n=0}^N a_n \varkappa_{0n}$$
(3.18)

şeklinde yazılabilir. Burada \varkappa_{0n} ,

$$\varkappa_{mn} = \int_0^1 \mu^{m+1} P_n(\mu) \, d\mu \tag{3.19}$$

ile verilen \varkappa_{mn} tanımında m = 0 alınarak elde edilir.

Eşitlik 3.17 ve 3.8, Eşitlik 3.7'de kullanılarak F_N denklemleri,

$$\sum_{n=0}^{N} a_n M_n(\xi) = A_0(\xi), \quad \xi = \nu_0 \quad \text{veya} \quad \nu \in [0, 1]$$
(3.20)

elde edilir. Burada $A_n(\xi)$; Eşitlik 2.38 ve 2.41'in Eşitlik 3.9'da kullanılmasıyla

$$A_n(\xi) = \frac{1}{n+1} + \frac{a_{\xi}}{n+2} - \frac{b_{\xi}}{n+4} - \xi A_{n-1}(\xi), \quad n \ge 1$$
(3.21)

ve

$$A_{0}(\xi) = 1 + \frac{a_{\xi}}{2} - \frac{b_{\xi}}{4} + \xi \left(-a_{\xi} + \frac{b_{\xi}}{3} \right) + b_{\xi} \xi^{3} - \frac{b_{\xi}}{2} \xi^{2} -\xi \left(1 - a_{\xi} \xi + b_{\xi} \xi^{3} \right) \ln \left(1 + 1/\xi \right)$$
(3.22)

şeklinde elde edilir ve $M_n(\xi)$ fonksiyonu

$$M_n(\xi) = \frac{2}{c\xi} \int_0^1 \mu P_n(\mu) \phi(\xi, \mu) d\mu$$
 (3.23)

ile verilir. Ayrıca $M_n(\xi)$ fonksiyonu; Eşitlik 2.38, 2.41, 3.13 ve

$$P_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \frac{(2n-2k)!}{2^n k! (n-k)! (n-2k)!} x^{n-2k}$$
(3.24)

ile verilen Legendre polinomlarının genel formülü (Bell 1968) kullanılarak

$$M_n(\xi) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \frac{(2n-2k)!}{2^n k! (n-k)! (n-2k)!} B_{n-2k}(\xi)$$
(3.25)

ile verilen tekrarlama bağıntısı şeklinde de yazılabilir. Burada [n/2], n/2'den küçük veya n/2'ye eşit olan en büyük tam sayıdır.

Burada N + 1 tane ξ değeri, ξ_i şeklinde seçilerek Eşitlik 3.20,

$$\sum_{n=0}^{N} a_n M_n(\xi_i) = A_0(\xi_i), \quad i = 0, 1, 2, ..., N$$
(3.26)

şeklinde tekrar yazılır. Bundan sonra, ξ_i 'yi seçmek için Kesim 3.1'deki gibi basit bir şema kullanılır. Burada a_n katsayılarını belirlemek için Eşitlik 3.26 çözüldü. Burada Eşitlik 3.26'da verilen matris denklemlerinde $A_0(\xi_i)$ için Eşitlik 3.22 ve $M_n(\xi_i)$ için Eşitlik 3.25 kullanılmalıdır. F_N yöntemi için Eşitlik 3.17'den çıkan akı $\Psi(0, -\mu)$ ve Eşitlik 3.18'den albedo β hesaplanabilir. Ancak burada sadece albedo β hesaplandı (Bozkır vd. 2022b). Bu kesimin sayısal sonuçları, Kesim 5.2. ve EK–6'da verildi.

3.3. Anlı-Güngör Saçılma Fonksiyonu için F_N Yöntemi

Bu kesimde Anlı-Güngör saçılma fonksiyonunun ikinci mertebe saçılma durumu (L = 2) kullanılarak yarı uzay albedo problemi F_N yöntemiyle çözüldü. İkinci mertebe saçılma için çözülen yarı uzay albedo problemi, Kesim 3.1 ile verilen izotropik saçılma için çözülen probleme benzerdir. Eşitlik 2.23 ile verilen anizotropik saçılma durumu için nötron transport denklemi çözülerek, F_N denklemleri Eşitlik 3.16 şeklinde elde edilir. Eşitlik 3.16'da verilen $A_m(\xi)$; Eşitlik 2.68 ve 2.71'in Eşitlik 3.9'da kullanılma-sıyla

$$A_m(\xi) = \frac{1 - b(\xi)}{m+1} - \frac{a(\xi)}{m+2} + \frac{3b(\xi)}{m+3} - \xi A_{m-1}(\xi), \quad m \ge 1$$
(3.27)

ve

$$A_{0}(\xi) = 1 - \frac{a(\xi)}{2} + a(\xi)\xi - \frac{3}{2}b(\xi)\xi + 3b(\xi)\xi^{2} -\xi \left[1 - b(\xi) + a(\xi)\xi + 3b(\xi)\xi^{2}\right] \ln(1 + 1/\xi),$$
(3.28)

şeklinde elde edilir ve $B_m(\xi)$; Eşitlik 2.68 ve 2.71'in Eşitlik 3.13'te kullanılmasıyla

$$B_m(\xi) = \xi B_{m-1}(\xi) - \frac{1 - b(\xi)}{m+1} - \frac{a(\xi)}{m+2} - \frac{3b(\xi)}{m+3}, \quad m \ge 1$$
(3.29)

ve

$$B_{0}(\xi) = \frac{2}{c} \left[1 + a(\xi)c\xi + 3b(\xi)c\xi^{2} \right] - a(\xi)\xi - 3b(\xi)\xi^{2} - \frac{3}{2}b(\xi)\xi - 1 -\frac{a(\xi)}{2} - \xi \left[1 - b(\xi) + a(\xi)\xi + 3b(\xi)\xi^{2} \right] \ln(1 + 1/\xi)$$
(3.30)

şeklinde elde edilir. Burada $a(\xi)$ ve $b(\xi)$

$$a(\xi) = \xi(1-c)t$$
 (3.31)

ve

$$b(\xi) = \frac{t^2}{4} \left[\xi^2 (1-c)(3-ct) - 1 \right]$$
(3.32)

ile verilir. Burada Eşitlik 3.16'da verilen matris denklemlerinde $A_0(\xi_i)$ için Eşitlik 3.28 ve $B_\ell(\xi_i)$ için Eşitlik 3.29 ve 3.30 kullanılmalıdır. Buradaki a_ℓ katsayıları, Eşitlik 3.16'dan hesaplanarak, F_N yöntemi için albedo β , Eşitlik 3.5'ten hesaplandı (Bozkır et. al. 2022a). Bu kesimin sayısal sonuçları, Kesim 5.4. ve EK–8'de verildi.

4. H_N YÖNTEMİNİN YARI UZAY ALBEDO PROBLEMİNE UYGULANMASI

Bu bölümde yarı uzay albedo problemi, farklı saçılma fonksiyonları kullanılarak H_N yöntemiyle çözüldü. F_N yöntemine benzer şekilde H_N yönteminde, Case özfonksiyonları ve bunlar arasındaki diklik bağıntıları kullanılarak bir matris denklemi elde edilir (Tezcan et. al. 2003). Ancak bu matris denklemi, F_N yönteminden farklı olarak, kuvvet serisi açılımının mertebesine göre yapılır.

4.1. İzotropik Saçılma için H_N Yöntemi

Bu kesimde F_N yönteminde olduğu gibi izotropik saçılma durumu kullanılarak yarı uzay albedo problemi H_N yöntemiyle çözüldü. Burada Eşitlik 2.1 ile verilen nötron transport denklemi kullanıldı. Sınır şartı, Eşitlik 3.1 ile tanımlandı. Eşitlik 2.16'nın çözümü yakınsak olmalıdır. Dolayısıyla Eşitlik 3.2, Eşitlik 2.16'da kullanılarak Eşitlik 3.3 elde edildi. Çıkan açısal akı $\Psi(0, -\mu)$ için Eşitlik 3.4 kullanıldı. Eşitlik 2.16'da verilen $A(\nu_0)$ ve $A(\nu)$ katsayılarını bulmak için Eşitlik 3.6, sırasıyla, $\mu\phi(-\nu_0, \mu)$ ve $\mu\phi(-\nu, \mu)$ ile çarpılıp $\mu \in [-1, 1]$ aralığında integral alındı. Buradaki ara işlemlerde Eşitlik 3.4 kullanılmalıdır. Daha sonra $A(\nu_0)$ ve $A(\nu)$ açılım katsayıları,

$$A(\nu_0) = -\frac{c\nu_0}{2} \frac{1}{N(\nu_0)} \left[\sum_{n=0}^N a_n A_n(\nu_0) - B_0(\nu_0) \right]$$
(4.1)

ve

$$A(\nu) = -\frac{c\nu}{2} \frac{1}{N(\nu)} \left[\sum_{n=0}^{N} a_n A_n(\nu) - B_0(\nu) \right]$$
(4.2)

şeklinde elde edildi.

Şimdi Eşitlik 3.6, $\mu \in [0, 1]$ aralığında yazıldıktan sonra μ^{m+1} ile çarpılarak $\mu \in [0, 1]$ aralığında integrali alınır. Burada, bazı ara işlemlerden sonra H_N yöntemi için matris denklemleri,

$$\sum_{n=0}^{N} a_n T_{mn} = U_m \tag{4.3}$$

şeklinde elde edilir. Burada, T_{mn} ve U_m

$$T_{mn} = \frac{1}{m+n+2} + \left(\frac{c\nu_0}{2}\right)^2 \frac{A_m(\nu_0) A_n(\nu_0)}{N(\nu_0)} + \int_0^1 \left(\frac{c\nu}{2}\right)^2 \frac{A_m(\nu) A_n(\nu)}{N(\nu)} d\nu \quad (4.4)$$

ve

$$U_m = \left(\frac{c\nu_0}{2}\right)^2 \frac{A_m(\nu_0) B_0(\nu_0)}{N(\nu_0)} + \int_0^1 \left(\frac{c\nu}{2}\right)^2 \frac{A_m(\nu) B_0(\nu)}{N(\nu)} d\nu$$
(4.5)

şeklinde verilir. Eşitlik 4.3, bilinmeyen a_n , n = 0, 1, 2, ..., N katsayılarını belirlemek için lineer bir denklem sistemi tanımlar. Buradaki a_n , n = 0, 1, 2, ..., N katsayıları, Eşitlik 4.3'ten hesaplanabilir. Burada Eşitlik 4.3'te verilen matris denklemlerinde $A_m(\nu_0)$, $A_m(\nu)$, $A_n(\nu_0)$ ve $A_n(\nu)$ için Eşitlik 3.10 ve 3.11; $B_0(\nu_0)$ ve $B_0(\nu)$ için Eşitlik 3.15; $N(\nu_0)$ ve $N(\nu)$ için Eşitlik 2.21 ve 2.22 kullanılmalıdır. F_N yönteminde olduğu gibi H_N yöntemi için albedo β , Eşitlik 3.5 ile verilir (Tezcan et. al. 2003).

4.2. Saf Triplet Saçılma için H_N Yöntemi

Bu kesimde F_N yönteminde olduğu gibi saçılma fonksiyonunun Legendre açılımının (Mika 1961) saf triplet saçılma durumu kullanılarak yarı uzay albedo problemi H_N yöntemiyle çözüldü. Saf triplet saçılma için çözülen yarı uzay albedo problemi, Kesim 4.1 ile verilen izotropik saçılma için çözülen probleme benzerdir. Anizotropik saçılma durumu için nötron transport denklemi, Eşitlik 2.23 ile verilir. Eşitlik 2.23'ün genel çözümü Eşitlik 2.16 ile verilir, fakat burada Case özfonksiyonları ve bunlar arasındaki diklik bağıntıları farklıdır. Çıkan açısal akı genellikle bir kuvvet serisi ile genişletildi. Dolayısıyla albedo β , Eşitlik 3.18 ile verilir. Bundan sonra $A(\nu_0)$ ve $A(\nu)$ açılım katsayılarını bulmak için Eşitlik 3.6 sırasıyla $\mu\phi(-\nu_0,\mu)$ ve $\mu\phi(-\nu,\mu)$ ile çarpılır ve daha sonra bu çarpımın $\mu \in [-1, 1]$ üzerinden integrali alınır. Buradaki ara işlemlerde Eşitlik 3.17 kullanılmalıdır. Daha sonra $A(\nu_0)$ ve $A(\nu)$ açılım katsayıları,

$$A(\nu_0) = -\frac{c\nu_0}{2} \frac{1}{N(\nu_0)} \left[\sum_{n=0}^N a_n L_n(\nu_0) - B_0(\nu_0) \right]$$
(4.6)

ve

$$A(\nu) = -\frac{c\nu}{2} \frac{1}{N(\nu)} \left[\sum_{n=0}^{N} a_n L_n(\nu) - B_0(\nu) \right]$$
(4.7)

şeklinde elde edilir. Burada $B_n(\xi)$; Eşitlik 2.38 ve 2.41'in Eşitlik 3.13'te kullanılmasıyla

$$B_n(\xi) = \xi B_{n-1}(\xi) - \frac{1}{n+1} + \frac{a_\xi}{n+2} - \frac{b_\xi}{n+4}$$
(4.8)

ve

$$B_{0}(\xi) = -\xi \left(1 - a_{\xi} \xi + b_{\xi} \xi^{3}\right) \ln \left(1 + 1/\xi\right) + \frac{2}{c} \left[1 + c\xi \left(-a_{\xi} + b_{\xi} \xi^{2} + \frac{b_{\xi}}{3}\right)\right] -\xi \left(-a_{\xi} + \frac{b_{\xi}}{3}\right) - b_{\xi} \xi^{2} \left(\xi + \frac{1}{2}\right) - 1 + \frac{a_{\xi}}{2} - \frac{b_{\xi}}{4}$$
(4.9)

şeklinde elde edilir ve $L_n(\xi)$ fonksiyonu

$$L_n(\xi) = \frac{2}{c\xi} \int_0^1 \mu P_n(\mu) \phi(-\xi, \mu) \, d\mu$$
(4.10)

ile verilir. Ayrıca $L_n(\xi)$ fonksiyonu; Eşitlik 2.38, 2.41, 3.9 ve 3.24 kullanılarak

$$L_n(\xi) = \sum_{r=0}^{[n/2]} (-1)^r \frac{(2n-2r)!}{2^n r! (n-r)! (n-2r)!} A_{n-2r}(\xi)$$
(4.11)

şeklinde de yazılabilir. ξ değişkeni, ν_0 veya $\nu \in [0, 1]$ 'e karşılık gelir. a_{ξ} ve b_{ξ} katsayıları sırasıyla " $3\gamma_0$ veya 3γ " ve " $5\gamma_0$ veya 5γ " yı temsil eder. Buradaki " γ_0 ve γ ", sırasıyla Eşitlik 2.42 ve 2.39 ile verilir.

Bundan sonra Kesim 4.1.'deki gibi Eşitlik 3.6, $\mu \in [0, 1]$ aralığında yazıldıktan sonra μ^{m+1} ile çarpılarak $\mu \in [0, 1]$ aralığında integrali alınır. Burada, bazı ara işlemlerden sonra H_N denklemleri, Eşitlik 4.3 ile verilir. Eşitlik 4.3'te T_{mn} kare matrisi,

$$T_{mn} = \varkappa_{mn} + \left(\frac{c\nu_0}{2}\right)^2 \frac{L_n(\nu_0) A_m(\nu_0)}{N(\nu_0)} + \int_0^1 \left(\frac{c\nu}{2}\right)^2 \frac{L_n(\nu) A_m(\nu)}{N(\nu)} d\nu \qquad (4.12)$$

şeklinde verilirken U_m sütun matrisi Eşitlik 4.5 ile verilir. Ancak burada Eşitlik 4.3'te verilen matris denklemlerinde $A_m(\nu_0)$ ve $A_m(\nu)$ için Eşitlik 3.21 ve 3.22; $L_n(\nu_0)$ ve $L_n(\nu)$ için 4.11; $B_0(\nu_0)$ ve $B_0(\nu)$ için Eşitlik 4.9; $N(\nu_0)$ ve $N(\nu)$ için Eşitlik 2.44 ve 2.45; \varkappa_{mn} için Eşitlik 3.19 kullanılmalıdır. F_N yönteminde olduğu gibi H_N yönteminde de Eşitlik 3.17'den çıkan akı $\Psi(0, -\mu)$ ve Eşitlik 3.18'den albedo β hesaplanabilir. Ancak burada sadece albedo β hesaplandı (Bozkır et. al. 2022b). Bu kesimin sayısal sonuçları, Kesim 5.2. ve EK–6'da verildi.

4.3. Lineer-Triplet Saçılma için H_N Yöntemi

Bu kesimde saçılma fonksiyonunun Legendre açılımının (Mika 1961) lineer-triplet saçılması kullanılarak yarı uzay albedo problemi H_N yöntemiyle çözüldü. Lineertriplet saçılma için çözülen yarı uzay albedo problemi, Kesim 4.1 ile verilen izotropik saçılma için çözülen probleme benzerdir. Anizotropik saçılma durumu için nötron transport denklemi, Eşitlik 2.23 ile verilir. Bu kesimde kullanılan çıkan açısal akı, Eşitlik 3.4 ile verilirken, albedo β tanımı, Eşitlik 3.5 ile verilir. Bundan sonra $A(\nu_0)$ ve $A(\nu)$ açılım katsayılarını bulmak için Eşitlik 3.6 sırasıyla $\mu\phi(-\nu_0,\mu)$ ve $\mu\phi(-\nu,\mu)$ ile çarpılır ve $\mu \in [-1, 1]$ üzerinden integral alınır. Gerekli düzenlemeler yapıldıktan sonra $A(\nu_0)$ ve $A(\nu)$ açılım katsayıları, Eşitlik 4.1 ve 4.2'de verildiği gibi bulunur. Ancak Eşitlik 4.1'de verilen $A_n(\xi)$ fonksiyonu; Eşitlik 2.47 ve 2.51'in Eşitlik 3.9'da kullanılmasıyla

$$A_n(\xi) = \frac{1}{n+1} - \frac{\alpha_{\xi}}{n+2} - \frac{\beta_{\xi}}{n+4} - \xi A_{n-1}(\xi)$$
(4.13)

ve

$$A_{0}(\xi) = 1 - \frac{\alpha_{\xi}}{2} - \frac{\beta_{\xi}}{4} + \xi \left(\alpha_{\xi} + \frac{\beta_{\xi}}{3}\right) + \beta_{\xi}\xi^{3} - \frac{\beta_{\xi}}{2}\xi^{2}$$
$$-\xi \left(1 + \alpha_{\xi}\xi + \beta_{\xi}\xi^{3}\right) \ln \left(1 + \frac{1}{\xi}\right)$$
(4.14)

şeklinde elde edilir ve $B_n(\xi)$; Eşitlik 2.47 ve 2.51'in Eşitlik 3.13'te kullanılmasıyla

$$B_n(\xi) = \xi B_{n-1}(\xi) - \frac{1}{n+1} - \frac{\alpha_{\xi}}{n+2} - \frac{\beta_{\xi}}{n+4}$$
(4.15)

ve

$$B_{0}(\xi) = \frac{2}{c} \left[1 + c\xi \left(\alpha_{\xi} + \beta_{\xi}\xi^{2} + \frac{\beta_{\xi}}{3} \right) \right] - 1 - \frac{\alpha_{\xi}}{2} - \frac{\beta_{\xi}}{4} - \xi \left(\alpha_{\xi} + \frac{\beta_{\xi}}{3} \right) - \beta_{\xi}\xi^{2} \left(\xi + \frac{1}{2} \right) - \xi \left(1 + \alpha_{\xi}\xi + \beta_{\xi}\xi^{3} \right) \ln \left(1 + \frac{1}{\xi} \right)$$

$$(4.16)$$

şeklinde elde edilir. Burada α_{ξ} katsayısı, Eşitlik 2.48 ve 2.52'de tanımlanan $\alpha(\nu_0)$ ve $\alpha(\nu)$ 'yü ifade ederken β_{ξ} , Eşitlik 2.48 ve 2.52'de tanımlanan $\beta(\nu_0)$ ve $\beta(\nu)$ 'yü ifade eder.

Bundan sonra Kesim 4.1.'deki gibi Eşitlik 3.6, $\mu \in [0, 1]$ aralığında yazıldıktan sonra μ^{m+1} ile çarpılarak $\mu \in [0, 1]$ aralığında integrali alınır. Burada, bazı ara işlemlerden

sonra H_N denklemleri, Eşitlik 4.3 ile verilir. Eşitlik 4.3'te T_{mn} kare matrisi Eşitlik 4.4 ile verilirken U_m sütun matrisi Eşitlik 4.5 ile verilir. Ancak burada Eşitlik 4.3'te verilen matris denklemlerinde $A_m(\nu_0)$, $A_m(\nu)$, $A_n(\nu_0)$ ve $A_n(\nu)$ için Eşitlik 4.13 ve 4.14; $B_0(\nu_0)$ ve $B_0(\nu)$ için Eşitlik 4.16; $N(\nu_0)$ ve $N(\nu)$ için Eşitlik 2.57 ve 2.58 kullanılmalıdır. H_N yöntemi için Eşitlik 3.4'ten çıkan akı $\Psi(0, -\mu)$ ve Eşitlik 3.5'ten albedo β hesaplandı (Türeci et. al. 2023). Bu kesimin sayısal sonuçları, Kesim 5.3. ve EK–7'de verildi.

5. SVD YÖNTEMİNİN YARI UZAY ALBEDO PROBLEMİNE UYGULANMASI

SVD (Singular Value Decomposition) yöntemi, singüler integral denklemin doğrudan sayısal çözümünü ele alır. Bu yöntem kullanılarak Midpoint (Ortanokta) Yaklaşımı ve Lineer Yaklaşım olmak üzere iki yaklaşım (Sahni et. al. 2019, 2020; Bozkır et. al. 2022b) yapıldı. Bu bölümde SVD yönteminin sayısal hesaplamaları yapılırken her bir alt aralık birbirine eşit seçildi ve yarı uzay albedo problemi, farklı saçılma fonksiyonları kullanılarak SVD yöntemiyle çözüldü.

5.1. İzotropik Saçılma için SVD Yöntemi

Bu kesimde izotropik saçılma durumu kullanılarak yarı uzay albedo problemi SVD yöntemiyle çözüldü. Burada Eşitlik 2.1 ile verilen nötron transport denklemi kullanıldı. x = 0 için $\mu \in [0, 1]$ aralığında Eşitlik 3.1, Eşitlik 3.3'te kullanılarak

$$\Psi(0,\mu) = A(\nu_0)\,\phi(\nu_0,\mu) + \int_0^1 A(\nu)\,\phi(\nu,\mu)\,d\nu = 1, \quad \mu \in [0,1]$$
(5.1)

elde edilir. Eşitlik 2.11 ve 2.12 ile verilen Case özfonksiyonlarının açık formlarının Eşitlik 5.1'de kullanılmasıyla ve $\nu \rightarrow \nu'$, $\mu \rightarrow \nu$, $A(\nu_0) \rightarrow a_{0+}$ şeklinde notasyon değişikliği yapılmasıyla bir singüler integral denklem

$$\lambda(\nu) A(\nu) + \frac{c}{2} \int_0^1 A(\nu') \left[1 + \frac{\nu}{\nu' - \nu} \right] d\nu' = 1 - a_{0+} \frac{c\nu_0}{2} \frac{1}{\nu_0 - \nu}$$
(5.2)

şeklinde elde edilir. Bundan sonra iki şekilde yaklaşım uygulandı.

5.1.1. Midpoint (Ortanokta) Yaklaşımı

 $\nu' \in [0, 1]$ aralığı, $2\delta_i$ (i = 1, 2, ..., N) uzunluklu N tane $(\nu_i - \delta_i, \nu_i + \delta_i)$ alt aralığa bölündü. Böylece $\nu_1 - \delta_1 = 0$ ve $\nu_N + \delta_N = 1$ olacak şekilde ayarlandı. Burada, ağ noktaları $\nu_1, \nu_2, ..., \nu_N$ her bir alt aralığın $(\nu_i - \delta_i, \nu_i + \delta_i)$ orta noktalarıdır. Ağ noktaları arasındaki uzunluğun eşit olması durumu, Şekil 5.1.'de gösterildi. Her bir alt aralıkta $A(\nu')$ fonksiyonunun, yavaş bir biçimde değiştiği kabul edildi ve $A(\nu')$ fonksiyonu

$$\begin{array}{cccc} & \delta_1 = \delta_2 = \cdots = \delta_N \\ \hline & & \downarrow \\ \nu_1 & \nu_2 & \nu_3 \cdots = \nu_{N-1} \\ \nu_1 - \delta_1 = 0 \end{array}$$

Şekil 5.1. Midpoint yaklaşımı için eşit uzunluklu ağ noktalarının gösterimi

için

$$A(\nu') \approx A(\nu_i); \quad \nu' \in (\nu_i - \delta_i, \nu_i + \delta_i)$$
(5.3)

şeklinde bir yaklaşım yapıldı. Eşitlik 5.3 ile verilen bu yaklaşım, Eşitlik 5.2'deki integral terimine uygulanırken $A(\nu_i)$ 'nin N tane teriminin her biri yaklaşık olarak eşit kabul edilerek, yani bir sabit gibi düşünülerek $A(\nu_i)$, integral dışına alınabilir. Böylece Eşitlik 5.2'deki integral terimi

$$\int_{0}^{1} A(\nu') \left[1 + \frac{\nu}{\nu' - \nu} \right] d\nu' = \sum_{j=1}^{N} A(\nu_j) \left[2\delta_j + \nu \ln \left| \frac{\nu_j + \delta_j - \nu}{\nu_j - \delta_j - \nu} \right| \right]$$
(5.4)

şeklinde yazılabilir. Burada, $x_i = A(\nu_i)$, i = 1, 2, ..., N tanımlaması yapıldıktan sonra Eşitlik 5.2

$$\sum_{j=1}^{N} H_{i,j} x_j = f_1(\nu_i) - a_{0+} f_2(\nu_i), \quad i = 1, 2, ..., N$$
(5.5)

veya

$$\mathbf{H}\mathbf{x} = \mathbf{f}_1 - a_{0+}\mathbf{f}_2 \tag{5.6}$$

ile verilen bir $N \times N$ matris denklemine indirgendi. Burada N boyutlu $f_1 = f_1(\nu_i)$ ve $f_2 = f_2(\nu_i)$ vektörleri

$$f_1(\nu_i) = 1$$
 ve $f_2(\nu_i) = \frac{c\nu_0}{2} \frac{1}{\nu_0 - \nu_i}$ (5.7)

şeklinde verilirken, $N \times N$ boyutlu $\mathbf{H} = H_{i,j}$ matris elemanları

$$H_{i,j} = \frac{c}{2} \left[2\delta_j + \nu_i \ln \left| \frac{\nu_j + \delta_j - \nu_i}{\nu_j - \delta_j - \nu_i} \right| \right]; \quad i, j = 1, 2, ..., N; \quad i \neq j$$
(5.8)

ve

$$H_{i,i} = \lambda(\nu_i); \quad i = 1, 2, ..., N; \quad i = j$$
 (5.9)

ile verilir. Eşitlik 5.6 lineer bir denklem olduğundan x çözüm vektörü,

$$\mathbf{x} = \mathbf{y}_1 - a_{0+} \mathbf{y}_2 \tag{5.10}$$

şeklinde yazılır. Burada y_1 ve y_2

$$y_1 = H^{-1}f_1$$
 ve $y_2 = H^{-1}f_2$ (5.11)

ile verilir. H matrisi oldukça kötü koşullu durumdadır (Sahni and Kumar 1987; Sahni et. al. 2019, 2020). Eşitlik 5.6 çözüldüğünde, y_1 ve y_2 bireysel çözümlerinin oldukça salınımlı olduğu, alternatif bileşenlerin pozitif ve negatif olduğu ve 10^4 veya daha fazla mertebesinde olduğu bulundu. Bu, her bir alt aralığın orta noktasındaki değeriyle iyi temsil edilen $A(\nu')$ temel varsayımını açıkça ihlal eder. Bu nedenle, bu bireysel çözüm vektörleri mevcut değildir, ancak SVD yönteminin Midpoint (Ortanokta) yaklaşımıyla düzgün ve 10^{-1} mertebesinde lineer bir kombinasyon elde etmek mümkündür.

Böylece kötü koşullu durumda olan matris denklemi, Eşitlik 5.6, SVD yöntemi ile çözülebilir. Dolayısıyla H matrisi, Golub and Reinsch (1970)'ın kullandığı gibi

$$\mathbf{H} = \mathbf{U}\mathbf{W}\mathbf{V}^{\mathrm{T}} \tag{5.12}$$

şeklinde yazılır. Burada U ile V^T (V^T , V matrisinin transpozunu ifade eder) iki ortogonal matris ve W, diyagonal bir matristir. Bu nedenle Eşitlik 5.6

$$(\mathbf{UWV^{T}})\mathbf{x} = \mathbf{f_1} - a_{0+}\mathbf{f_2}$$
(5.13)

veya

$$(\mathbf{W}\mathbf{V}^{\mathbf{T}})\mathbf{x} = \mathbf{U}^{\mathbf{T}}\mathbf{f}_{1} - a_{0+}\mathbf{U}^{\mathbf{T}}\mathbf{f}_{2}$$
(5.14)

şeklinde yazılabilir. W diyagonal matrisinin, $\mathbf{W}_{N,N}$ son elemanının çok küçük olduğu, yani, diğer elemanlara kıyasla büyüklük olarak birkaç mertebe daha küçük olduğu, fark edildi. Bu; $\mathbf{V}^{\mathbf{T}}\mathbf{x}$ vektörünün, *N*-inci bileşeninin büyük olmasıyla sonuçlanır ve H matrisinin, aşırı derecede kötü koşullu durumda olmasına neden olur. Yani burada $\mathbf{W}_{N,N}$, diğer elemanlara göre çok küçük olduğundan, $(\mathbf{W}\mathbf{V}^{\mathbf{T}})_{N,N} = 0$ kabul edildi. Dolayısıyla, Eşitlik 5.14'ün, sol tarafının *N*-inci bileşeni

$$\left(\mathbf{W}\mathbf{V}^{\mathrm{T}}\mathbf{x}\right)_{N,N} = 0 \tag{5.15}$$

şeklinde sıfır olduğundan, Eşitlik 5.14'ün, sağ tarafının N-inci bileşeni de

$$(\mathbf{U}^{\mathbf{T}}\mathbf{f}_1)_N - a_{0+}(\mathbf{U}^{\mathbf{T}}\mathbf{f}_2)_N = 0$$
(5.16)

şeklinde sıfır olur. Eşitlik 5.16'dan a_{0+} sabiti,

$$a_{0+} = \frac{\left(\mathbf{U}^{\mathbf{T}}\mathbf{f}_{1}\right)_{N}}{\left(\mathbf{U}^{\mathbf{T}}\mathbf{f}_{2}\right)_{N}}$$
(5.17)

şeklinde belirlenir. Bu durumda x çözüm vektörü, Eşitlik 5.10 ve 5.11 kullanılarak,

$$\mathbf{x} = (\mathbf{V}\mathbf{W}^{-1}\mathbf{U}^{\mathrm{T}})\mathbf{f}_{1} - a_{0+}(\mathbf{V}\mathbf{W}^{-1}\mathbf{U}^{\mathrm{T}})\mathbf{f}_{2}$$
(5.18)

şeklinde yazılabilir. Burada

$$\mathbf{H}^{-1} = \mathbf{V}\mathbf{W}^{-1}\mathbf{U}^{\mathrm{T}} \tag{5.19}$$

olduğuna dikkat edilmelidir.

x vektörü belirlendikten sonra, albedo için sonuçları veren J akım ifadesi (Bkz. EK-3), x = 0 için Eşitlik 3.3 kullanılarak elde edilebilir. Buradan da albedo β ifadesi,

$$\beta = 1 - 2(1 - c) \left[\nu_0 \, a_{0+} + \int_0^1 \nu \, A(\nu) \, d\nu \right]$$
(5.20)

şeklinde elde edilir. Eşitlik 5.3, Eşitlik 5.20'de kullanılarak, SVD Midpoint (Ortanokta) yaklaşımı için albedo β

$$\beta = 1 - 2(1 - c) \left[\nu_0 \, a_{0+} + \sum_{j=1}^N A(\nu_j) \, \nu_j \, 2\delta_j \right]$$
(5.21)

şeklinde belirlenir.

5.1.2. Lineer Yaklaşım

Bu yaklaşımda, $\nu' \in [0,1]$ aralığı, N + 1 tane nokta seçilerek N tane alt aralığa bölündü. Burada noktalar, $0 = \nu_1 < \nu_2 < \nu_3 < \cdots < \nu_N < \nu_{N+1} = 1$ olacak şekilde ayarlandı. $A(\nu')$ fonksiyonu,

$$A(\nu') \approx \frac{A(\nu_j)(\nu_{j+1} - \nu') + A(\nu_{j+1})(\nu' - \nu_j)}{\nu_{j+1} - \nu_j}; \quad \nu' \in (\nu_j, \nu_{j+1})$$
(5.22)

şeklindeki lineer bir fonksiyon ile (ν_j, ν_{j+1}) , j = 1, 2, 3, ..., N alt aralığında yaklaştırıldı. Eşitlik 5.22 ile verilen bu yaklaşım, Eşitlik 5.2'deki integral terimine uygulanırken $A(\nu_j)$ 'nin N + 1 tane teriminin her biri eşit kabul edilerek, yani bir sabit gibi düşünülerek $A(\nu_j)$, integral dışına alınabilir. Böylece Eşitlik 5.2'deki integral terimi

$$\int_{0}^{1} A(\nu') \left[1 + \frac{\nu}{\nu' - \nu} \right] d\nu' \approx A(0) \left[\frac{\nu_2}{2} + \nu \left[-1 + \frac{\nu_2 - \nu}{\nu_2} \ln \left| \frac{\nu_2 - \nu}{\nu} \right| \right] \right] + \sum_{j=2}^{N} A(\nu_j) \left[\frac{1}{2} \left(\nu_{j+1} - \nu_{j-1} \right) + \nu \left[\frac{\nu_{j+1} - \nu}{\nu_{j+1} - \nu_j} \ln \left| \frac{\nu_{j+1} - \nu}{\nu_j - \nu} \right| \right] + \frac{\nu - \nu_{j-1}}{\nu_j - \nu_{j-1}} \ln \left| \frac{\nu_j - \nu}{\nu_{j-1} - \nu} \right| \right] + A(1) \left[\frac{1 - \nu_N}{2} + \nu \left[1 + \frac{\nu - \nu_N}{1 - \nu_N} \ln \left| \frac{1 - \nu}{\nu_N - \nu} \right| \right] \right]$$
(5.23)

şeklinde yazılabilir. Sahni et. al. (2020), $A(\nu_{N+1}) = A(1) = 0$ olduğunu (Bkz. EK-4) göstermiştir. Burada, $x_i = A(\nu_i)$, i = 1, 2, ..., N + 1 tanımlaması yapıldıktan sonra Eşitlik 5.2

$$\sum_{j=1}^{N+1} H_{i,j} x_j = f_1(\nu_i) - a_{0+} f_2(\nu_i), \quad i = 1, 2, ..., N+1$$
(5.24)

veya

$$\widehat{\mathbf{H}}\widehat{\mathbf{x}} = \widehat{\mathbf{f}}_1 - a_{0+}\widehat{\mathbf{f}}_2 \tag{5.25}$$

ile verilen bir $(N + 1) \times (N + 1)$ matris denklemine indirgendi. Burada N + 1boyutlu $\hat{\mathbf{f}}_1 = f_1(\nu_i)$ ve $\hat{\mathbf{f}}_2 = f_2(\nu_i)$ vektörleri, Eşitlik 5.7 ile verilir ancak burada i = 1, 2, ..., N + 1 şeklindedir. $(N + 1) \times (N + 1)$ boyutlu $\hat{\mathbf{H}} = H_{i,j}$ matris elemanları

$$H_{1,1} = 1 + \frac{c\nu_2}{4}, \qquad H_{2,1} = -\frac{c\nu_2}{4},$$
 (5.26)

$$H_{1,j} = \frac{c}{4} (\nu_{j+1} - \nu_{j-1}); \quad j = 2, ..., N,$$
(5.27)

$$H_{i,1} = \frac{c\nu_i}{2} \left[-1 + \frac{\nu_2 - \nu_i}{\nu_2} \ln \left| \frac{\nu_2 - \nu_i}{\nu_i} \right| \right] + \frac{c\nu_2}{4}; \quad i = 3, ..., N + 1,$$
(5.28)

$$H_{i,j} = \frac{c\nu_i}{2} \left[\frac{\nu_{j+1} - \nu_i}{\nu_{j+1} - \nu_j} \ln \left| \frac{\nu_{j+1} - \nu_i}{\nu_j - \nu_i} \right| + \frac{\nu_i - \nu_{j-1}}{\nu_j - \nu_{j-1}} \ln \left| \frac{\nu_j - \nu_i}{\nu_{j-1} - \nu_i} \right| \right] + \frac{c}{4} \left(\nu_{j+1} - \nu_{j-1} \right); \quad i, j = 2, 3, ..., N; \quad i \neq j$$
(5.29)

ve

$$H_{i,i} = \lambda(\nu_i) + \frac{c}{4} \left(\nu_{i+1} - \nu_{i-1} \right) + \frac{c\nu_i}{2} \ln \left| \frac{\nu_{i+1} - \nu_i}{\nu_{i-1} - \nu_i} \right|;$$

$$i, j = 2, 3, ..., N; \quad i = j$$
(5.30)

ile verilir. $\widehat{\mathbf{H}}$ matrisinin (N + 1)-inci sütunu

$$H_{i,N+1} = \frac{c\nu_i}{2} \left[1 + \frac{\nu_i - \nu_N}{1 - \nu_N} \ln \left| \frac{1 - \nu_i}{\nu_N - \nu_i} \right| \right] + \frac{c}{4} (1 - \nu_N);$$

$$i = 1, 2, ..., N$$
(5.31)

ile verilir. Son olarak $\widehat{\mathbf{H}}$ matrisinin $H_{N+1,N+1}$ elemanı sonsuza gider. Ancak EK–4'te açıklandığı gibi $x_{N+1} = A(\nu_{N+1}) = 0$ olduğundan bunun bir önemi yoktur. Eşitlik 5.25'in ilk N denklemi (N + 1)-inci denklemden ayrıştırılır ve $\widehat{\mathbf{H}}$ matrisinin (N + 1)inci sütunu $H_{i,N+1}$ alakasızdır. $x_i, i = 1, 2, ..., N$ çözüm vektörü, Eşitlik 5.6 ile verilen $N \times N$ matris denklemi çözülerek elde edildi. Eşitlik 5.6, SVD Lineer yaklaşımı için düzenlenirse, $\mathbf{H}, \widehat{\mathbf{H}}$ matrisinin $(N \times N$ mertebeli) ana alt matrisidir; $\mathbf{f_1}$ ve $\mathbf{f_2}$, yukarıda verilen $\widehat{\mathbf{f_1}}$ ve $\widehat{\mathbf{f_2}}$ vektörlerinin ilk N bileşeninden oluşan N boyutlu vektörleri ifade eder; ve $\mathbf{x}, \widehat{\mathbf{x}}$ vektörünün ilk N bileşenini içeren N boyutlu bir vektördür. Eşitlik 5.6 lineer olduğundan, N boyutlu \mathbf{x} çözüm vektörü, Midpoint (Ortanokta) yaklaşımında olduğu gibi Eşitlik 5.10 ile verilir.

Midpoint (Ortanokta) yaklaşımında olduğu gibi; H matrisinin oldukça kötü koşullu durumda (Sahni and Kumar 1987; Sahni et. al. 2019, 2020) olduğu, Eşitlik 5.11 ile verilen y_1 ve y_2 bireysel çözümlerinin 10^4 mertebesinde pozitif ve negatif bir şekilde salınımlı olduğu, dolayısıyla her bir alt aralıkta lineer yaklaşımıyla iyi temsil edilen $A(\nu')$ temel varsayımını açıkça ihlal ettiği görüldü. Ancak SVD yönteminin Lineer yaklaşımıyla düzgün ve 10^{-1} mertebesinde lineer bir kombinasyon elde etmek mümkündür.

Böylece kötü koşullu durumda olan matris denklemi Eşitlik 5.6, SVD yönteminin Lineer yaklaşımı ile çözülebilir. Dolayısıyla SVD Midpoint yaklaşımında olduğu gibi H matrisi, Eşitlik 5.12 şeklinde yazılarak x çözüm vektörü Eşitlik 5.18'de verildiği gibi belirlenir. Albedo β ifadesi Eşitlik 5.20 ile verilir. Eşitlik 5.22, Eşitlik 5.20'de kullanılarak SVD yönteminin Lineer yaklaşımı ile albedo β ifadesi

$$\beta = 1 - 2(1 - c) \left[\nu_0 a_{0+} + A(\nu_1) \frac{\nu_2^2}{6} + \frac{1}{6} \sum_{j=2}^N A(\nu_j) \left[\left(\nu_{j+1}^2 - \nu_{j-1}^2 \right) + \nu_j \left(\nu_{j+1} - \nu_{j-1} \right) \right] \right]$$
(5.32)

şeklinde belirlenir (Sahni et. al. 2019, 2020).

5.2. Saf Triplet Saçılma için SVD Yöntemi

Bu kesimde saçılma fonksiyonunun Legendre açılımının (Mika 1961) saf triplet saçılmalı durumu için yarı uzay albedo problemi SVD yönteminin Midpoint (Ortanokta) ve Lineer yaklaşımları ile çözüldü. Eşitlik 2.35, buradaki probleme uygulanarak L = 3ve $f_1 = f_2 = 0$ alınırsa sürekli Case özfonksiyonu

$$\phi(\nu,\mu) = \frac{c\nu}{2} \mathbf{P} \frac{1 + 7f_3 \,\phi_3(\nu) \,P_3(\mu)}{\nu - \mu} + \lambda(\nu) \,\delta(\nu - \mu) \tag{5.33}$$

şeklinde elde edilir. Burada $\phi_3(\nu)$, Eşitlik 2.34 ile verilir. Eşitlik 2.41 ve 5.33, Eşitlik 5.1'de kullanılarak ve $\nu \rightarrow \nu'$, $\mu \rightarrow \nu$, $A(\nu_0) \rightarrow a_{0+}$ şeklinde notasyon değişikliği yapılarak

$$\lambda(\nu)A(\nu) + \frac{c}{2} \int_{0}^{1} \frac{\nu' A(\nu')}{\nu' - \nu} \Big[1 + 7f_3 \phi_3(\nu') P_3(\nu) \Big] d\nu'$$

= $1 - a_{0+} \frac{c\nu_0}{2} \frac{1 + \gamma_0 (5\nu^3 - 3\nu)}{\nu_0 - \nu}$ (5.34)

elde edilir. Eşitlik 5.34'te

$$\frac{\nu'}{\nu' - \nu} = 1 + \frac{\nu}{\nu' - \nu}$$
(5.35)

ile verilen eşitlik kullanılarak

$$\lambda(\nu)A(\nu) + \frac{c\nu}{2} \int_{0}^{1} \frac{A(\nu')}{\nu' - \nu} \Big[1 + 7f_{3} \phi_{3}(\nu') P_{3}(\nu) \Big] d\nu'$$

= $1 - a_{0+} \frac{c\nu_{0}}{2} \frac{1 + \gamma_{0} (5\nu^{3} - 3\nu)}{\nu_{0} - \nu}$
 $- \frac{c}{2} \int_{0}^{1} A(\nu') d\nu' - \frac{c}{2} 7f_{3} P_{3}(\nu) \int_{0}^{1} A(\nu') \phi_{3}(\nu') d\nu'$ (5.36)

elde edilir. $\nu' - \nu$ faktörünü sadeleştirmek için $7f_3 \phi_3(\nu) P_3(\nu)$ terimi, eklenerek ve çıkarılarak

$$\lambda(\nu)A(\nu) + \frac{c\nu}{2} \Big[1 + 7f_3 \phi_3(\nu) P_3(\nu) \Big] \int_0^1 \frac{A(\nu')}{\nu' - \nu} d\nu'$$

= $1 - a_{0+} \frac{c\nu_0}{2} \frac{1 + \gamma_0 (5\nu^3 - 3\nu)}{\nu_0 - \nu}$
 $- \frac{c}{2} \int_0^1 A(\nu') d\nu' - \frac{c}{2} 7f_3 P_3(\nu) \int_0^1 A(\nu') \phi_3(\nu') d\nu'$
 $- \frac{c\nu}{2} 7f_3 P_3(\nu) \int_0^1 \frac{A(\nu')}{\nu' - \nu} \Big[\phi_3(\nu') - \phi_3(\nu) \Big] d\nu'$ (5.37)

elde edilir. Burada

$$\int_{0}^{1} A(\nu')\phi_{3}(\nu')d\nu' = \frac{15}{6}(1-c)\int_{0}^{1} A(\nu'){\nu'}^{3}d\nu' -\frac{1}{6}(9-4c)\int_{0}^{1} A(\nu')\nu'd\nu'$$
(5.38)

ve

$$\int_{0}^{1} A(\nu') \frac{\phi_{3}(\nu') - \phi_{3}(\nu)}{\nu' - \nu} d\nu' = \frac{15}{6} (1 - c) \int_{0}^{1} A(\nu') \left(\nu'^{2} + \nu'\nu + \nu^{2}\right) d\nu' - \frac{1}{6} (9 - 4c) \int_{0}^{1} A(\nu') d\nu'$$
(5.39)

eşitliklerine dikkat edilerek, Eşitlik 5.37

$$\lambda(\nu)A(\nu) + \frac{c\nu}{2}u(\nu)\int_0^1 \frac{A(\nu')}{\nu' - \nu}d\nu' = g_1(\nu) - a_{0+}g_2(\nu) +B_1g_3(\nu) + B_2g_4(\nu) + B_3g_5(\nu) + B_4g_6(\nu)$$
(5.40)

şeklinde yazılır. Burada $u(\nu), g_1(\nu), g_2(\nu), g_3(\nu), g_4(\nu), g_5(\nu)$ ve $g_6(\nu)$ fonksiyonları

$$u(\nu) = 1 + 7f_3 \phi_3(\nu) P_3(\nu), \qquad g_1(\nu) = 1,$$
 (5.41)

$$g_2(\nu) = \frac{c\nu_0}{2} \frac{1 + \gamma_0 (5\nu^3 - 3\nu)}{\nu_0 - \nu}, \qquad g_3(\nu) = -\frac{c}{2}u(\nu), \tag{5.42}$$

$$g_4(\nu) = -\frac{c}{2}7f_3 P_3(\nu) \left[\frac{15}{6}(1-c)\nu^2 - \frac{1}{6}(9-4c)\right],$$
(5.43)

$$g_5(\nu) = -\frac{c\nu}{2}7f_3 P_3(\nu)\frac{15}{6}(1-c) \quad \text{ve} \quad g_6(\nu) = -\frac{c}{2}7f_3 P_3(\nu)\frac{15}{6}(1-c) \quad (5.44)$$

şeklinde verilir ve $A(\nu')$ çözümü ile ilgili $B_1,\,B_2,\,B_3$ ve B_4 sabitleri

$$B_1 = \int_0^1 A(\nu') \, d\nu', \quad B_2 = \int_0^1 A(\nu') \, \nu' \, d\nu', \tag{5.45}$$

$$B_3 = \int_0^1 A(\nu') \,{\nu'}^2 \,d\nu' \quad \text{ve} \quad B_4 = \int_0^1 A(\nu') \,{\nu'}^3 \,d\nu' \tag{5.46}$$

şeklinde verilir (Bozkır et. al. 2022b).

5.2.1. Midpoint (Ortanokta) Yaklaşımı

İzotropik saçılma için SVD Midpoint yaklaşımında (Kesim 5.1.1.) anlatıldığı gibi Eşitlik 5.3, Eşitlik 5.40'taki integral teriminde kullanılarak

$$\int_{0}^{1} \frac{A(\nu')}{\nu' - \nu} d\nu' \approx \sum_{j=1}^{N} A(\nu_j) \ln \left| \frac{\nu_j + \delta_j - \nu}{\nu_j - \delta_j - \nu} \right|$$
(5.47)

elde edilebilir. Burada, $x_i = A(\nu_i)$, i = 1, 2, ..., N tanımlaması yapıldıktan sonra, Eşitlik 5.40, $N \times N$ matris denklemi

$$\sum_{j=1}^{N} H_{i,j} x_j = g_1(\nu_i) - a_{0+} g_2(\nu_i) + B_1 g_3(\nu_i) + B_2 g_4(\nu_i) + B_3 g_5(\nu_i) + B_4 g_6(\nu_i), \quad i = 1, 2, ..., N$$
(5.48)

veya

$$\mathbf{Hx} = \mathbf{g_1} - a_{0+}\mathbf{g_2} + B_1\mathbf{g_3} + B_2\mathbf{g_4} + B_3\mathbf{g_5} + B_4\mathbf{g_6}$$
(5.49)

şeklinde yazılabilir. Burada N boyutlu $\mathbf{g}_{\mathbf{k}}$, $\mathbf{k} = 1, 2, 3, 4, 5$ ve 6 vektörleri, kendi bileşenleri $\mathbf{g}_{\mathbf{k}i} = g_k(\nu_i)$ ile tanımlanır ve $H_{i,j}$ matris elemanları

$$H_{i,j} = \frac{c\nu_i}{2} u(\nu_i) \ln \left| \frac{\nu_j + \delta_j - \nu_i}{\nu_j - \delta_j - \nu_i} \right|, \quad i \neq j, \quad i, j = 1, 2, ..., N$$
(5.50)

ve

$$H_{i,i} = \lambda(\nu_i), \quad i = j, \quad i = 1, 2, ..., N$$
 (5.51)

ile verilir. Eşitlik 5.49, lineer bir denklem olduğundan x çözüm vektörü,

$$\mathbf{x} = \mathbf{y}_1 - a_{0+}\mathbf{y}_2 + B_1\mathbf{y}_3 + B_2\mathbf{y}_4 + B_3\mathbf{y}_5 + B_4\mathbf{y}_6; \quad \mathbf{y}_k = \mathbf{H}^{-1}\mathbf{g}_k$$
 (5.52)

şeklinde yazılabilir ve SVD Midpoint yaklaşımıyla x çözüm vektörü elde edilebilir. Bu nedenle Eşitlik 5.12, Eşitlik 5.49'da kullanılarak

$$WV^{T}x = U^{T} \Big[g_{1} - a_{0+}g_{2} + B_{1}g_{3} + B_{2}g_{4} + B_{3}g_{5} + B_{4}g_{6} \Big]$$
(5.53)

elde edildi. Böylece Eşitlik 5.52 ile verilen çözüm, yalnızca Eşitlik 5.53'teki vektörün *N*-inci bileşeninin sıfır olmasıyla mümkündür. Bu durum,

$$\left\{ \mathbf{U}^{\mathbf{T}} \left[\mathbf{g}_{1} - a_{0+} \mathbf{g}_{2} + B_{1} \mathbf{g}_{3} + B_{2} \mathbf{g}_{4} + B_{3} \mathbf{g}_{5} + B_{4} \mathbf{g}_{6} \right] \right\}_{N} = 0$$
(5.54)

şeklinde ifade edilebilir. Eşitlik 5.54, a_{0+} , B_1 , B_2 , B_3 ve B_4 sabitlerini belirleyen beş denklemden biridir. Ayrıca B_1 , B_2 , B_3 ve B_4 sabitleri

$$B_1 = \int_0^1 A(\nu') \, d\nu' \; \approx \; \sum_{j=1}^N A(\nu_j) 2\delta_j, \tag{5.55}$$

$$B_2 = \int_0^1 A(\nu') \,\nu' \,d\nu' \;\;\approx\;\; \sum_{j=1}^N \nu_j A(\nu_j) 2\delta_j, \tag{5.56}$$

$$B_{3} = \int_{0}^{1} A(\nu') {\nu'}^{2} d\nu' \approx \sum_{j=1}^{N} \nu_{j}^{2} A(\nu_{j}) 2\delta_{j} \left[1 + \frac{\delta_{j}^{2}}{3\nu_{j}^{2}} \right]$$
(5.57)

ve

$$B_4 = \int_0^1 A(\nu') \,\nu'^3 \,d\nu' \quad \approx \quad \sum_{j=1}^N \nu_j^3 A(\nu_j) 2\delta_j \left[1 + \frac{\delta_j^2}{\nu_j^2} \right] \tag{5.58}$$

şeklinde yazılabilir. Şimdi N boyutlu bir satır vektörü $\mathbf{b_1} = (2\delta_1, 2\delta_2, 2\delta_3, ..., 2\delta_N)$ tanımlanabilir. Bundan sonra Eşitlik 5.55,

$$B_{1} = \mathbf{b_{1}} \cdot \mathbf{x} = \mathbf{b_{1}} \cdot \mathbf{y_{1}} - a_{0+}\mathbf{b_{1}} \cdot \mathbf{y_{2}} + B_{1}\mathbf{b_{1}} \cdot \mathbf{y_{3}}$$
$$+B_{2}\mathbf{b_{1}} \cdot \mathbf{y_{4}} + B_{3}\mathbf{b_{1}} \cdot \mathbf{y_{5}} + B_{4}\mathbf{b_{1}} \cdot \mathbf{y_{6}}$$
(5.59)

şeklinde yazılabilir. Benzer şekilde $\mathbf{b_2} = (2\nu_1\delta_1, 2\nu_2\delta_2, 2\nu_3\delta_3, ..., 2\nu_N\delta_N),$ $\mathbf{b_3} = (2\nu_1^2\delta_1 + 2\delta_1^3/3, 2\nu_2^2\delta_2 + 2\delta_2^3/3, ..., 2\nu_N^2\delta_N + 2\delta_N^3/3)$ ve $\mathbf{b_4} = (2\nu_1^3\delta_1 + 2\nu_1\delta_1^3, 2\nu_2^3\delta_2 + 2\nu_2\delta_2^3, ..., 2\nu_N^3\delta_N + 2\nu_N\delta_N^3)$ tanımlanabilir ve beş katsayı a_{0+}, B_1, B_2, B_3 ve B_4 için beş lineer denklem

$$\left\{ \mathbf{U}^{\mathbf{T}} \left[\mathbf{g}_{1} - a_{0+} \mathbf{g}_{2} + B_{1} \mathbf{g}_{3} + B_{2} \mathbf{g}_{4} + B_{3} \mathbf{g}_{5} + B_{4} \mathbf{g}_{6} \right] \right\}_{N} = 0, \quad (5.60)$$

$$\mathbf{b_1} \cdot \mathbf{y_1} - a_{0+} \mathbf{b_1} \cdot \mathbf{y_2} + B_1 [\mathbf{b_1} \cdot \mathbf{y_3} - 1] + B_2 \mathbf{b_1} \cdot \mathbf{y_4} + B_3 \mathbf{b_1} \cdot \mathbf{y_5} + B_4 \mathbf{b_1} \cdot \mathbf{y_6} = 0,$$
(5.61)

$$\mathbf{b_2} \cdot \mathbf{y_1} - a_{0+} \mathbf{b_2} \cdot \mathbf{y_2} + B_1 \mathbf{b_2} \cdot \mathbf{y_3}$$
$$+ B_2 [\mathbf{b_2} \cdot \mathbf{y_4} - 1] + B_3 \mathbf{b_2} \cdot \mathbf{y_5} + B_4 \mathbf{b_2} \cdot \mathbf{y_6} = 0, \qquad (5.62)$$

$$\mathbf{b_3} \cdot \mathbf{y_1} - a_{0+} \mathbf{b_3} \cdot \mathbf{y_2} + B_1 \mathbf{b_3} \cdot \mathbf{y_3}$$
$$+ B_2 \mathbf{b_3} \cdot \mathbf{y_4} + B_3 [\mathbf{b_3} \cdot \mathbf{y_5} - 1] + B_4 \mathbf{b_3} \cdot \mathbf{y_6} = 0$$
(5.63)

$$\mathbf{b_4} \cdot \mathbf{y_1} - a_{0+} \mathbf{b_4} \cdot \mathbf{y_2} + B_1 \mathbf{b_4} \cdot \mathbf{y_3}$$
$$+ B_2 \mathbf{b_4} \cdot \mathbf{y_4} + B_3 \mathbf{b_4} \cdot \mathbf{y_5} + B_4 [\mathbf{b_4} \cdot \mathbf{y_6} - 1] = 0$$
(5.64)

şeklinde elde edilebilir. Bu beş denklem çözülerek, Eşitlik 5.52'den x çözüm vektörü elde edilebilir. x vektörü bilindiğinde, ayrıntılı açısal dağılım dahil tüm fiziksel büyüklükler hesaplanabilir. F_N ve H_N yöntemlerinin sonuçlarıyla karşılaştırmak için burada yalnızca albedo β hesaplandı. Albedo için sonuçları veren ifade Eşitlik 5.20'den

$$\beta = 1 - 2(1 - c) \left[\nu_0 a_{0+} + B_2 \right]$$
(5.65)

şeklinde belirlenir. Burada B_2 , Eşitlik 5.56 ile verilir (Bozkır et. al. 2022b).

5.2.2. Lineer Yaklaşım

İzotropik saçılma için SVD Lineer yaklaşımında (Kesim 5.1.2.) anlatıldığı gibi Eşitlik 5.22, Eşitlik 5.40'taki integral teriminde kullanılarak

$$\int_{0}^{1} \frac{A(\nu')}{\nu' - \nu} d\nu' \approx \sum_{j=2}^{N} A(\nu_{j}) \left[\frac{\nu_{j+1} - \nu}{\nu_{j+1} - \nu_{j}} \ln \left| \frac{\nu_{j+1} - \nu}{\nu_{j} - \nu} \right| + \frac{\nu - \nu_{j-1}}{\nu_{j} - \nu_{j-1}} \ln \left| \frac{\nu_{j} - \nu}{\nu_{j-1} - \nu} \right| \right] + A(1) \left[1 + \frac{\nu - \nu_{N}}{1 - \nu_{N}} \ln \left| \frac{1 - \nu}{\nu_{N} - \nu} \right| \right] + A(0) \left[-1 + \frac{\nu_{2} - \nu}{\nu_{2}} \ln \left| \frac{\nu_{2} - \nu}{\nu} \right| \right]$$
(5.66)

elde edilebilir. ν , 1'e giderken A(1)'in önündeki katsayı sonsuza gider. Bu durum,

$$\nu \to 1$$
 için $\left[1 + \frac{\nu - \nu_N}{1 - \nu_N} \ln \left| \frac{1 - \nu}{\nu_N - \nu} \right| \right] \to \infty$

şeklinde gösterilebilir. Bu durumda A(1) = 0 olmalıdır. Bununla birlikte EK–4'te A(1) = 0 olduğu analitik olarak (Sahni et. al. 2020) gösterilmiştir. Burada, $x_i = A(\nu_i), i = 1, 2, ..., N + 1$ tanımlaması yapıldıktan sonra Eşitlik 5.40,

$$\sum_{j=1}^{N+1} H_{i,j} x_j = g_1(\nu_i) - a_{0+} g_2(\nu_i) + B_1 g_3(\nu_i) + B_2 g_4(\nu_i) + B_3 g_5(\nu_i) + B_4 g_6(\nu_i), \quad i = 1, 2, ..., N+1$$
(5.67)

veya

$$\widehat{\mathbf{H}}\widehat{\mathbf{x}} = \widehat{\mathbf{g}}_1 - a_{0+}\widehat{\mathbf{g}}_2 + B_1\widehat{\mathbf{g}}_3 + B_2\widehat{\mathbf{g}}_4 + B_3\widehat{\mathbf{g}}_5 + B_6\widehat{\mathbf{g}}_6$$
(5.68)

ve

şeklinde $(N + 1) \times (N + 1)$ matris denklemine indirgendi. Burada N + 1 boyutlu $\hat{\mathbf{g}}_{\mathbf{k}}$, $\mathbf{k} = 1, 2, 3, 4, 5$ ve 6 vektörleri, kendi bileşenleri $\hat{\mathbf{g}}_{\mathbf{k}i} = g_k(\nu_i)$ ile tanımlanır ve $H_{i,j}$ matris elemanları

$$H_{1,j} = \delta_{1,j}; \quad j = 1, ..., N+1, \qquad H_{2,1} = -\frac{c\nu_2}{2}u(\nu_2),$$
 (5.69)

$$H_{i,1} = \frac{c\nu_i}{2}u(\nu_i) \left[-1 + \frac{\nu_2 - \nu_i}{\nu_2} \ln \left| \frac{\nu_2 - \nu_i}{\nu_i} \right| \right]; \quad i = 3, ..., N + 1,$$
(5.70)

$$H_{j+1,j} = \frac{c\nu_{j+1}}{2}u(\nu_{j+1}) \left[\frac{\nu_{j+1} - \nu_{j-1}}{\nu_j - \nu_{j-1}} \ln \left|\frac{\nu_j - \nu_{j+1}}{\nu_{j-1} - \nu_{j+1}}\right|\right];$$

$$j = 2, ..., N; \quad i = j+1,$$
(5.71)

$$H_{j-1,j} = \frac{c\nu_{j-1}}{2}u(\nu_{j-1})\left[\frac{\nu_{j+1} - \nu_{j-1}}{\nu_{j+1} - \nu_j}\ln\left|\frac{\nu_{j+1} - \nu_{j-1}}{\nu_j - \nu_{j-1}}\right|\right];$$

$$j = 3, ..., N+1; \quad i = j-1,$$
(5.72)

$$H_{i,j} = \frac{c\nu_i}{2}u(\nu_i) \left[\frac{\nu_{j+1} - \nu_i}{\nu_{j+1} - \nu_j} \ln \left| \frac{\nu_{j+1} - \nu_i}{\nu_j - \nu_i} \right| + \frac{\nu_i - \nu_{j-1}}{\nu_j - \nu_{j-1}} \ln \left| \frac{\nu_j - \nu_i}{\nu_{j-1} - \nu_i} \right| \right];$$

$$i = 2, 3, ..., N + 1; \quad j = 2, 3, ..., N; \quad i \neq j$$
(5.73)

ve

$$H_{i,i} = \lambda(\nu_i) + \frac{c\nu_i}{2}u(\nu_i)\ln\left|\frac{\nu_{i+1} - \nu_i}{\nu_{i-1} - \nu_i}\right|; \quad i = 2, 3, ..., N; \quad i = j$$
(5.74)

ile verilir. Burada $\delta_{i,j}$, Kronecker delta fonksiyonunu ifade eder. i = j olduğunda $\delta_{i,i} = 1$ olur ve $i \neq j$ olduğunda $\delta_{i,j} = 0$ olur. $\widehat{\mathbf{H}}$ matrisinin (N + 1)-inci sütunu

$$H_{i,N+1} = \frac{c\nu_i}{2}u(\nu_i) \left[1 + \frac{\nu_i - \nu_N}{1 - \nu_N} \ln \left| \frac{1 - \nu_i}{\nu_N - \nu_i} \right| \right]; \quad i = 1, 2, ..., N$$
(5.75)

ile verilir. Kesim 5.1.2.'de gösterildiği gibi $x_{N+1} = A(\nu_{N+1}) = A(1) = 0$ (Bkz. EK– 4) olur. Dolayısıyla x_i , i = 1, 2, ..., N çözüm vektörü, Eşitlik 5.49 ile verilen $N \times N$ matris denklemi çözülerek elde edilebilir. Eşitlik 5.49'da, H ($N \times N$ mertebesinde), \widehat{H} matrisinin ana alt matrisidir; x, \widehat{x} vektörünün ilk N bileşeninden oluşan N boyutlu bir vektördür ve \mathbf{g}_k , $\widehat{\mathbf{g}}_k$ vektörlerinin ilk N bileşeninden oluşan N boyutlu vektörlerdir.

Eşitlik 5.49, lineer bir denklem olduğundan x çözüm vektörü, Eşitlik 5.52'deki gibi yazılabilir. Burada SVD Lineer yaklaşımıyla x çözüm vektörü elde edilebilir. Bu nedenle Eşitlik 5.12, Eşitlik 5.49'da kullanılarak Eşitlik 5.53 elde edilir. Böylece Eşitlik 5.52 ile verilen çözüm, yalnızca Eşitlik 5.53'teki vektörün N-inci bileşeninin sıfır olmasıyla mümkündür. Bu durum, Eşitlik 5.54 ile verilir. Eşitlik 5.54, a_{0+} , B_1 , B_2 , B_3 ve B_4 sabitlerini belirleyen beş denklemden biridir. Ayrıca Eşitlik 5.45 ve 5.46 ile verilen B_1 , B_2 , B_3 ve B_4 sabitleri

$$B_1 \approx A(\nu_1)\frac{\nu_2}{2} + \frac{1}{2}\sum_{j=2}^N A(\nu_j)(\nu_{j+1} - \nu_{j-1}), \qquad (5.76)$$

$$B_2 \approx A(\nu_1) \frac{\nu_2^2}{6} + \frac{1}{6} \sum_{j=2}^N A(\nu_j) \Big[\left(\nu_{j+1}^2 - \nu_{j-1}^2 \right) + \nu_j (\nu_{j+1} - \nu_{j-1}) \Big], \quad (5.77)$$

$$B_{3} \approx A(\nu_{1})\frac{\nu_{2}^{3}}{12} + \sum_{j=2}^{N} \frac{A(\nu_{j})}{12} \left[\left(\nu_{j+1}^{3} - \nu_{j-1}^{3}\right) + \nu_{j}\left(\nu_{j+1}^{2} - \nu_{j-1}^{2}\right) + \nu_{j}^{2}\left(\nu_{j+1} - \nu_{j-1}\right) \right]$$

$$(5.78)$$

ve

$$B_{4} \approx A(\nu_{1})\frac{\nu_{2}^{4}}{20} + \sum_{j=2}^{N} \frac{A(\nu_{j})}{20} \left[\left(\nu_{j+1}^{4} - \nu_{j-1}^{4}\right) + \nu_{j}\left(\nu_{j+1}^{3} - \nu_{j-1}^{3}\right) + \nu_{j}^{2}\left(\nu_{j+1}^{2} - \nu_{j-1}^{2}\right) + \nu_{j}^{3}\left(\nu_{j+1} - \nu_{j-1}\right) \right]$$
(5.79)

şeklinde yazılabilir. Şimdi N boyutlu bir satır vektörü

$$\mathbf{b_1} = \frac{1}{2} \Big[\nu_2, (\nu_3 - \nu_1), (\nu_4 - \nu_2), \dots, (\nu_{N+1} - \nu_{N-1}) \Big]$$
(5.80)

tanımlanabilir. Bundan sonra Eşitlik 5.76, Eşitlik 5.59 şeklinde yazılabilir. Benzer şekilde b_2 , b_3 ve b_4 vektörleri, bileşenleri ile birlikte

$$\mathbf{b_2} = \frac{\nu_2^2}{6}, \quad \frac{1}{6} \Big[(\nu_3^2 - \nu_1^2) + \nu_2 (\nu_3 - \nu_1) \Big], \\ \frac{1}{6} \Big[(\nu_4^2 - \nu_2^2) + \nu_3 (\nu_4 - \nu_2) \Big], \dots, \\ \frac{1}{6} \Big[((\nu_{N+1})^2 - (\nu_{N-1})^2) + \nu_N (\nu_{N+1} - \nu_{N-1}) \Big], \quad (5.81)$$

$$\mathbf{b_{3}} = \frac{\nu_{2}^{3}}{12}, \quad \frac{1}{12} \Big[(\nu_{3}^{3} - \nu_{1}^{3}) + \nu_{2} (\nu_{3}^{2} - \nu_{1}^{2}) + \nu_{2}^{2} (\nu_{3} - \nu_{1}) \Big], \\ \quad \frac{1}{12} \Big[(\nu_{4}^{3} - \nu_{2}^{3}) + \nu_{3} (\nu_{4}^{2} - \nu_{2}^{2}) + \nu_{3}^{2} (\nu_{4} - \nu_{2}) \Big], \dots, \\ \quad \frac{1}{12} \Big[((\nu_{N+1})^{3} - (\nu_{N-1})^{3}) + \nu_{N} ((\nu_{N+1})^{2} - (\nu_{N-1})^{2}) \\ \quad + \nu_{N}^{2} (\nu_{N+1} - \nu_{N-1}) \Big]$$
(5.82)

$$\mathbf{b_4} = \frac{\nu_2^4}{20}, \\ \frac{1}{20} \Big[(\nu_3^4 - \nu_1^4) + \nu_2 (\nu_3^3 - \nu_1^3) + \nu_2^2 (\nu_3^2 - \nu_1^2) + \nu_2^3 (\nu_3 - \nu_1) \Big], \\ \frac{1}{20} \Big[(\nu_4^4 - \nu_2^4) + \nu_3 (\nu_4^3 - \nu_2^3) + \nu_3^2 (\nu_4^2 - \nu_2^2) + \nu_3^3 (\nu_4 - \nu_2) \Big], \\ \dots \\ \dots \\ \frac{1}{20} \Big[((\nu_{N+1})^4 - (\nu_{N-1})^4) + \nu_N ((\nu_{N+1})^3 - (\nu_{N-1})^3) \\ + \nu_N^2 ((\nu_{N+1})^2 - (\nu_{N-1})^2) + \nu_N^3 (\nu_{N+1} - \nu_{N-1}) \Big]$$
(5.83)

şeklinde tanımlanabilir ve beş katsayı a_{0+} , B_1 , B_2 , B_3 ve B_4 için beş lineer denklem, Eşitlik 5.60–5.64 ile verilir ancak bu beş denklemdeki B_1 , B_2 , B_3 ve B_4 katsayıları ile b₁, b₂, b₃ ve b₄ vektörleri, sırasıyla Eşitlik 5.76–5.79 ve Eşitlik 5.80–5.83 ile verilir. Bu beş denklem çözülerek, Eşitlik 5.52'den x çözüm vektörü elde edilebilir. Albedo için sonuçları veren ifade Eşitlik 5.65 ile verilir. Ancak Eşitlik 5.65'teki B_2 , Eşitlik 5.77 ile verilir. (Bozkır et. al. 2022b)

Saçılma fonksiyonunun Legendre açılımının (Mika 1961) saf triplet saçılması (Kesim 3.2., Kesim 4.2. ve Kesim 5.2.) için elde edilen sayısal sonuçlar aşağıdaki gibidir. Bu tez çalışmasında yapılan tüm hesaplamalarda Mathematica yazılımı 12.2 (Wolfram Mathematica 2020) kullanıldı. Saf triplet saçılmada değişen ikincil nötron sayısı ve saçılma katsayıları için kesikli özdeğerler Çizelge E6.1.'de (Bkz. EK-6) verildi. Bu özdeğerler, Eşitlik 2.43 ile verilen normalizasyon integral sonucunun sayısal olarak çözümüdür. Bu amaçla Newton-Raphson yöntemiyle çalışan Mathematica yazılımındaki FindRoot komutu kullanıldı (Burden, Faires and Burden 2016). Çizelge 5.1. ve Çizelge E6.2.–E6.4., değişen c ve f_3 değerleri için F_N , H_N ve SVD yöntemleriyle hesaplanan albedo değerlerini gösterir. Şekil 5.2. ve Şekil E6.1.a.–E6.1.c.'de albedo β , saçılma katsayısı f_3 'e karşı çizilirken, Şekil E6.1.d.'de (Bkz. EK–6) albedo β , ikincil nötron sayısı c'ye karşı çizildi. Burada H_N, F_N ve SVD yöntemi ile çizilen grafikler benzer olduğundan sadece bir yöntemin (H_N yöntemi) sonuçları ile çizilen grafikler verildi. H_N ve F_N yöntemi sonuçları, sırasıyla yalnızca N = 10 ve N = 11 için verilirken, SVD yöntemi sonuçları, N = 500 ve N = 1000 için verildi. Mathematica yazılımındaki SingularValueDecomposition komutu, SVD yöntemini uygulamak için kullanıldı.

ve

f_3	$\mathbf{H}_{\mathbf{N}} (N = 10)$	$\mathbf{F}_{\mathbf{N}} (N = 11)$	$\mathbf{SVD}\;(N=500)$	SVD $(N = 1000)$
-0, 14	0,3424167180	0,3424152523	0,3423175314	0,3423708617
-0, 10	0,3422636171	0,3422621553	0,3421559010	0,3422138123
-0,05	0,3420678131	0,3420663569	0,3419470338	0,3420119623
0,05	0,3416604436	0,3416590022	0,3415005523	0,3415864763
0, 10	0,3414482963	0,3414468651	0,3412573202	0,3413598880
0, 14	0,3412742227	0,3412728015	0,3410480829	0,3411694055

Çizelge 5.1. c = 0.8 ve değişen f_3 için albedo değerleri (Bozkır et. al. 2022b)

Şekil 5.2. c = 0.8 ve N = 10 için H_N yöntemiyle β ile f_3 karşılaştırması (Bozkır et. al. 2022b)

Sabit *c* için saçılma katsayıları artarken albedo değerlerinin azaldığı görüldü. Fakat sabit saçılma katsayısı için *c* artarken albedo değerlerinin beklendiği gibi arttığı görüldü. Sayısal sonuçlara göre negatif tanımlı saçılma katsayısı $f_3 < 0$ için geriye doğru, pozitif tanımlı saçılma katsayısı $f_3 > 0$ için ileriye doğru saçılmanın gerçekleştiği görüldü. Sayısal sonuçlara göre üç yöntem için de genellikle ilk üç basamak aynıdır (Bozkır et. al. 2022b).

5.3. Lineer-Triplet Saçılma için SVD Yöntemi

Bu kesimde saçılma fonksiyonunun Legendre açılımının (Mika 1961) lineer-triplet saçılmalı durumu için yarı uzay albedo problemi SVD yönteminin Lineer yaklaşımı ile çözüldü. Buradaki işlemler, Kesim 5.1., 5.2. ve 5.4.'e benzer şekilde yapıldı. $\phi(\nu_0, \mu)$ ve $\phi(\nu, \mu)$ şeklinde gösterilen Case özfonksiyonlarının açık formlarının Eşitlik 5.1'de kullanılmasıyla; $\nu \rightarrow \nu'$, $\mu \rightarrow \nu$, $A(\nu_0) \rightarrow a_{0+}$ şeklinde notasyon değişikliği yapılmasıyla ve bir miktar ara işlemden sonra (Türeci et. al. 2023) Eşitlik 5.40 ile verilen singüler integral denklem elde edilir. Ancak Eşitlik 5.40'ta verilen $u(\nu)$, $g_1(\nu)$, $g_2(\nu)$, $g_3(\nu)$, $g_4(\nu)$, $g_5(\nu)$ ve $g_6(\nu)$ fonksiyonları

$$u(\nu) = 1 + 3f_1\phi_1(\nu)P_1(\nu) + 7f_3\phi_3(\nu)P_3(\nu), \qquad g_1(\nu) = 1, \tag{5.84}$$

$$g_2(\nu) = \frac{c\nu_0}{2} \frac{\left[1 + \alpha(\nu_0)\nu + \beta(\nu_0)\nu^3\right]}{\nu_0 - \nu}, \qquad g_3(\nu) = -\frac{c}{2}u(\nu), \tag{5.85}$$

$$g_4(\nu) = -\frac{c}{2} \Big[3f_1(1-c)\nu + \frac{7f_3}{6} 15(1-c)(1-cf_1)\nu^2 P_3(\nu) \\ -\frac{7f_3}{6}(9-4c)P_3(\nu) \Big],$$
(5.86)

$$g_5(\nu) = -\frac{7f_3c}{12}15(1-c)(1-cf_1)\nu P_3(\nu)$$
(5.87)

ve

$$g_6(\nu) = -\frac{7f_3c}{12}15(1-c)(1-cf_1)P_3(\nu)$$
(5.88)

şeklinde verilir ve $A(\nu')$ çözümü ile ilgili B_1 , B_2 , B_3 ve B_4 sabitleri Eşitlik 5.45 ve 5.46 ile verilir. Ayrıca bu sabitlerin açılımları Eşitlik 5.76–5.79 ile verilir (Türeci et. al. 2023).

5.3.1. Lineer Yaklaşım

Bu kesim, saf triplet saçılma için SVD Lineer yaklaşımının (Kesim 5.2.2.) çözümü ile aynıdır. Ancak Eşitlik 5.84–5.88 ile verilen fonksiyonların farklı oldukları dikkate alınmalıdır.

Saçılma fonksiyonunun Legendre açılımının (Mika 1961) lineer-triplet saçılması (Kesim 4.3. ve Kesim 5.3.) için elde edilen sayısal sonuçlar aşağıdaki gibidir. Saçılma çekirdeğinin negatif olmadığı durumda, lineer saçılma ($3f_1$) ve triplet saçılmanın ($7f_3$) güç aralığı elde edildi ve Çizelge 5.2.'de verildi.

$(7f_3)^{\frac{1}{3}}$	$7f_3$	$3f_1$
-1,0	-1,0	$0 \le 3f_1 \le 1,065$
-0,9	-0,729	$-0,271 \le 3f_1 \le 1,215$
-0,8	-0,512	$-0,488 \le 3f_1 \le 1,284$
-0,7	-0,343	$-0,657 \le 3f_1 \le 1,281$
-0,6	-0,216	$-0,784 \le 3f_1 \le 1,215$
-0,5	-0,125	$-0,875 \le 3f_1 \le 1,125$
0,5	0,125	$-1,125 \le 3f_1 \le 0,875$
0,6	0,216	$-1,215 \le 3f_1 \le 0,784$
0,7	0,343	$-1,281 \le 3f_1 \le 0,657$
0,8	0,512	$-1,284 \le 3f_1 \le 0,488$
0,9	0,729	$-1,215 \le 3f_1 \le 0,271$
1,0	1,0	$-1,065 \le 3f_1 \le 0$

Çizelge 5.2. Farklı $7f_3$ değerleri için $3f_1$ aralığı (Türeci et. al. 2023)

Sonraki tüm hesaplamalarda Çizelge 5.2.'ye uyan f_1 ve f_3 değerleri seçildi. Daha sonra, çeşitli f_1 ve f_3 değerleri kullanılarak Çizelge E7.1.'de $0,7 \le c \le 0,9999$ için listelenen ν_0 kesikli özdeğerleri (difüzyon uzunluğu) elde edildi. Bu kesikli özdeğerleri hesaplamak için Mathematica yazılımında "FindRoot" komutu kullanıldı. Çizelge E7.1.'den difüzyon uzunluğunun yalnızca ikincil nötron sayısı c ve lineer saçılmanın gücü f_1 ile önemli ölçüde değiştiği görüldü.

SVD yönteminde kullanılan ağ noktaları arasındaki mesafe kısaltılabilir, yani ağ noktalarının sayısı artırılabilir. Bu durumda kötü koşullandırmanın arttığı ve yapılan bilgisayar programlarının önceki sürümünde N = 150 için makine taşması görüldü. Ancak taşmadan önce, programın, çok büyük olmayan bir ağ için makul sonuçlar (yaklaşık üç ila dört rakamlı doğruluk) verdiği kaydedildi. EK–5'te, bu zorluğun kaynağının izi sürüldü ve çaresi de bulundu. Sonraki çizelgelerde, N = 500, N = 1000 ve N = 5000ile hesaplamaların sonuçları kaydedildi. Ancak ağ aralığı daha da küçültülebilir. Eşit olmayan alt aralıklara sahip farklı bir ağ yapısı seçilerek sayısal hesaplamanın büyük ölçüde azalmasının mümkün olduğu da kontrol edildi. Aslında, noktaları

$$\nu_{N+1} = 1; \quad \nu_1 = 0; \quad \Delta = \frac{2}{N(N+1)};$$

$$\nu_{N-i+1} = \nu_{N-i+2} - i\Delta; \quad i = 1, 2, ..., N$$
(5.89)

ile verilen bir ağın alt aralıkları farklı uzunluktadır. Böyle bir ağ aralığı seçilerek N = 400 için elde edilen sonucun, eşit uzunluklu ağ aralığı seçilerek N = 5000 için elde edilen sonuç ile aynı olduğu görüldü.

 $0.7 \le c \le 0.9999$ için albedo β değerlerinin H_N ve SVD sonuçları Çizelge E7.2.– E7.7.'de (Bkz. EK–7) verildi. N = 6 için H_N ve N = 5000 için SVD sonuçları arasında iyi bir uyum olduğu gözlemlendi. Farklar, ondalık basamaktan sonra c = 0.7ve c = 0.8 için beşinci, c = 0.9 için altıncı, c = 0.99 için yedinci ve c = 0.999 ve c = 0.9999 için sekizinci sıradadır. Böylece bu sonuçlara bu tutarlılıkta güvenilebilir.

Albedo β 'nın c ile arttığı, ancak lineer saçılma f_1 'in gücü arttıkça azaldığı görüldü. Artan f_1 , saçılma fonksiyonunu ileriye doğru pik yaptırdığından bu, anlaşılabilir bir durumdur. Ayrıca, β 'nın f_3 ile keskin bir şekilde değişmediği, ancak belirli c ve f_1 için artan f_3 ile azaldığı görüldü.

Son olarak Çizelge E7.8.'de bu iki yöntem ile hesaplanan çıkış dağılımı c = 0,8 ve c = 0,999 olmak üzere iki farklı değer için karşılaştırıldı. Biri pozitif, diğeri negatif olmak üzere iki farklı $3f_1$ değeri seçildi. Benzer şekilde, yine oldukça önemli ölçüde farklılık gösteren $7f_3$ değerleri seçildi. H_N ve SVD yöntemleri ile hesaplanan çıkış dağılımlarının hemen hemen aynı olduğu görüldü. $\mu = 0$ dışında farklar, ondalık basamaktan sonra dördüncü veya beşinci sıradadır. $\mu = 0$ 'da bir dengesizlik vardır. $\mu = 0$ için H_N sonucu yalnızca Eşitlik 3.4'teki a_0 katsayısı ile belirlenir. Diğer tüm katsayılar önemsizdir. Dolayısıyla, H_N sonucu $\mu = 0$ için çok tutarlı olmayabilir.

Çıkış dağılımının, μ ile monoton bir şekilde azaldığı görüldü. Ayrıca bu çıkış dağılımı f_3 'teki değişimlere çok duyarlı değildir. Çizelge E7.8.'den, c = 0,999 için tüm f_1 ve f_3 değerlerinde çıkış dağılımı neredeyse düzdür. Bu, şu şekilde anlaşılabilir: c = 1 için Eşitlik 2.23'ün çözümü, Eşitlik 3.1 ile verilen sınır koşuluna bağlı bir biçimde, analitik olarak $\Psi(x, \mu) = 1, -1 \le \mu \le 1, 0 \le x \le \infty$ şeklinde bulunur (Türeci et. al. 2023).

5.4. Anlı-Güngör Saçılma Fonksiyonu için SVD Yöntemi

Bu kesimde Anlı-Güngör saçılma fonksiyonunun ikinci mertebe saçılma durumu (L = 2) kullanılarak yarı uzay albedo problemi SVD yönteminin Lineer yaklaşımı ile çözüldü. Buradaki işlemler, Kesim 5.1., 5.2. ve 5.3.'e benzer şekilde yapıldı. Eşitlik 2.65 ve 2.66 kullanılarak L = 2 alınırsa sürekli Case özfonksiyonu

$$\phi(\nu,\mu) = \frac{c\nu}{2} \mathbf{P} \frac{1 + t P_1(\mu) h_1(\nu) + t^2 P_2(\mu) h_2(\nu)}{\nu - \mu} + \lambda(\nu) \,\delta(\nu - \mu) \tag{5.90}$$

şeklinde elde edilebilir. Eşitlik 2.68 ve 5.90'ın, Eşitlik 5.1'de kullanılmasıyla ve $\nu \rightarrow \nu', \mu \rightarrow \nu, A(\nu_0) \rightarrow a_{0+}$ şeklinde notasyon değişikliği yapılmasıyla

$$\lambda(\nu)A(\nu) + \frac{c}{2} \int_{0}^{1} \frac{\nu'A(\nu')}{\nu' - \nu} \left[1 + t P_{1}(\nu) h_{1}(\nu') + t^{2} P_{2}(\nu) h_{2}(\nu') \right] d\nu'$$

= $1 - a_{0+} \frac{c\nu_{0}}{2} \frac{\left[1 - b(\nu_{0}) + a(\nu_{0}) \nu + 3 b(\nu_{0}) \nu^{2} \right]}{\nu_{0} - \nu}$ (5.91)

elde edilir. Burada Eşitlik 5.35, Eşitlik 5.91'de kullanılarak

$$\lambda(\nu)A(\nu) + \frac{c\nu}{2} \int_{0}^{1} \frac{A(\nu')}{\nu' - \nu} \left[1 + t P_{1}(\nu) h_{1}(\nu') + t^{2} P_{2}(\nu) h_{2}(\nu') \right] d\nu'$$

= $1 - a_{0+} \frac{c\nu_{0}}{2} \frac{\left[1 - b(\nu_{0}) + a(\nu_{0})\nu + 3b(\nu_{0})\nu^{2} \right]}{\nu_{0} - \nu} - \frac{c}{2} \int_{0}^{1} A(\nu') d\nu'$
 $- \frac{c}{2} t P_{1}(\nu) \int_{0}^{1} A(\nu') h_{1}(\nu') d\nu' - \frac{c}{2} t^{2} P_{2}(\nu) \int_{0}^{1} A(\nu') h_{2}(\nu') d\nu'$ (5.92)

elde edilir. Daha sonra $\nu' - \nu$ terimini sadeleştirmek için $t P_1(\nu) h_1(\nu)$ ve $t^2 P_2(\nu) h_2(\nu)$ terimleri eklenir ve çıkarılırsa

$$\begin{split} \lambda(\nu)A(\nu) &+ \frac{c\nu}{2} \left[1 + t P_1(\nu) h_1(\nu) + t^2 P_2(\nu) h_2(\nu) \right] \int_0^1 \frac{A(\nu')}{\nu' - \nu} d\nu' \\ &= 1 - a_{0+} \frac{c\nu_0}{2} \frac{\left[1 - b(\nu_0) + a(\nu_0) \nu + 3 b(\nu_0) \nu^2 \right]}{\nu_0 - \nu} - \frac{c}{2} \int_0^1 A(\nu') d\nu' \\ &- \frac{c}{2} t P_1(\nu) \int_0^1 A(\nu') h_1(\nu') d\nu' - \frac{c}{2} t^2 P_2(\nu) \int_0^1 A(\nu') h_2(\nu') d\nu' \\ &- \frac{c\nu}{2} t P_1(\nu) \int_0^1 \frac{A(\nu')}{\nu' - \nu} \left[h_1(\nu') - h_1(\nu) \right] d\nu' \end{split}$$
(5.93)

elde edilir. Burada

$$\int_0^1 A(\nu') h_1(\nu') d\nu' = (1-c) \int_0^1 A(\nu') \nu' d\nu', \qquad (5.94)$$
$$\int_{0}^{1} A(\nu') h_{2}(\nu') d\nu' = \frac{1}{2} (1-c)(3-ct) \int_{0}^{1} A(\nu') \nu'^{2} d\nu' -\frac{1}{2} \int_{0}^{1} A(\nu') d\nu', \qquad (5.95)$$

$$\int_{0}^{1} A(\nu') \frac{h_{1}(\nu') - h_{1}(\nu)}{\nu' - \nu} d\nu' = (1 - c) \int_{0}^{1} A(\nu') d\nu'$$
(5.96)

ve

$$\int_{0}^{1} A(\nu') \frac{h_{2}(\nu') - h_{2}(\nu)}{\nu' - \nu} d\nu' = \frac{1}{2} (1 - c)(3 - ct) \int_{0}^{1} A(\nu') \nu' d\nu' + \frac{1}{2} (1 - c)(3 - ct)\nu \int_{0}^{1} A(\nu') d\nu' \quad (5.97)$$

ile verilir. Eşitlik 5.94–5.97, Eşitlik 5.93'te kullanılarak

$$\lambda(\nu)A(\nu) + \frac{c\nu}{2}u(\nu)\int_0^1 \frac{A(\nu')}{\nu' - \nu}d\nu'$$

= $g_1(\nu) - a_{0+}g_2(\nu) + B_1 g_3(\nu) + B_2 g_4(\nu) + B_3 g_5(\nu)$ (5.98)

elde edilir. Burada $u(\nu), g_1(\nu), g_2(\nu), g_3(\nu), g_4(\nu)$ ve $g_5(\nu)$ fonksiyonları

$$u(\nu) = 1 + t P_1(\nu) h_1(\nu) + t^2 P_2(\nu) h_2(\nu), \qquad g_1(\nu) = 1, \tag{5.99}$$

$$g_2(\nu) = \frac{c\nu_0}{2} \frac{\left[1 - b(\nu_0) + a(\nu_0)\nu + 3b(\nu_0)\nu^2\right]}{\nu_0 - \nu}, \qquad g_3(\nu) = -\frac{c}{2}u(\nu), \quad (5.100)$$

$$g_4(\nu) = -\frac{c}{2}t\nu(1-c)\left[1 + \frac{1}{2}t(3-ct)P_2(\nu)\right]$$
(5.101)

ve

$$g_5(\nu) = -\frac{c}{4}t^2(1-c)(3-ct)P_2(\nu)$$
(5.102)

ile verilir. Ayrıca B_1 , B_2 ve B_3 sabitleri, Eşitlik 5.45 ve 5.46 ile verilir.

5.4.1. Lineer Yaklaşım

İzotropik ve saf triplet saçılmalar için SVD Lineer yaklaşımında (Kesim 5.1.2. ve Kesim 5.2.2.) ifade edilenlerden farklı olanlar aşağıda yazıldı. Buna göre $x_i = A(\nu_i)$, i = 1, 2, ..., N + 1 tanımlaması yapılarak Eşitlik 5.98,

$$\sum_{j=1}^{N+1} H_{i,j} x_j = g_1(\nu_i) - a_{0+} g_2(\nu_i) + B_1 g_3(\nu_i) + B_2 g_4(\nu_i) + B_3 g_5(\nu_i),$$

 $i = 1, 2, ..., N+1$
(5.103)

veya

$$\widehat{\mathbf{H}}\widehat{\mathbf{x}} = \widehat{\mathbf{g}}_1 - a_{0+}\widehat{\mathbf{g}}_2 + B_1\widehat{\mathbf{g}}_3 + B_2\widehat{\mathbf{g}}_4 + B_3\widehat{\mathbf{g}}_5$$
(5.104)

şeklinde $(N + 1) \times (N + 1)$ matris denklemine indirgenir. Burada N + 1 boyutlu $\widehat{\mathbf{g}}_{\mathbf{k}}, \mathbf{k} = 1, 2, 3, 4$ ve 5 vektörü, $\widehat{\mathbf{g}}_{\mathbf{k}i} = g_k(\nu_i)$ bileşenleri ile tanımlanır ve $H_{i,j}$ matris elemanları, Eşitlik 5.69–5.75 ile verilir. $x_i, i = 1, 2, ..., N$ çözüm vektörü,

$$Hx = g_1 - a_{0+}g_2 + B_1g_3 + B_2g_4 + B_3g_5$$
(5.105)

ile verilen $N \times N$ matris denklemi çözülerek elde edilebilir. Burada **H**, $\widehat{\mathbf{H}}$ matrisinin $N \times N$ mertebesinde ana alt matrisidir. \mathbf{x} ve $\mathbf{g}_{\mathbf{k}}$, sırasıyla $\widehat{\mathbf{x}}$ ve $\widehat{\mathbf{g}}_{\mathbf{k}}$ vektörlerinin ilk N bileşenine sahip N boyutlu vektörlerdir. Eşitlik 5.105 lineer olduğundan \mathbf{x} çözümü

$$\mathbf{x} = \mathbf{y}_1 - a_{0+}\mathbf{y}_2 + B_1\mathbf{y}_3 + B_2\mathbf{y}_4 + B_3\mathbf{y}_5; \quad \mathbf{y}_k = \mathbf{H}^{-1}\mathbf{g}_k$$
 (5.106)

şeklinde yazılabilir. Burada SVD Lineer yaklaşımıyla x çözüm vektörü elde edilebilir. Bu nedenle Eşitlik 5.12, Eşitlik 5.106'da kullanılarak

$$WV^{T}x = U^{T}[g_{1} - a_{0+}g_{2} + B_{1}g_{3} + B_{2}g_{4} + B_{3}g_{5}]$$
 (5.107)

elde edilir. Böylece Eşitlik 5.106 ile verilen çözüm, sadece Eşitlik 5.107 ile verilen vektörün N-inci bileşeninin sıfır olmasıyla elde edilebilir ve bu ifade

$$\left\{ \mathbf{U}^{\mathbf{T}} \big[\mathbf{g}_{1} - a_{0+} \mathbf{g}_{2} + B_{1} \mathbf{g}_{3} + B_{2} \mathbf{g}_{4} + B_{3} \mathbf{g}_{5} \big] \right\}_{N} = 0$$
(5.108)

şeklinde gösterilebilir. Eşitlik 5.108; a_{0+} , B_1 , B_2 ve B_3 sabitlerini belirleyen dört denklemden biridir. Ayrıca B_1 , B_2 ve B_3 sabitleri, Eşitlik 5.76–5.78 ile verilir. Bundan sonra B_1 , B_2 ve B_3 sabitleriyle ilgili N boyutlu üç satır vektörü yazıldı. Bu satır vektörleri Eşitlik 5.80–5.82 ile verilir. Bu satır vektörleri kullanılarak, Eşitlik 5.59'da gösterilene benzer şekilde üç denklem elde edilir.

Böylece a_{0+} , B_1 , B_2 ve B_3 katsayılarını belirlemek için

$$\left\{ \mathbf{U}^{\mathbf{T}} \big[\mathbf{g}_{1} - a_{0+} \mathbf{g}_{2} + B_{1} \mathbf{g}_{3} + B_{2} \mathbf{g}_{4} + B_{3} \mathbf{g}_{5} \big] \right\}_{N} = 0,$$
(5.109)

$$\mathbf{b_1} \cdot \mathbf{y_1} - a_{0+} \mathbf{b_1} \cdot \mathbf{y_2} + B_1 [\mathbf{b_1} \cdot \mathbf{y_3} - 1] + B_2 \mathbf{b_1} \cdot \mathbf{y_4} + B_3 \mathbf{b_1} \cdot \mathbf{y_5} = 0,$$
 (5.110)

$$\mathbf{b_2} \cdot \mathbf{y_1} - a_{0+} \mathbf{b_2} \cdot \mathbf{y_2} + B_1 \mathbf{b_2} \cdot \mathbf{y_3} + B_2 [\mathbf{b_2} \cdot \mathbf{y_4} - 1] + B_3 \mathbf{b_2} \cdot \mathbf{y_5} = 0 \quad (5.111)$$

$$\mathbf{b_3} \cdot \mathbf{y_1} - a_{0+} \mathbf{b_3} \cdot \mathbf{y_2} + B_1 \mathbf{b_3} \cdot \mathbf{y_3} + B_2 \mathbf{b_3} \cdot \mathbf{y_4} + B_3 [\mathbf{b_3} \cdot \mathbf{y_5} - 1] = 0 \quad (5.112)$$

şeklinde dört lineer denklem elde edilir. Bu dört denklemin çözülmesiyle x çözüm vektörü, Eşitlik 5.106'dan elde edilir. Albedo için sonuçları veren ifade Eşitlik 5.65 ile verilir. Ancak Eşitlik 5.65'teki B_2 , Eşitlik 5.77 ile verilir. (Bozkır vd. 2022a)

Anlı-Güngör saçılma fonksiyonunun ikinci mertebe saçılması (Kesim 3.3. ve Kesim 5.4.) için F_N ve SVD yöntemleriyle elde edilen sayısal sonuçlar aşağıdaki gibidir. Değişen t parametresi için kesikli özdeğerler Çizelge 5.3.'te verildi. Bu kesikli özdeğerler Eşitlik 2.77'nin sayısal çözümleridir. Burada F_N ve SVD yöntemleri ile yarı uzay albedo β değerleri hesaplandı. SVD sonuçları (Bkz. EK–8) Çizelge E8.1. ve E8.2.'de verildi. SVD yöntemi için ağ aralığı N = 100, 500, 1000, 5000 ve 10.000'dir. F_N sonuçları (Bkz. EK–8) Çizelge E8.3. ve E8.4.'te verildi. F_N yöntemi için ağ aralığı en fazla N = 11 olarak alındı. Genel olarak, her iki yöntemin de hesaplama süresi çok kısadır, ancak SVD yönteminde, N = 5000 için yaklaşık 10 dakika ve N = 10.000 için yaklaşık 45 dakika olarak ölçüldü.

 F_N ve SVD yöntemleri için albedo β değerlerinde, genellikle dört anlamlı rakam tutarlıdır. 0,7 $\leq c \leq$ 0,9 için hesaplamalar, albedo değerlerinin t (-1'den +1'e) saçılma parametresi boyunca azaldığını gösterdi. Bu azalma, Çizelge 5.4. ve Şekil 5.3.'te görülebilir. F_N ve SVD sonuçları benzer olduğundan sadece F_N sonuçları, grafik şeklinde verildi (Bozkır et. al. 2022a).

 F_N sonuçlarının, SVD sonuçlarından daha yakınsak olduğu görüldü. F_N sonuçlarının 11-inci yaklaşımda beş basamak için yakınsama yaptığı görülürken, SVD sonuçlarının 10.000-inci yaklaşımda dört basamak için yakınsama yaptığı görüldü.

Anlı-Güngör saçılma fonksiyonunun ikinci mertebe saçılması için elde edilen albedo β sonuçları, Türeci (2020)'nin çalışmasındaki beklentiyi doğrulamaktadır.

Türeci (2020)'nin çalışmasındaki Çizelge 2–4, İnönü saçılma fonksiyonu kullanılarak hesaplanan yarı uzay albedo β değerlerini göstermektedir. Şekil 5.4., Türeci (2020)'nin çalışmasında verilen değerlere göre çizildi.

Anlı-Güngör saçılma fonksiyonu kullanılarak elde edilen Şekil 5.3.'teki albedo β değerlerinin davranışı, İnönü saçılma fonksiyonu kullanılarak elde edilen Şekil 5.4.'teki

t		c	
	0,7	0,8	0,9
-1,0	1,1281202763656255	1,2812068038254400	1,6879172361052548
-0,8	1,1352575286406636	1,2973427983813660	1,7206926348943397
-0,6	1,1471370799873635	1,3184238239058215	1,7586011759913212
-0,4	1,1631779933627155	1,3439038962492240	1,8014882227356215
-0,2	1,1830900316098414	1,3736093694404903	1,8495391152644920
0,2	1,2344433773351842	1,4463011714460656	1,9631923317398303
0,4	1,2663202941523783	1,4901649040975790	2,0304999542114492
0,6	1,3029635119625347	1,5400566168080096	2,1065003462048364
0,8	1,3451766908300933	1,5971775275610394	2,1930897877270120
1,0	1,3941511845928345	1,6632743761297488	2,2929529626182936

Çizelge 5.3. $0.7 \le c \le 0.9$ ve $-1 \le t \le 1$ için kesikli özdeğerler (Bozkır et. al. 2022a)

Çizelge 5.4. F_N N = 11 ve SVD N = 10.000 için albedo β değerleri (Bozkır et. al. 2022a)

t		c									
	0,	,7	0	,8	0	0,9					
	$\mathbf{F}_{\mathbf{N}}$	SVD	F_N	SVD	F_N	SVD					
-1,0	0,30536020	0,30534688	0,39334645	0,39333843	0,52715416	0,52715048					
-0,8	0,29600853	0,29599559	0,38372819	0,38372069	0,51827993	0,51827661					
-0,6	0,28651366	0,28650128	0,37384734	0,37384027	0,50901375	0,50901065					
-0,4	0,27680929	0,27679752	0,36362371	0,36361698	0,49927128	0,49926831					
-0,2	0,26684023	0,26682905	0,35298636	0,35297987	0,48897038	0,48896747					
0,2	0,24592051	0,24591021	0,33020253	0,33019622	0,46634194	0,46633895					
0,4	0,23488735	0,23487731	0,31792159	0,31791522	0,45381489	0,45381177					
0,6	0,22342421	0,22341428	0,30495556	0,30494902	0,44032314	0,44031980					
0,8	0,21150321	0,21149324	0,29123385	0,29122699	0,42572729	0,42572361					
1,0	0,19910838	0,19909822	0,27668936	0,27668201	0,40986761	0,40986340					

albedo β değerlerinin davranışına benzerdir. Negatif t parametresi için albedo, -d için İnönü saçılma fonksiyonu sonuçlarına benzerdir. Aynı şekilde pozitif t için albedo, +biçin İnönü saçılma fonksiyonu sonuçlarına benzerdir. t, pozitif yönde arttıkça albedo değerlerinin azaldığı görüldü. Bu, gelen nötronların ileri saçılma yaptığını gösterir. Benzer şekilde t, negatif yönde arttıkça albedo değerlerinin arttığı görüldü. Bu, gelen nötronların geri saçılma yaptığını gösterir. Bu nedenle anizotropik saçılma hesaplamalarında Anlı-Güngör saçılma fonksiyonu kullanılabilir (Bozkır et. al. 2022a).

Şekil 5.3. Değişen c ve N = 11 için F_N yöntemiyle albedo β ile t karşılaştırması (Bozkır et. al. 2022a)

Şekil 5.4. İnönü saçılma fonksiyonu için albedo β ile d (geri kaçaklı) ve b (ileri kaçaklı) karşılaştırması (Bozkır et. al. 2022a)

6. SVD YÖNTEMİYLE İZOTROPİK SAÇILMA ve YANSITICI SINIR ŞARTLARI için KRİTİK SLAB KALINLIĞI

Bu bölümde izotropik saçılma için 2*b* kalınlığında kritik bir slab incelendi. Bu kritik salbın her iki yüzeyi için de yansıma katsayısı *R* aynı verildi. Böyle bir slabın yüzeylerine yansıtıcı sınır koşulları uygulandı. Burada transport denklemi, Case özfonksiyonları (Case and Zweifel 1967) kullanılarak SVD yöntemi (Sahni et. al. 2019, 2020) ile çözüldü. Case özfonksiyonları kullanılarak bir singüler integral denklem elde edildi. Daha sonra bu denklem, SVD yöntemiyle bir matris denklemine dönüştürülerek çözüldü. İzotropik saçılma için herhangi bir kaynak olmadan $-b \le x \le b$ bölgesi boyunca uzanan, homojen bir slabda durağan tek hızlı transport denklemi Eşitlik 2.1 ile verilir. Yansıtıcı sınır koşulları, slab yüzeyleri üzerinde uygulanırsa,

$$\Psi(-b,\mu) = R\Psi(-b,-\mu); \quad \Psi(b,-\mu) = R\Psi(b,\mu); \quad 0 < \mu \le 1$$
(6.1)

elde edilir. İzotropik saçılma için kritiklik problemi, verilen c > 1 parametresi için 2b slab kalınlığının belirlenmesini içerir, böylece Eşitlik 2.1'in kayda değer bir çözümü olan $\Psi(x, \mu)$ bulundu. Case yöntemi kullanılarak Eşitlik 2.1'in genel çözümü, Eşitlik 2.16 ile verilir. Eşitlik 2.16,

$$\Psi(x,\mu) = A(\nu_0)\phi(\nu_0,\mu)e^{-x/\nu_0} + A(-\nu_0)\phi(-\nu_0,\mu)e^{x/\nu_0} + \int_0^1 A(\nu)\phi(\nu,\mu)e^{-x/\nu}d\nu + \int_0^1 A(-\nu)\phi(-\nu,\mu)e^{x/\nu}d\nu$$
(6.2)

şeklinde de yazılabilir. Burada kesikli ve sürekli özfonksiyonlar sırasıyla Eşitlik 2.11 ve 2.12 ile verilir. $\nu_0 \notin [-1, 1]$, Eşitlik 2.10'un kökleridir. Eşitlik 2.10'un sadece bir çift kökü vardır. Bu kökler c > 1 için kompleks sayılardır. $A(\pm\nu_0)$ ve $A(\pm\nu)$, $\nu \in [0, 1]$ açılım katsayıları, Eşitlik 6.1 ile verilen sınır koşulları tarafından belirlendi. Verilen sınır koşulları ile $\Psi(x, \mu)$ akısı, $\Psi(x, \mu) = \Psi(-x, -\mu)$ simetri koşulunu sağlar. $\phi(\pm\nu_0, \mu)$ ve $\phi(\nu, \mu)$ özfonksiyonlarının simetri özelliklerine dikkat edilerek, yani ($\mu \in [-1, 1]$)

$$\phi(\nu_0, \mu) = \phi(-\nu_0, -\mu); \quad \phi(\nu, \mu) = \phi(-\nu, -\mu)$$
(6.3)

eşitlikleri dikkate alınarak, açılım katsayılarının

$$A(\nu_0) = A(-\nu_0) \equiv a_{0+}; \quad A(\nu) = A(-\nu), \quad \nu \in [0,1]$$
(6.4)

ilişkilerini sağladığı görüldü. Ayrıca a_{0+} ve $A(\nu)$, $0 \le \nu \le 1$ katsayılarını belirlemek için yüzeylerden sadece birine, örneğin x = -b, sınır koşulları uygulanmalıdır. Bu sınır koşulunu ve Eşitlik 6.2, 2.11 ve 2.12'den $\psi(-b,\mu)$, $\phi(\pm\nu_0,\mu)$, $\phi(\nu,\mu)$ ve $\phi(-\nu,\mu)$ için açık ifadeleri kullanarak, a_{0+} ve $A(\nu)$ açılım katsayıları için aşağıdaki singüler integral denklem

$$\lambda(\nu) \left[e^{b/\nu} - Re^{-b/\nu} \right] A(\nu) + \frac{c}{2} \int_{0}^{1} \nu' A(\nu') \left[\mathbf{P} \frac{e^{b/\nu'} - Re^{-b/\nu'}}{\nu' - \nu} + \frac{e^{-b/\nu'} - Re^{b/\nu'}}{\nu' + \nu} \right] d\nu' = -\frac{c\nu_{0}}{2} a_{0+} \left[\frac{e^{b/\nu_{0}} - Re^{-b/\nu_{0}}}{\nu_{0} - \nu} + \frac{e^{-b/\nu_{0}} - Re^{b/\nu_{0}}}{\nu_{0} + \nu} \right]$$
(6.5)

elde edildi. Eşitlik 6.5

$$\lambda(\nu)B(\nu) + \frac{c}{2} \int_{0}^{1} \nu' B(\nu') \left[\mathbf{P} \frac{1}{\nu' - \nu} + \frac{g(\nu')}{\nu' + \nu} \right] d\nu'$$

= $h(\nu_0) \left[\frac{1}{\nu_0 - \nu} + \frac{g(\nu_0)}{\nu_0 + \nu} \right] a_{0+}$ (6.6)

şeklinde daha kapalı formda yazılabilir. Burada $B(\nu')$, $g(\nu')$ ve $h(\nu_0)$ fonksiyonları

$$B(\nu') = \left[e^{b/\nu'} - Re^{-b/\nu'}\right] A(\nu'), \tag{6.7}$$

$$g(\nu') = \frac{e^{-2b/\nu'} - R}{1 - Re^{-2b/\nu'}}$$
(6.8)

ve

$$h(\nu_0) = -\frac{c\nu_0}{2} \left(e^{b/\nu_0} - Re^{-b/\nu_0} \right)$$
(6.9)

ile verilir. Burada $g(\nu')$ fonksiyonu, g(0) = -R ve $g(1) = \left[e^{-2b} - R\right] / \left[1 - Re^{-2b}\right]$ ile $\nu' \in [0, 1]$ 'nün yavaş değişen, monoton olarak artan bir fonksiyonudur. Eşitlik 5.35 ve

$$\frac{\nu'}{\nu' + \nu} = 1 - \frac{\nu}{\nu' + \nu} \tag{6.10}$$

ile verilen bağıntı, Eşitlik 6.6'da kullanılarak

$$\lambda(\nu)B(\nu) + \frac{c}{2} \int_{0}^{1} B(\nu') \left[\left(1 + \mathbf{P} \frac{\nu}{\nu' - \nu} \right) + g(\nu') \left(1 - \frac{\nu}{\nu' + \nu} \right) \right] d\nu'$$

= $h(\nu_0) \left[\frac{1}{\nu_0 - \nu} + \frac{g(\nu_0)}{\nu_0 + \nu} \right] a_{0+}$ (6.11)

elde edildi. Eşitlik 6.11,

$$\lambda(\nu)B(\nu) + \frac{c\nu}{2}\int_0^1 B(\nu') \left[\mathbf{P}\frac{1}{\nu'-\nu} - \frac{g(\nu')}{\nu'+\nu}\right] d\nu' + I_1 = a_{0+}f_0(\nu)$$
(6.12)

şeklinde tekrar yazılabilir. Burada I_1 sabiti ve $f_0(\nu)$ fonksiyonu

$$I_1 = \frac{c}{2} \int_0^1 B(\nu') \left[1 + g(\nu') \right] d\nu'$$
(6.13)

ve

$$f_0(\nu) = h(\nu_0) \left[\frac{1}{\nu_0 - \nu} + \frac{g(\nu_0)}{\nu_0 + \nu} \right]$$
(6.14)

ile verilir.

6.1. Midpoint (Ortanokta) Yaklaşımı

Kesim 5.1.1.'e benzer şekilde $\nu' \in [0, 1]$ aralığı, $2\delta_j$, j = 1, 2, ..., N uzunluklu N tane $(\nu_j - \delta_j, \nu_j + \delta_j)$ alt aralığa bölündü. Burada $\nu_1 - \delta_1 = 0$, $\nu_j + \delta_j = \nu_{j+1} - \delta_{j+1}$, $\nu_N + \delta_N = 1$ olacak şekilde ayarlandı. $B(\nu')$ ve $g(\nu')$ fonksiyonlarının, her alt aralıkta yavaşça değiştiği ve ν_j noktalarındaki değerleriyle yaklaşık olarak tahmin edilebildiği kabul edildi. Diğer bir ifade ile her bir alt aralığın orta noktasında $B(\nu')$ ve $g(\nu')$ fonksiyonları

$$B(\nu') \approx B(\nu_j)$$
 ve $g(\nu') \approx g(\nu_j); \quad \nu' \in (\nu_j - \delta_j, \nu_j + \delta_j)$ (6.15)

şeklinde yaklaştırılabilir. Dolayısıyla Eşitlik 6.12'deki integral terimi ve I_1 sabiti

$$\int_{0}^{1} B(\nu') \left[\mathbf{P} \frac{1}{\nu' - \nu} - \frac{g(\nu')}{\nu' + \nu} \right] d\nu'$$

$$\approx \sum_{j=1}^{N} B(\nu_j) \left[\ln \left| \frac{\nu_j + \delta_j - \nu}{\nu_j - \delta_j - \nu} \right| - g(\nu_j) \ln \left| \frac{\nu_j + \delta_j + \nu}{\nu_j - \delta_j + \nu} \right| \right]$$
(6.16)

ve

$$I_1 = \frac{c}{2} \int_0^1 B(\nu') \left[1 + g(\nu') \right] d\nu' \approx \frac{c}{2} \sum_{j=1}^N \left[1 + g(\nu_j) \right] B(\nu_j) 2\delta_j$$
(6.17)

şeklinde yazılabilir. Eşitlik 6.16 ve 6.17, Eşitlik 6.12'de kullanıldıktan sonra Eşitlik 6.12, $\nu_1, \nu_2, ..., \nu_N$ ile verilen örgü noktalarında değerlendirilir. Daha sonra

$$\mathbf{Hx} = a_{0+} \mathbf{f_0} \quad \text{veya} \quad \sum_{j=1}^{N} H_{i,j} \, x_j = a_{0+} \, f_0(\nu_i) \quad i = 1, 2, ..., N$$
(6.18)

şeklinde matris formunda ifade edilebilen N tane lineer denklem seti elde edilir. Burada x vektörü, $x_j = B(\nu_j)$, j = 1, 2, ..., N bileşenlerine sahip N boyutlu bir sütun vektörüdür. **H** ise matris elemanları

$$H_{i,j} = \lambda(\nu_i)\delta_{i,j} + \frac{c\nu_i}{2} \left[\ln \left| \frac{\nu_j + \delta_j - \nu_i}{\nu_j - \delta_j - \nu_i} \right| - g(\nu_j) \ln \left| \frac{\nu_j + \delta_j + \nu_i}{\nu_j - \delta_j + \nu_i} \right| \right] + \frac{c}{2} \left[1 + g(\nu_j) \right] 2\delta_j$$
(6.19)

şeklinde olan bir $N \times N$ matrisidir. $\mathbf{f_0}$ vektörü

$$f_0(\nu_i) = h(\nu_0) \left[\frac{1}{\nu_0 - \nu_i} + \frac{g(\nu_0)}{\nu_0 + \nu_i} \right], \quad i = 1, 2, ..., N$$
(6.20)

bileşenlerine sahip N boyutlu bir sütun vektörüdür.

Eşitlik 6.18, bütün $B(\nu_j)$ katsayılarını ve ayrıca sağ tarafta oluşan a_{0+} katsayısını belirler. Normalde, verilen sağ taraf için yani a_{0+} katsayısı belirlendikten sonra, bir matris denklemi çözülür. Ancak bu durumda **H** matrisi oldukça kötü koşullu durumdadır ve Eşitlik 6.18'in çözümü, sadece a_{0+} katsayısının belirli bir değeri için mevcuttur. SVD yöntemi, bu tür matris denklemlerini çözmek için idealdir.

 a_{0+} 'nın sağ tarafta çarpma şeklinde bir sabit olduğu görülür ve normalizasyon için kullanılabilir. Böylece herhangi bir genellik kaybı olmaksızın $a_{0+} = 1$ alınabilir.

Durağan akı $\Psi(x,\mu)$, belirlenecek olan slab kalınlığı (kritik kalınlık) 2b'nin sadece belirli bir değeri için mevcut olduğundan, Eşitlik 6.18'in sağ tarafı hafifçe düzenlenir ve f_0 vektörü

$$\mathbf{f_0} = \mathbf{p_1} + \beta \mathbf{p_2} \tag{6.21}$$

şeklinde yazılır. Burada β , bir parametredir. Ayrıca $\mathbf{p_1}$ ve $\mathbf{p_2}$ vektörleri

$$p_{1,i} = \frac{h(\nu_0)}{\nu_0 - \nu_i}$$
 ve $p_{2,i} = \frac{h(\nu_0)g(\nu_0)}{\nu_0 + \nu_i}$ (6.22)

ile verilir. Eşitlik 6.21, Eşitlik 6.18'de kullanılarak x çözüm vektörü,

$$Hx = f_0 = p_1 + \beta p_2; \quad x = y_1 + \beta y_2; \quad Hy_1 = p_1; \quad Hy_2 = p_2$$
(6.23)

şeklinde yazılabilir. H matrisi kötü koşullu durumda olduğundan, bireysel vektörler y_1 ve y_2 , yüksek derecede salınımlıdır. Bu durum, x vektörünün her bir $(\nu_j - \delta_j, \nu_j + \delta_j)$ alt aralığındaki değişimlerinin küçük olduğu varsayımını iptal eder. SVD yöntemi, x

vektörü düzgün olacak şekilde, β parametresini belirlememize yardımcı olur. Başka bir ifadeyle y_1 ve y_2 vektörlerinin lineer birleşimi, bu vektörlerdeki bireysel salınımları ortadan kaldırır (Sahni and Kumar 1987; Sahni et. al. 2019, 2020). β parametresi, tahmin edilen 2*b* kalınlığına bağlıdır ve bu 2*b* kalınlığı, $\beta = 1$ oluncaya kadar değiştirilebilir, böylece kritik slab kalınlığı elde edilir.

SVD yönteminde H reel matrisi, Eşitlik 5.12 biçiminde yazılır. Burada H reel matrisinin bileşenlerinin (U, W ve V^{T}) de reel birer matris olduğuna dikkat edilmelidir. Eşitlik 5.12, Eşitlik 6.23'te kullanılarak,

$$\mathbf{W}\mathbf{V}^{\mathbf{T}}\mathbf{x} = \mathbf{U}^{\mathbf{T}}[\mathbf{p}_{1} + \beta \mathbf{p}_{2}]$$
(6.24)

yazılabilir. $\mathbf{W}_{N,N}$ denilen diyagonal elemanlardan birinin diğer diyagonal elemanlara kıyasla çok küçük olduğu bulundu. Bu durum, Eşitlik 6.23'ün çözümünde sayısal kararsızlıklar ortaya çıkarır. Bununla birlikte, Eşitlik 6.24 ile verilen vektörün, *N*-inci bileşeni

$$\left\{ \mathbf{U}^{\mathbf{T}} \left[\mathbf{p_1} + \beta \mathbf{p_2} \right] \right\}_N = 0 \tag{6.25}$$

olacak şekilde belirlenirse, buradan
 β bulunabilir. Daha sonra x vektörü

$$\mathbf{x} = \mathbf{V}\mathbf{W}^{-1}\mathbf{U}^{\mathrm{T}}[\mathbf{p}_{1} + \beta \mathbf{p}_{2}]$$
(6.26)

şeklinde kolayca hesaplanabilir. Son olarak belirli bir doğruluk dahilinde, $\beta = 1$ elde edene kadar, çeşitli *b* değerlerini yineleyerek kritik slab kalınlığı elde edilebilir.

6.2. Lineer Yaklaşım

Kesim 5.1.2.'ye benzer şekilde her alt aralıkta SVD Lineer yaklaşımı dikkate alındı. $B(\nu')$ ve $g(\nu')$ fonksiyonlarının her bir alt aralıkta yavaşça değiştiği kabul edildi. Dolayısıyla $B(\nu')$ ve $g(\nu')$ fonksiyonları $\nu' \in (\nu_j, \nu_{j+1})$ alt aralığında

$$B(\nu') \approx \frac{B(\nu_j)(\nu_{j+1} - \nu') + B(\nu_{j+1})(\nu' - \nu_j)}{\nu_{j+1} - \nu_j} \quad \text{ve} \quad g(\nu') \approx g(\nu_j) \tag{6.27}$$

şeklinde yaklaşık olarak yazılabilir. Daha sonra Eşitlik 6.27, Eşitlik 6.12'de kullanıldı.

Böylece Eşitlik 6.12'deki integral terimi ve I_1 sabiti

ve

$$\begin{split} &\int_{0}^{1} B(\nu') \left[\mathbf{P} \frac{1}{\nu' - \nu} - \frac{g(\nu')}{\nu' + \nu} \right] d\nu' \\ &\approx \sum_{j=2}^{N} B(\nu_j) \left[\frac{\nu_{j+1} - \nu}{\nu_{j+1} - \nu_j} \ln \left| \frac{\nu_{j+1} - \nu}{\nu_j - \nu} \right| + \frac{\nu - \nu_{j-1}}{\nu_j - \nu_{j-1}} \ln \left| \frac{\nu_j - \nu}{\nu_{j-1} - \nu} \right| \right] \\ &+ B(0) \left[-1 + \frac{\nu_2 - \nu}{\nu_2} \ln \left| \frac{\nu_2 - \nu}{\nu} \right| \right] + B(1) \left[1 + \frac{\nu - \nu_N}{1 - \nu_N} \ln \left| \frac{1 - \nu}{\nu_N - \nu} \right| \right] \\ &- g(\nu_j) \left\{ \sum_{j=2}^{N} B(\nu_j) \left[\frac{\nu_{j+1} + \nu}{\nu_{j+1} - \nu_j} \ln \left| \frac{\nu_{j+1} + \nu}{\nu_j + \nu} \right| - \frac{\nu + \nu_{j-1}}{\nu_j - \nu_{j-1}} \ln \left| \frac{\nu_j + \nu}{\nu_{j-1} + \nu} \right| \right] \\ &+ B(0) \left[-1 + \frac{\nu_2 + \nu}{\nu_2} \ln \left| \frac{\nu_2 + \nu}{\nu} \right| \right] + B(1) \left[1 - \frac{\nu + \nu_N}{1 - \nu_N} \ln \left| \frac{1 + \nu}{\nu_N + \nu} \right| \right] \right\}$$
(6.28)

$$I_1 \approx \frac{c}{2} \left\{ \sum_{j=2}^N \left[1 + g(\nu_j) \right] B(\nu_j) \frac{1}{2} (\nu_{i+1} - \nu_{j-1}) + B(0) \frac{\nu_2}{2} + B(1) \left(\frac{1 - \nu_N}{2} \right) \right\}$$
(6.29)

şeklinde elde edildi. EK–4'e benzer şekilde B(1) = 0 olduğu, analitik olarak gösterilebilir. Burada $x_i = B(\nu_i), i = 1, 2, ..., N+1$ tanımlaması yapıldıktan sonra Eşitlik 6.12,

$$\widehat{\mathbf{H}}\widehat{\mathbf{x}} = a_{0+} \widehat{\mathbf{f}}_{\mathbf{0}} \quad \text{veya} \quad \sum_{j=1}^{N+1} H_{i,j} \, x_j = a_{0+} \, f_0(\nu_i), \quad i = 1, 2, ..., N+1 \tag{6.30}$$

şeklinde $(N+1) \times (N+1)$ matris denklemine indirgendi. Burada $\widehat{\mathbf{f}}_{\mathbf{0}}$ vektörü,

$$f_0(\nu_i) = h(\nu_0) \left[\frac{1}{\nu_0 - \nu_i} + \frac{g(\nu_0)}{\nu_0 + \nu_i} \right], \quad i = 1, 2, \dots, N+1$$
(6.31)

bileşenlerine sahip ${\cal N}+1$ boyutlu bir sütun vektörüdür. ${\cal H}_{i,j}$ ise matris elemanları

$$H_{1,1} = 1 + \frac{c\nu_2}{4}(1-R); \quad i = 1 \quad \& \quad j = 1,$$
 (6.32)

$$H_{1,j} = \delta_{1,j}; \quad i = 1 \quad \& \quad j = 2, ..., N + 1,$$
 (6.33)

$$H_{2,1} = -\frac{c\nu_2}{4}(1+3R-4R\ln 2); \quad i=2 \quad \& \quad j=1,$$
(6.34)

$$H_{i,1} = \frac{c}{2} \left\{ (1-R)\frac{\nu_2}{2} + \nu_i \left[-1 + \frac{\nu_2 - \nu_i}{\nu_2} \ln \left| \frac{\nu_2 - \nu_i}{\nu_i} \right| \right] + \nu_i R \left[-1 + \frac{\nu_2 + \nu_i}{\nu_2} \ln \left| \frac{\nu_2 + \nu_i}{\nu_i} \right| \right] \right\};$$

$$i = 3, ..., N + 1 \quad \& \quad j = 1, \qquad (6.35)$$

$$H_{j+1,j} = \frac{c}{2} \Biggl\{ \left[1 + g(\nu_j) \right] \frac{1}{2} (\nu_{j+1} - \nu_{j-1}) \\ + \nu_{j+1} \Biggl[\frac{\nu_{j+1} - \nu_{j-1}}{\nu_j - \nu_{j-1}} \ln \left| \frac{\nu_j - \nu_{j+1}}{\nu_{j-1} - \nu_{j+1}} \right| \Biggr] \\ - \nu_{j+1} g(\nu_j) \Biggl[\frac{2\nu_{j+1}}{\nu_{j+1} - \nu_j} \ln \left| \frac{2\nu_{j+1}}{\nu_j + \nu_{j+1}} \right| \\ - \frac{\nu_{j+1} + \nu_{j-1}}{\nu_j - \nu_{j-1}} \ln \left| \frac{\nu_j + \nu_{j+1}}{\nu_{j-1} + \nu_{j+1}} \right| \Biggr] \Biggr\};$$

$$i = j + 1 \quad \& \quad j = 2, ..., N,$$
(6.36)

$$H_{j-1,j} = \frac{c}{2} \Biggl\{ \Biggl[1 + g(\nu_j) \Biggr] \frac{1}{2} (\nu_{j+1} - \nu_{j-1}) \\ + \nu_{j-1} \Biggl[\frac{\nu_{j+1} - \nu_{j-1}}{\nu_{j+1} - \nu_j} \ln \Biggl| \frac{\nu_{j+1} - \nu_{j-1}}{\nu_j - \nu_{j-1}} \Biggr| \Biggr] \\ - \nu_{j-1} g(\nu_j) \Biggl[\frac{\nu_{j+1} + \nu_{j-1}}{\nu_{j+1} - \nu_j} \ln \Biggl| \frac{\nu_{j+1} + \nu_{j-1}}{\nu_j + \nu_{j-1}} \Biggr| \\ - \frac{2\nu_{j-1}}{\nu_j - \nu_{j-1}} \ln \Biggl| \frac{\nu_j + \nu_{j-1}}{2\nu_{j-1}} \Biggr| \Biggr] \Biggr\};$$

$$i = j - 1 \quad \& \quad j = 3, ..., N + 1,$$
(6.37)

$$H_{i,j} = \frac{c}{2} \Biggl\{ \left[1 + g(\nu_j) \right] \frac{1}{2} (\nu_{j+1} - \nu_{j-1}) \\ + \nu_i \Biggl[\frac{\nu_{j+1} - \nu_i}{\nu_{j+1} - \nu_j} \ln \left| \frac{\nu_{j+1} - \nu_i}{\nu_j - \nu_i} \right| + \frac{\nu_i - \nu_{j-1}}{\nu_j - \nu_{j-1}} \ln \left| \frac{\nu_j - \nu_i}{\nu_{j-1} - \nu_i} \right| \Biggr] \\ - \nu_i g(\nu_j) \Biggl[\frac{\nu_{j+1} + \nu_i}{\nu_{j+1} - \nu_j} \ln \left| \frac{\nu_{j+1} + \nu_i}{\nu_j + \nu_i} \right| - \frac{\nu_i + \nu_{j-1}}{\nu_j - \nu_{j-1}} \ln \left| \frac{\nu_j + \nu_i}{\nu_{j-1} + \nu_i} \right| \Biggr] \Biggr\}; \\ i = 2, 3, ..., N + 1; \quad j = 2, 3, ..., N; \quad i \neq j$$

$$(6.38)$$

ve

$$H_{i,i} = \lambda(\nu_i) + \frac{c}{2} \left\{ \left[1 + g(\nu_i) \right] \frac{1}{2} (\nu_{i+1} - \nu_{i-1}) + \nu_i \ln \left| \frac{\nu_{i+1} - \nu_i}{\nu_{i-1} - \nu_i} \right| - \nu_i g(\nu_i) \left[\frac{\nu_{i+1} + \nu_i}{\nu_{i+1} - \nu_i} \ln \left| \frac{\nu_{i+1} + \nu_i}{2\nu_i} \right| - \frac{\nu_i + \nu_{i-1}}{\nu_i - \nu_{i-1}} \ln \left| \frac{2\nu_i}{\nu_{i-1} + \nu_i} \right| \right] \right\};$$

$$i = 2, 3, ..., N; \quad i = j$$
(6.39)

ile verilir. $\widehat{\mathbf{H}}$ matrisinin (N+1)-inci sütunu

$$H_{i,N+1} = \frac{c\nu_i}{2} \left\{ 1 + \frac{\nu_i - \nu_N}{1 - \nu_N} \ln \left| \frac{1 - \nu_i}{\nu_N - \nu_i} \right| -g(\nu_j) \left[1 - \frac{\nu_i + \nu_N}{1 - \nu_N} \ln \left| \frac{1 + \nu_i}{\nu_N + \nu_i} \right| \right] \right\}; \quad i = 1, 2, ..., N \quad (6.40)$$

ile verilir. Son olarak $H_{N+1,N+1}$ elemanı, sonsuza gider. Bu durum, $H_{N+1,N+1} \rightarrow \infty$ şeklinde gösterilebilir. Fakat bunun bir önemi yoktur. Çünkü EK–4'te anlatıldığı gibi $x_{N+1} = B(\nu_{N+1}) = B(1) = 0$ olduğu gösterilebilir. x_i , i = 1, 2, ..., N + 1 çözüm vektörünün (N + 1)-inci terimi sıfıra eşit olduğundan, Eşitlik 6.30'un (N + 1)-inci denklemi, ilk N denklemden ayrılır ve (N + 1)-inci sütun, yani $H_{i,N+1}$, alakasızdır. Dolayısıyla x_i , i = 1, 2, ..., N çözüm vektörü, Eşitlik 6.18 ile verilen $N \times N$ mertebeli matris denklemi çözülerek elde edilebilir. Eşitlik 6.18'de **H**, **Ĥ** matrisinin $N \times N$ mertebesinde ana alt matrisidir; **x**, **x** vektörünün ilk N bileşeninden oluşan N boyutlu vektördür ve $\mathbf{f_0}$, $\mathbf{\hat{f_0}}$ vektörünün ilk N bileşeninden oluşan N boyutlu vektördür.

Eşitlik 6.18, bütün $B(\nu_j)$ katsayılarını ve ayrıca sağ tarafta oluşan a_{0+} katsayısını belirler. Bundan sonraki işlemler, Kesim 6.1'de verilen SVD Midpoint yaklaşımına benzer olduğundan burada yazılmadı.

6.3. Kritik Kalınlık Değerlerinin Ortalama Serbest Yol (mfp) Biriminden cm'ye Dönüştürülmesi

Fisyon reaktörlerinde Uranyum ve Plutonyum gibi radyoaktif elementler, bir nötron ile daha küçük iki çekirdeğe bölünür. Bu esnada 2 veya 3 nötron ile birlikte büyük bir enerji açığa çıkar. Dolayısıyla bu enerjiyi kontrol altında tutabilmek için reaktör içerisindeki nötronların dağılımını bilmek gerekir. Bu nötronların dağılımı, nötron transport denklemi çözülerek elde edilir. Kritiklik hesabı yapılırken, fisyon ile ortaya çıkan ikincil nötron sayısı c ve kritik slab kalınlığı 2b arasında bir bağıntı bulunur (Türeci 2005). Burada nötron transport denklemi, düzlem geometriye sahip olan homojen bir uzayda tek hızlı nötronlar için çözüldü. Dolayısıyla bulunan kritik kalınlık değerleri, düzlem geometride bazı yaklaşımlar sonucu elde edilen yaklaşık değerlerdir. Nötron transport denkleminin çözülmesiyle elde edilen kritik kalınlık değerleri, ortalama serbest yol (*mfp*) birimindedir. Ortalama serbest yolu, *cm* cinsinden yazmak için

$$d\sigma_{\rm t} = 2b; \qquad d = \frac{2b}{\sigma_{\rm t}}$$
 (6.41)

eşitliği kullanılabilir. Burada d, kritik kalınlığın cm cinsinden uzunluğunu; σ_t , ortamın makroskopik toplam tesir kesitini ve 2b, kritik kalınlığın ortalama serbest yol (mfp) cinsinden uzunluğunu ifade eder. Ortamın makroskopik toplam tesir kesiti (σ_t), makroskopik toplam yakalama tesir kesiti (σ_{at}) ile makroskopik toplam saçılma tesir kesitinin (σ_{st}) toplamına ($\sigma_t = \sigma_{at} + \sigma_{st}$) eşittir. Ortamın makroskopik toplam yakalama tesir kesiti (σ_{at}), makroskopik ışımalı yakalama tesir kesiti (σ_a) ile makroskopik fisyon tesir kesitinin (σ_f) toplamına ($\sigma_{at} = \sigma_a + \sigma_f$) eşittir. Ortamın makroskopik toplam saçılma tesir kesiti (σ_{st}), makroskopik elastik saçılma tesir kesiti (σ_s) ile makroskopik elastik olmayan saçılma tesir kesitinin (σ_{in}) toplamına ($\sigma_{st} = \sigma_s + \sigma_{in}$) eşittir. İkincil nötron sayısı *c*, tesir kesitleri cinsinden (Case and Zweifel 1967, s. 5)

$$c = \frac{\sigma_{\rm st} + \nu \sigma_{\rm f}}{\sigma_{\rm t}} \tag{6.42}$$

şeklinde verilir. Burada ν , fisyon başına üretilen nötron sayısını ifade eder. ²³⁵U için $\nu \approx 2,5$ iken ²³⁹Pu için $\nu \approx 3,0$ 'dır.

Makroskopik tesir kesiti, bazı kitaplarda σ , bazı kitaplarda ise Σ şeklinde gösterilir. Örneğin Case and Zweifel (1967), makroskopik tesir kesitini σ ile gösterir, ancak Lamarsh and Baratta (2001), Σ ile gösterir. Bu tez çalışmasında nötron transport teori incelendiği için makroskopik tesir kesiti, Case and Zweifel (1967)'in kitabında kullanılan σ sembolü ile gösterildi.

Çizelge 6.1.'de verilen Uranyum, doğal Uranuymu ve Plutonyum ise yapay olarak elde edilen Plutonyumu ifade eder. Çizelge 6.1.'de verilen değerlerin Eşitlik 6.42'de kullanılmasıyla, Uranyumun ve Plutonyumun ikincil nötron sayıları sırasıyla c_U ve c_{Pu}

$$c_U = \frac{\sigma_{\text{st}U} + \nu_U \sigma_{\text{f}U}}{\sigma_{\text{t}U}} = \frac{0.4301 + 2.5 \times 0.2025}{0.7969} = 1.1750$$
(6.43)

ve

$$c_{Pu} = \frac{\sigma_{\text{st}Pu} + \nu_{Pu}\sigma_{\text{f}Pu}}{\sigma_{\text{t}Pu}} = \frac{0,3902 + 3,0 \times 36,66}{50,3202} = 2,1934$$
(6.44)

şeklinde elde edildi. Buna göre termal reaktörlerde, doğal Uranyum kullanabilmek için yavaşlatıcı olarak yakalama tesir kesiti çok küçük olan maddeler kullanmak gerekir.

Çizelge 6.1.'deki σ_t değerleri ile Çizelge E9.1.–E9.9.'daki (Bkz. EK–9) 2*b* değerlerinin Eşitlik 6.41'de kullanılmasıyla, Çizelge E9.1.–E9.9.'daki *d* değerleri *cm* cinsinden bulundu. Burada SVD yönteminin Midpoint ve Lineer yaklaşımları ve H_N yöntemi ile sayısal değerler bulundu. H_N yönteminin analitik hesaplamaları Türeci (2005)'de verilmiştir. Türeci (2005)'de belirtilen birincil, ikincil ve üçüncül kritik kalınlık değerleri için sayısal değerler hesaplandı. Birincil kalınlık değerleri Çizelge E9.1.–E9.3.'te,

Çizelge 6.1. U ve Pu için makroskopik tesir kesiti değerleri (0,0253 eV) (Lamarsh and Baratta 2001, p. 741-742; Edt. Zabunoğlu 2015, s. 741-742)

Element	$\sigma_{\rm at} \; (cm^{-1})$	$\sigma_{\rm f} (cm^{-1})$	$\sigma_{ m st}~(cm^{-1})$	$\sigma_{\rm t} (cm^{-1})$
Uranyum	0,3668	0,2025	0,4301	0,7969
Plutonyum	49,93	36,66	0,3902	50,3202

ikincil kalınlık değerleri Çizelge E9.4.–E9.6.'da ve üçüncül kalınlık değerleri Çizelge E9.7.–E9.9.'da verildi. Çizelge E9.1.–E9.9.'da ikincil nötron sayısı $c_U = 1,1750$ ve $c_{Pu} = 2,1934$ için yansıma katsayısı R = 0,00 ile R = 0,99 aralığında birincil, ikincil ve üçüncül kritik kalınlık değerleri, mfp (2b) ve cm (d) cinsinden, izotropik saçılma için verildi. SVD yönteminin Midpoint ve Lineer yaklaşımları N = 1000 ile H_N yöntemi N = 5, birbirleriyle sayısal değerler olarak karşılaştırılmaları sonucunda, birincil, ikincil ve üçüncül 2b kritik kalınlık değerleri, vigülden sonra en az üç basamak tutarlıdır. Dolayısıyla farklı yöntemi eşöre çizilen grafikler benzerdir. Bu yüzden bu grafiklerin hepsi, tek bir yöntem için çizildi. Bu yöntem, SVD Midpoint yaklaşımı N = 1000 olarak seçildi. Bu grafikler, Şekil E9.1. ve Şekil E9.2.'de (Bkz. EK–9) verildi. Bu grafiklerde birincil, ikincil ve üçüncül kalınlıklarda $c_U = 1,1750$ ve $c_{Pu} = 2,1934$ için "2b ile R" ve "d ile R" karşılaştırmaları yapıldı. Bu grafiklere göre yansıma katsayısı R arttıkça kritik kalınlık değerleri azalır.

Uygulamada reflektör kullanılan reaktörlerde daha az kritik kütle kullanımı gerektiği bilinir. Dolayısıyla yansıma katsayısının yüksek olması, kritik kalınlık değerlerinin düşük olmasına neden olur. Ayrıca Çizelge E9.1.–E9.9.'da verildiği gibi ikincil nötron sayısı (c) arttıkça yine kritik kalınlık değerleri azalır. Uygulamada zenginleştirilmiş yakıt kullanılan reaktörlerde daha az kritik kütle kullanımı gerektiği bilinir. Bunun sebebi ikincil nötron sayısının fazla olmasıdır. Çünkü bu reaktörlerde fisyon yapan izotoplar daha fazladır. Dolayısıyla ikincil nötron sayısının yüksek olması, kritik kalınlık değerlerinin düşük olmasına neden olur.

7. SONUÇLAR ve TARTIŞMA

Bu tez çalışmasında Case özfonksiyonları nötron transport denkleminde kullanılarak F_N , H_N ve SVD yöntemleriyle yarı uzay albedo problemi ve SVD yöntemiyle kritiklik problemi çözüldü. Burada kullanılan yöntemlerin avantaj ve dezavantajları aşağıdaki gibi yazılabilir.

1. H_N yöntemi, Case özfonksiyonları ve bunlar arasındaki diklik bağıntılarının, incelenen problemin sınır şartlarına göre kullanılmasına dayanan bir yöntemdir. Saçılmanın türüne göre, bu özfonksiyonların ve diklik bağıntılarının güncellenmesi gerekir. Her ne kadar analitik olarak hesap yapılması gerekli olsa da sayısal hesaplamaları çabuk yakınsama yapar. H_N yöntemi analitik hesaplamaların azlığı ve çabuk yakınsayan sonuç vermesiyle en pratik yarı analitik yöntemlerden biridir. F_{N} yöntemi, H_{N} yöntemine benzer şekilde, Case özfonksiyonları ve bunlar arasındaki diklik bağıntılarına dayanır. Yine benzer şekilde saçılmanın türüne göre, bu özfonksiyonların ve diklik bağıntılarının güncellenmesi gerekir. Analitik olarak yapılması gereken hesaplamalar, H_N yöntemine göre biraz daha azdır. Sayısal hesaplamaları, H_N yöntemine göre daha geç yakınsar. SVD yöntemi, Case özfonksiyonlarının kullanımına dayanır ancak bunlar arasındaki diklik bağıntıları kullanılmaz. Saçılmanın türüne göre, bu özfonksiyonların güncellenmesi gerekir. SVD yöntemi, Midpoint (Ortanokta) yaklaşımı ve Lineer yaklaşım olarak iki şekilde incelenir. SVD Midpoint (Ortanokta) yaklaşımının, SVD Lineer yaklaşımına göre analitik hesaplamaları daha azdır. Ancak SVD Lineer yaklaşımı, SVD Midpoint yaklaşımına göre çok küçük bir derecede daha fazla yakınsama yapar, ancak bu fark bir basamaktan bile daha azdır. SVD yönteminde analitik olarak yapılması gereken hesaplamalar, F_N yöntemine göre daha fazladır ancak H_N yöntemine göre daha azdır. Sayısal hesaplamaları, H_N ve F_N yöntemlerine göre daha geç yakınsar, örneğin yarı uzay albedo probleminde H_N yöntemi 6-ıncı yaklaşımda yedi ila sekiz basamak, F_N yöntemi 11-inci yaklaşımda 5 basamak ve SVD yöntemi 5000-inci yakla-şımda (eşit uzunluklu ağ aralığı) dört basamak yakınsama yapar.

2. H_N ve F_N yöntemleri düşük mertebeden (örneğin 7×7) bir matris denkleminin çözümünü gerektirir. SVD yönteminde iyi bir doğruluk elde etmek için kötü koşullu durumda olan yüksek mertebeli (örneğin 1000×1000) bir matris denklemini çözmek

gerekir. Matris mertebesinin büyümesi, genellikle makine taşmasına yol açar, ancak matris mertebesini istediğimiz kadar artırmamıza izin veren bir yöntem değişikliği bulundu. SVD yönteminde eşit olmayan alt aralıklara sahip farklı bir ağ yapısı seçilerek sayısal hesaplama, büyük ölçüde azaltıldı. Böyle bir ağ aralığı seçilerek N = 400 için elde edilen sonuç, eşit uzunluklu ağ aralığı seçilerek N = 5000 için elde edilen sonuç ile aynıdır.

3. H_N ve F_N yöntemleri albedoyu ve çıkış dağılımını doğrudan verebilir. SVD yöntemi ise albedoyu ve çıkış dağılımını vermek için bir miktar analitik hesaplama gerektirir.

4. Mertebesi 7×7 olan bir matris denklemi için H_N ve F_N yöntemlerinin hesaplama süreleri saniye mertebesindedir (yaklaşık bir saniyedir). Ancak SVD yönteminin Midpoint yaklaşımı ve Lineer yaklaşımının hesaplama süresi, sırasıyla 1000×1000 mertebeli bir matris için yaklaşık 10 ile 20 saniye, 5000×5000 için yaklaşık 5 ile 10 dakika ve 10.000×10.000 için yaklaşık 25 ile 45 dakikadır.

Anlı-Güngör saçılma fonksiyonunda t saçılma parametresinin pozitif yönde artmasıyla (t > 0) albedo değerlerinin azalması, gelen nötronların ileri saçılma yaptığını gösterir. Benzer şekilde t saçılma parametresinin negatif yönde artmasıyla (t < 0) albedo değerlerinin artması, gelen nötronların geri saçılma yaptığını gösterir. Buna benzer bir etki saçılma fonksiyonunun Legendre açılımının (Mika 1961) saf triplet saçılmasında görüldü. f_3 saçılma katsayısı pozitif yönde arttığında $(f_3 > 0)$ albedo değerlerinin azaldığı görüldü. Bu durum, gelen nötronların ileri saçılma yaptığını gösterir. Benzer şekilde f_3 saçılma katsayısı negatif yönde arttığında $(f_3 < 0)$ albedo değerlerinin arttığı görüldü. Bu durum, gelen nötronların geri saçılma yaptığını gösterir.

KAYNAKLAR

- Anli, F. and Gungor, S. (2007). Some useful properties of Legendre polynomials and its applications to neutron transport equation in slab geometry. *App. Math. Mod.* 31 (4): 727-733, https://doi.org/10.1016/j.apm.2005.12.005
- Anli, F., Yasa, F. and Güngör, S. (2005). General eigenvalue spectrum in a onedimensional slab geometry transport equation. *Nucl. Sci. Eng.* 150 (1): 72-77, https://doi.org/10.13182/nse05-a2502.
- Bell, W.W. (1968). *Special Functions for Scientists and Engineers*. D. Van Nostrand Company Ltd. London.
- Benoist, P. and Kavenoky, A. (1968). A new method of approximation of the Boltzmann Equation. *Nuclear Science and Engineering*, 32 (2): 225-232.
- Bozkır, A.Z., Türeci, R.G. and Sahni, D.C. (2022a). Half-space albedo problem for the Anlı-Güngör scattering function. *Kerntechnik*, 87 (2): 237-248, https://doi.org/10.1515/kern-2021-1028.
- Bozkır, A.Z., Türeci, R.G. and Sahni, D.C. (2022b). Half-space albedo problem with pure-triplet scattering and Legendre polynomial outgoing flux. J. Comput. Theor. Transp. 51 (7): 393-417, https://doi.org/10.1080/23324309.2022.2150645.
- Burden, R.L., Faires, D.J. and Burden, A.M. (2016). *Numerical Analysis. 10th edn.* Cengage Inc, Cenveo.
- Cacuci, D.G. (Edt.) (2010). *Handbook of Nuclear Engineering*. Springer Science + Business Media LLC, New York.
- Carlson, B.G. (1955). Solution of the transport equation by S_N approximations. Los Alamos Scientific Laboratory of the University of California, Los Alamos, New Mexico.
- Case, K.M. (1960). Elementary solutions of the transport equation and their applications. Annals of Physics, 9: 1-23, https://doi.org/10.1016/0003-4916(60)90060-9.
- Case, K.M. and Zweifel, P.F. (1967). *Linear transport theory*. Addison-Wesley, Reading, MA, London.
- Golub, G.H. and Reinsch, C. (1970). Singular value decomposition and least squares solutions. *Numer. Math.* 14 (5): 403–420, https://doi.org/10.1007/BF02163027
- Grandjean, P. and Siewert, C.E. (1979). The F_N method in neutron-transport theory, Part II: applications and numerical results. *Nucl. Sci. Eng.* 69: 161–168, https://doi.org/10.13182/nse79-a20608.

- İnönü, E. (1973). A theorem on anisotropic scattering. *Transport Theor. Stat. Phys.* 3 (2-3): 137-147.
- Kavenoky, A. (1978). The C_N method of solving the transport equation: application to plane geometry. *Nucl. Sci. Eng.* 65: 209–225, https://doi.org/10.13182/nse78-a27152.
- Lamarsh, J.R. (1966). Introduction to nuclear reactor theory. 1st edn. Addison-Wesley, Reading, MA.
- Lamarsh, J.R. and Baratta, A.J. (2001). *Introduction to nuclear engineering*. *3rd edn*. Prentice-Hall.
- Mika, J.R. (1961). Neutron transport with anisotropic scattering. *Nucl. Sci. Eng.* 11: 415–427, https://doi.org/10.13182/nse61-1.
- Pomraning, G.C. (1965). The albedo problem. *Nucl. Sci. Eng.* 21 (2): 265-268, https://doi.org/10.13182/NSE65-A21055.
- Sahni, D.C. and Kumar, V. (1987). Numerical solution of singular integral equations of neutron transport problems. *Transport Theor. Stat. Phys.* 16: 959–978, https://doi.org/10.1080/00411458708204601.
- Sahni, D.C. and Tureci, R.G. (2018). Discrete eigenvalues of Case spectrum with anisotro-pic scattering. *Nucl. Sci. Eng.* 191: 121–135, https://doi.org/10.1080/00295639.2018.1463748.
- Sahni, D.C., Tureci, R.G. and Bozkir, A.Z. (2019). Partial range completeness of Case eigenfunctions and numerical solution of singular integral equations of particle transport problems. *Paper presented at 26th International Conference on Transport Theory (ICTT-26)*, Paris, France, 23–27 September 2019.
- Sahni, D.C., Tureci, R.G. and Bozkir, A.Z. (2020). Partial range completeness of Case eigenfunctions and numerical solution of singular integral equations of particle transport problems. *J. Comput. Theor. Transp.* 49: 349–367, https://doi.org/10.1080/23324309.2020.1819329.
- Siewert, C.E. and Benoist, P. (1979). The F_N method in neutron-transport theory, Part I: theory and applications. *Nucl. Sci. Eng.* 69: 156–160, https://doi.org/10.13182/nse79-1.
- Tezcan, C., Kaşkaş, A. and Güleçyüz, M.Ç. (2003). The H_N method for solving linear transport equation: theory and applications. *JQSRT*, 78: 243-254, https://doi.org/10.1016/S0022-4073(02)00224-8.
- Türeci, D. (2010). Nötron Transport Denkleminin Çözümünde Kullanılan Yarı-Analitik Yöntemler ve Uygulamaları. Doktora Tezi. *Ankara Üniversitesi Fen Bilimleri Enstitüsü*, Ankara.

- Türeci, R.G. (2005). Nötron Transport Denkleminin H_N Yöntemiyle Çözümü ve Uygulamaları. Doktora Tezi. *Ankara Üniversitesi Fen Bilimleri Enstitüsü*, Ankara.
- Türeci, R.G. (2020). Half-space albedo problem for İnönü, linear and quadratic anisot-ropic scattering. *Nucl. Eng. Technol.* 52 (4): 700-707.
- Türeci, R.G. (2007). The albedo problem for pure-triplet scattering. *Kerntechnik*, 72: 290–298, https://doi.org/10.3139/124.100358.
- Türeci, R.G. ve Bülbül, A. (2022). Case's method for the Anlı-Güngör scattering formula. *SDUFASJS*, 17 (1): 1-8, https://doi.org/10.29233/sdufeffd.925308.
- Türeci, R.G., Sahni, D.C., Aydın, A. and Bozkır, A.Z., "Half-space albedo problem for linear-triplet anisotropic scattering with the H_N and SVD methods", J. Comput. Theor. Transp., İsimli dergiye sunuldu. (2023)
- Türeci, R.G. and Türeci, D. (2007). Time dependent albedo problem for quadratic anisotro-pic scattering. *Kerntechnik*, 72: 59–65, https://doi.org/10.3139/124.100319.
- Wolfram Research, Inc., Mathematica, Version 12.2, Champaign, IL (2020). https://reference.wolfram.com/legacy/language/v12.2/ (Erişim tarihi: 22 March 2022).
- Zabunoğlu, O. (Edt.) (2015). Nükleer Mühendisliğe Giriş. Üçüncü baskıdan çeviri, Palme Yayıncılık, Ankara.

EKLER

EK-1. Küresel Harmoniklerin Toplama Kuralına Uygulanması

Toplama kuralı

$$P_{\ell}(\widehat{a} \cdot \widehat{b}) = \frac{4\pi}{2\ell + 1} \sum_{m = -\ell}^{\ell} Y_{\ell m}^{*}(\widehat{a}) Y_{\ell m}(\widehat{b}) = \frac{4\pi}{2\ell + 1} \sum_{m = -\ell}^{\ell} Y_{\ell m}(\widehat{a}) Y_{\ell m}^{*}(\widehat{b})$$
(E1.1)

ile verilir. Burada \hat{a} ve \hat{b} herhangi iki birim vektördür. $Y_{\ell m}(\hat{a})$ ve $Y_{\ell m}(\hat{b})$ küresel harmoniklerdir ve yıldız işareti, kompleks eşleniği anlamına gelir. Eşitlik E1.1 kullanılarak

$$P_{\ell}(\widehat{\Omega}' \cdot \widehat{\Omega}) = \frac{4\pi}{2\ell + 1} \sum_{m = -\ell}^{\ell} Y_{\ell m}^{*}(\widehat{\Omega}') Y_{\ell m}(\widehat{\Omega})$$
(E1.2)

yazılabilir. Burada küresel harmonikler, $Y_{\ell m}(\widehat{\Omega}) = Y_{\ell m}(\mu, \phi)$ şeklinde yazılabilir. Burada $\mu = \cos \theta$ ve ϕ , $\widehat{\Omega}$ 'nın birim küre üzerindeki açısal koordinatlarıdır. Küresel harmonikler $Y_{\ell m}(\widehat{\Omega})$, açık formda

$$Y_{\ell m}(\widehat{\Omega}) = \left[\frac{2\ell+1}{4\pi} \frac{(\ell-|m|)!}{(\ell+|m|)!}\right]^{1/2} (-1)^{(1/2)(m+|m|)} P_{\ell|m|}(\cos\theta) e^{im\phi}$$
(E1.3)

formülüyle verilir. Benzer şekilde küresel harmoniklerin kompleks eşleniği $Y^*_{\ell m}(\widehat{\Omega})$

$$Y_{\ell m}^{*}(\widehat{\Omega}) = \left[\frac{2\ell+1}{4\pi} \frac{(\ell-|m|)!}{(\ell+|m|)!}\right]^{1/2} (-1)^{(1/2)(m+|m|)} P_{\ell|m|}(\cos\theta) e^{-im\phi}$$
(E1.4)

ile verilir. Yine benzer şekilde $Y_{\ell m}(\widehat{\Omega}')$ ve $Y^*_{\ell m}(\widehat{\Omega}')$

$$Y_{\ell m}(\widehat{\Omega}') = \left[\frac{2\ell+1}{4\pi} \frac{(\ell-|m|)!}{(\ell+|m|)!}\right]^{1/2} (-1)^{(1/2)(m+|m|)} P_{\ell|m|}(\cos\theta') e^{im\phi'}$$
(E1.5)

ve

$$Y_{\ell m}^{*}(\widehat{\Omega}') = \left[\frac{2\ell+1}{4\pi} \frac{(\ell-|m|)!}{(\ell+|m|)!}\right]^{1/2} (-1)^{(1/2)(m+|m|)} P_{\ell|m|}(\cos\theta') e^{-im\phi'}$$
(E1.6)

şeklinde verilir. Eşitlik E1.3 ile E1.6, Eşitlik E1.2'de kullanılarak ve $\mu=\cos\theta$ ile $\mu'=\cos\theta'$ yerine yazılarak

$$P_{\ell}(\widehat{\Omega}' \cdot \widehat{\Omega}) = \sum_{m=-\ell}^{\ell} \frac{(\ell - |m|)!}{(\ell + |m|)!} (-1)^{(m+|m|)} P_{\ell|m|}(\mu) P_{\ell|m|}(\mu') e^{im(\phi - \phi')}$$
(E1.7)

elde edilir. Eşitlik E1.7'deki seride m = 0 yerine yazılırsa ve ayrıca serinin geriye kalan kısmı $m = -\ell$ 'den m = -1'e ve m = 1'den $m = \ell$ 'ye şeklinde iki ayrı seri olarak yazılırsa

$$P_{\ell}(\widehat{\Omega}' \cdot \widehat{\Omega}) = P_{\ell}(\mu) P_{\ell}(\mu') + \sum_{m=-\ell}^{-1} \frac{(\ell - |m|)!}{(\ell + |m|)!} (-1)^{(m+|m|)} P_{\ell|m|}(\mu) P_{\ell|m|}(\mu') e^{im(\phi - \phi')} + \sum_{m=1}^{\ell} \frac{(\ell - m)!}{(\ell + m)!} (-1)^{(m+m)} P_{\ell m}(\mu) P_{\ell m}(\mu') e^{im(\phi - \phi')}$$
(E1.8)

elde edilir. Eşitlik E1.8'de verilen $m = -\ell$ 'den m = -1'e şeklindeki seri, m = 1'den $m = \ell$ 'ye şeklinde tekrar yazılırsa ve mutlak değer içindeki m değerlerinin her zaman pozitif olarak dışarıya çıkması ve burada mutlak değer içinde olmayan m değerlerinin önüne negatif işaret gelmesi dikkate alınırsa ve gerekli düzenlemeler yapılırsa

$$P_{\ell}(\widehat{\Omega}' \cdot \widehat{\Omega}) = P_{\ell}(\mu) P_{\ell}(\mu') + \sum_{m=1}^{\ell} \frac{(\ell - m)!}{(\ell + m)!} P_{\ell m}(\mu) P_{\ell m}(\mu') e^{-im(\phi - \phi')} + \sum_{m=1}^{\ell} \frac{(\ell - m)!}{(\ell + m)!} P_{\ell m}(\mu) P_{\ell m}(\mu') e^{im(\phi - \phi')}$$
(E1.9)

elde edilir. Eşitlik E1.9'da üstel ifadelerin

$$e^{-im(\phi-\phi')} = \cos\left[m(\phi-\phi')\right] - i\sin\left[m(\phi-\phi')\right]$$
(E1.10)

ve

$$e^{im(\phi-\phi')} = \cos\left[m(\phi-\phi')\right] + i\sin\left[m(\phi-\phi')\right]$$
(E1.11)

şeklindeki açılımları dikkate alınırsa, Eşitlik E1.9'daki $i \sin [m(\phi - \phi')]$ terimlerinin sadeleştiği görülür. Eşitlik E1.9 tekrar yazılırsa

$$P_{\ell}(\widehat{\Omega}' \cdot \widehat{\Omega}) = P_{\ell}(\mu) P_{\ell}(\mu') + 2 \sum_{m=1}^{\ell} \frac{(\ell-m)!}{(\ell+m)!} P_{\ell m}(\mu) P_{\ell m}(\mu') \cos\left[m(\phi-\phi')\right]$$
(E1.12)

elde edilir.

EK-2. Sürekli Dağılım Fonksiyonunun Belirlenmesi

Sürekli dağılım fonksiyonu,

$$\int_{-1}^{1} \phi(\nu, \mu) d\mu = 1$$
 (E2.1)

ile verilen normalizasyon şartının kullanılmasıyla elde edilir. İzotropik saçılmada sürekli özfonksiyon

$$\phi(\nu,\mu) = \frac{c\nu}{2} \mathbf{P} \frac{1}{\nu-\mu} + \lambda(\nu)\delta(\nu-\mu)$$
(E2.2)

ile verilir. Eşitlik E2.2'nin Eşitlik E2.1'de kullanılmasıyla

$$\frac{c\nu}{2} \int_{-1}^{1} \mathbf{P} \frac{d\mu}{\nu - \mu} + \lambda(\nu) = 1$$
 (E2.3)

elde edilir. Eşitlik E2.3'ten Cauchy prensip değer tanımının kullanılmasıyla sürekli dağılım fonksiyonu

$$\lambda(\nu) = 1 - \frac{c\nu}{2} \int_{-1}^{1} \mathbf{P} \frac{d\mu}{\nu - \mu}$$
$$= 1 - \frac{c\nu}{2} \lim_{\varepsilon \to 0} \left[\int_{-1}^{\nu - \varepsilon} \frac{d\mu}{\nu - \mu} + \int_{\nu + \varepsilon}^{1} \frac{d\mu}{\nu - \mu} \right]$$
(E2.4)

şeklinde elde edilir. Burada ε , sıfıra yaklaşan çok küçük bir değerdir. Bu durum, Şekil E2.1.'de gösterilmiştir.

Şekil E2.1. $\mu = \nu$ durumunun bir doğru parçası üzerinde gösterilmesi

Şekil E2.1.'deki $\mu = \nu$ noktası baz alındığında, $\mu = -1$ ile $\mu = \nu - \varepsilon$ arasındaki bölgede $\mu < \nu$ olduğundan, Eşitlik E2.4'ün sağ tarafında bulunan birinci integraldeki $\nu - \mu$ ifadesi her zaman pozitiftir. Bu yüzden değişken değiştirme yaparken $u = \nu - \mu$ alınır. Buna göre

$$du = -d\mu$$

$$\mu = -1 \text{ i} \zeta \text{ in } u = \nu + 1$$

$$\mu = \nu - \varepsilon \text{ i} \zeta \text{ in } u = \nu - (\nu - \varepsilon) = \varepsilon \text{ olur}$$

Benzer biçimde Şekil E2.1.'deki $\mu = \nu$ noktası baz alındığında, $\mu = \nu + \varepsilon$ ile $\mu = 1$ arasındaki bölgede $\mu > \nu$ olduğundan, Eşitlik E2.4'ün sağ tarafında bulunan ikinci integraldeki $\nu - \mu$ ifadesi her zaman negatiftir. Bu yüzden değişken değiştirme yaparken $u = \mu - \nu$ alınır. Buna göre

 $du = d\mu$

$$\mu = \nu + \varepsilon \text{ için } u = (\nu + \varepsilon) - \nu = \varepsilon$$

 $\mu=1$ için $u=1-\nu$ olur. Buna göre Eşitlik E2.4

$$\lambda(\nu) = 1 - \frac{c\nu}{2} \lim_{\varepsilon \to 0} \left[\int_{\nu+1}^{\varepsilon} \frac{-du}{u} + \int_{\varepsilon}^{1-\nu} \frac{du}{-u} \right]$$
(E2.5)

şeklinde elde edilir. Eşitlik E2.5'ten sürekli dağılım fonksiyonu

$$\lambda(\nu) = 1 - \frac{c\nu}{2} \ln\left(\frac{1+\nu}{1-\nu}\right)$$
(E2.6)

şeklinde elde edilir. Eşitlik E2.6'da verilen logaritmik ifadenin yarısı için

$$x = \frac{1}{2} \ln \left(\frac{1+\nu}{1-\nu} \right) \tag{E2.7}$$

şeklinde bir tanımlama yapılır. Eşitlik E2.7'nin her iki tarafı 2 ile çarpılır. Daha sonra Eşitlik E2.7'nin her iki tarafi üstel ifade ile yazılırsa

$$e^{2x} = \frac{1+\nu}{1-\nu}$$
(E2.8)

elde edilir. Eşitlik E2.8'in her iki tarafından 1 çıkarılır. Daha sonra Eşitlik E2.8'in her iki tarafına 1 eklenir. Elde edilen iki ifade birbirine bölünerek

$$\frac{e^{2x} - 1}{e^{2x} + 1} = \nu \tag{E2.9}$$

elde edilir. Eşitlik E2.9'un sol tarafı e^{-x}/e^{-x} ile çarpılarak

$$\frac{e^x - e^{-x}}{e^x + e^{-x}} = \nu$$
(E2.10)

elde edilir. Eşitlik E2.10'un sol tarafı tanım gereği

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
(E2.11)

şeklinde verilir. Eşitlik E2.11, Eşitlik E2.10'da kullanılırsa

$$\tanh(x) = \nu \tag{E2.12}$$

elde edilir. Eşitlik E2.12'den

$$x = \tanh^{-1}(\nu) = \operatorname{Arctanh}(\nu) \tag{E2.13}$$

elde edilir. Eşitlik E2.13, Eşitlik E2.7'de kullanılarak

$$\operatorname{Arctanh}(\nu) = \frac{1}{2} \ln \left(\frac{1+\nu}{1-\nu} \right)$$
(E2.14)

elde edilir. Eşitlik E2.14, Eşitlik E2.6'da kullanılarak sürekli dağılım fonksiyonu

$$\lambda(\nu) = 1 - c\nu \operatorname{Arctanh}(\nu) \tag{E2.15}$$

şeklinde elde edilir.

EK-3. Akım İfadesi Kullanılarak Albedonun Belirlenmesi

Burada J akımı kullanılarak β albedo ifadesi belirlenecektir. J akım ifadesi,

$$J = \int_{-1}^{1} \mu \Psi(0,\mu) \, d\mu \tag{E3.1}$$

ile verilir. Eşitlik 3.3, x = 0 için

$$\Psi(0,\mu) = a_{0+} \phi(\nu_0,\mu) + \int_0^1 A(\nu) \phi(\nu,\mu) \, d\nu, \quad \mu \in [-1,1]$$
(E3.2)

şeklinde tekrar yazılabilir. Eşitlik E3.2'nin, E3.1'de kullanılmasıyla

$$\int_{-1}^{1} \mu \Psi(0,\mu) d\mu = a_{0+} \int_{-1}^{1} \mu \phi(\nu_0,\mu) d\mu + \int_{0}^{1} A(\nu) d\nu \int_{-1}^{1} \mu \phi(\nu,\mu) d\mu$$
(E3.3)

elde edilir. Eşitlik E3.3'ün sol tarafındaki integralin

$$\int_{-1}^{1} \mu \Psi(0,\mu) \, d\mu = \int_{-1}^{0} \mu \, \Psi(0,\mu) \, d\mu + \int_{0}^{1} \mu \, \Psi(0,\mu) \, d\mu$$

şeklinde ikiye bölünmesiyle ve sağ tarafındaki integrallerin

$$\int_{-1}^{1} \mu \, \phi(\nu_0, \mu) \, d\mu = (1 - c) \nu_0$$

ve

$$\int_{-1}^{1} \mu \, \phi(\nu, \mu) \, d\mu = (1 - c)\nu$$

şeklinde elde edilmesiyle Eşitlik E3.3

$$J_{\text{giriş}} - J_{\text{gikiş}} = a_{0+}(1-c)\nu_0 + (1-c)\int_0^1 \nu A(\nu) \,d\nu \tag{E3.4}$$

şeklinde bulunur. Burada

$$J_{\text{giris}} = \int_0^1 \mu \,\Psi(0,\mu) \,d\mu$$
 (E3.5)

ve

$$J_{\text{grkuş}} = \int_0^1 \mu \,\Psi(0, -\mu) \,d\mu$$
 (E3.6)

ile verilir. Sınır şartı,

$$\Psi(0,\mu) = 1, \quad \mu \in [0,1]$$
(E3.7)

ile tanımlanmıştır. Eşitlik E3.7'nin E3.5'te kullanılmasıyla $J_{\text{giriş}} = 1/2$ olduğu görülür. Eşitlik E3.4'ün her iki tarafı $J_{\text{giriş}}$ ile bölünerek ve $\beta = J_{\text{çıkış}}/J_{\text{giriş}}$ albedo tanımı kullanılarak, albedo β ifadesi

$$\beta = 1 - 2(1 - c) \left[\nu_0 a_{0+} + \int_0^1 \nu A(\nu) \, d\nu \right]$$
(E3.8)

şeklinde elde edilir.

EK-4. Uç Noktalara Yakın Tekil İntegral Denklemin Çözümü

Burada $\nu = 0$ ve $\nu = 1$ uç noktalarına yakın tekil integral denklemin çözümü incelenecektir. Eşitlik 5.2 ile verilen tekil integral denklemi

$$\lambda(\nu) A(\nu) + \frac{c}{2} \int_0^1 \frac{\nu' A(\nu')}{\nu' - \nu} d\nu' = 1 - a_{0+} \frac{c\nu_0}{2} \frac{1}{\nu_0 - \nu}$$
(E4.1)

şeklinde yeniden yazılır. Eşitlik E4.1'de

$$\frac{c}{2}A(\nu)\int_0^1 \frac{\nu'}{\nu'-\nu}d\nu'$$

ifadesi eklenip çıkarılarak

$$\lambda(\nu) A(\nu) + \frac{c}{2} \int_{0}^{1} \frac{\nu' \left[A(\nu') - A(\nu) \right]}{\nu' - \nu} d\nu' + \frac{c}{2} A(\nu) \int_{0}^{1} \frac{\nu'}{\nu' - \nu} d\nu'$$

= 1 - a₀₊ $\frac{c\nu_{0}}{2} \frac{1}{\nu_{0} - \nu}$ (E4.2)

elde edilir. Eşitlik 2.15 ile verilen $\lambda(\nu)$

$$\lambda(\nu) = 1 - \frac{c\nu}{2} \ln\left(\frac{1+\nu}{1-\nu}\right) \tag{E4.3}$$

şeklinde tekrar yazılabilir. Eşitlik E4.3, Eşitlik E4.2'de yerine konularak ve bazı düzenlemeler yapılarak

$$\left[1 - \frac{c\nu}{2} \ln \frac{1+\nu}{1-\nu} + \frac{c}{2} \left(1 + \nu \ln \frac{\nu-1}{\nu} \right) \right] A(\nu) + \frac{c}{2} \int_0^1 \frac{\nu' \left[A(\nu') - A(\nu) \right]}{\nu' - \nu} d\nu'$$

$$= 1 - a_{0+} \frac{c\nu_0}{2} \frac{1}{\nu_0 - \nu}$$
(E4.4)

elde edilir. Şimdi $\nu \to 0$ ele alınırsa, hesaplanan A(0) değerini çapraz kontrol etmek için kullanılabilecek

$$A(0) + \frac{c}{2} \int_0^1 A(\nu') \, d\nu' = 1 - \frac{c \, a_{0+}}{2}$$
(E4.5)

ifadesi elde edilir. Öte yandan, Eşitlik E4.4'te $\nu \to 1$ ele alınırsa, köşeli parantez içindeki katsayı $[\cdots] \to \infty$ iken diğer tüm terimler sonlu kalır. Bu, bizi $\nu \to 1$ iken $A(\nu) \to 0$ sonucuna götürür.

Eşitlik 5.22, Eşitlik 5.2'de kullanılarak ayrıklaştırılırsa Eşitlik 5.25 matrisi elde edilir. $\nu_{N+1} = 1$ iken $x_{N+1} = A(\nu_{N+1}) = 0$ olur. Bu nedenle, Eşitlik 5.25 ile verilen denklem setinin ilk N lineer denklemi,

$$\sum_{j=1}^{N} H_{i,j} x_j = f_1(\nu_i) - a_{0+} f_2(\nu_i), \quad i = 1, 2, ..., N$$
(E4.6)

şeklinde açık formda yazılabilir ve (N + 1)-inci denkleme herhangi bir atıfta bulunulmadan çözülebilir. (Sahni et. al. 2019, 2020)

EK-5. SVD Yönteminin Geliştirilmesi

Şimdi, makine taşmasını önleyen ve N'yi artırarak çok küçük alt aralıkları seçmeye izin veren SVD prosedürünün geliştirilmesi tartışılacaktır. Bunun için Eşitlik 5.53'te

$$WV^{T}x = U^{T}[g_{1} - a_{0+}g_{2} + B_{1}g_{3} + B_{2}g_{4} + B_{3}g_{5} + B_{4}g_{6}]$$
 (E5.1)

ile verilen eşitlikten başlanabilir. x çözüm vektörü

$$\mathbf{x} = \mathbf{V}\mathbf{W}^{-1}\mathbf{U}^{\mathbf{T}}[\mathbf{g}_{1} - a_{0+}\mathbf{g}_{2} + B_{1}\mathbf{g}_{3} + B_{2}\mathbf{g}_{4} + B_{3}\mathbf{g}_{5} + B_{4}\mathbf{g}_{6}]$$
(E5.2)

şeklinde yazılabilir. W köşegen bir matris olduğundan, $(\mathbf{V}\mathbf{W^{-1}})$ çarpım matrisinin elemanları

$$(\mathbf{V}\mathbf{W}^{-1})_{i,j} = \frac{1}{\mathbf{W}_{j,j}}\mathbf{V}_{i,j}; \quad i, j = 1, 2, 3, ..., N$$
 (E5.3)

ile verilir. Daha önce belirtildiği gibi, $\mathbf{W}_{N,N}$ matris elemanı, diğer $\mathbf{W}_{j,j}$, j = 1, 2, ..., N - 1 öğelerinden birkaç mertebe daha küçüktür. Ayrıca, N artırılırsa, bu son eleman keskin bir biçimde azalırken, diğer tüm elemanlar kabaca aynı büyüklükte kalır. Bu durum, $(\mathbf{V}\mathbf{W}^{-1})_{i,N}$ matrisinin son sütununun hesaplanmasını engeller ve makine taşmasına neden olur. Ancak

$$\left\{ \mathbf{U}^{\mathbf{T}} \left[\mathbf{g}_{1} - a_{0+} \mathbf{g}_{2} + B_{1} \mathbf{g}_{3} + B_{2} \mathbf{g}_{4} + B_{3} \mathbf{g}_{5} + B_{4} \mathbf{g}_{6} \right] \right\}_{N} = 0$$
(E5.4)

ile verilen Eşitlik 5.54, bu son sütunun önemsiz olduğunu ima eder. Çünkü bu son sütun, her zaman bir sıfır ile çarpılır. Burada yalnızca

$$\mathbf{U}^{\mathbf{T}} \Big[\mathbf{g}_{1} - a_{0+} \mathbf{g}_{2} + B_{1} \mathbf{g}_{3} + B_{2} \mathbf{g}_{4} + B_{3} \mathbf{g}_{5} + B_{4} \mathbf{g}_{6} \Big]$$
(E5.5)

ile verilen sütun vektörünün N-inci girdisinin sıfır olduğu kaynak terimleri için çözüm aranır. Böylece en son elde edilecek sonuçları etkilemeden $\mathbf{W}_{N,N}$ elemanı, herhangi bir sayı ile değiştirilebilir. Kolaylık sağlamak için $1/\mathbf{W}_{N,N} = 0$ olacak şekilde ayarlanarak, $\mathbf{W}_{N,N} \to \infty$ seçilir. Bu seçim, N'nin istenildiği kadar artırılabilmesini sağlar. (Türeci et. al. 2023)

EK-6. Saf Triplet Anizotropik Saçılma için Sayısal Sonuçlar

f_3	с								
	0,5	0,7	0,8	0,9					
-0,14	1,036524517532	1,202557851016	1,405395985659	1,902459206249					
-0,10	1,038622044075	1,203658776953	1,405974205926	1,902652095096					
-0,05	1,041404888717	1,205155364321	1,406762502028	1,902914754721					
0,05	1,047571864143	1,208629020114	1,408603495460	1,903526931326					
0,10	1,050994890805	1,210658154490	1,409687143164	1,903886567662					
0,14	1,053916523287	1,212451675164	1,410650594659	1,904205945603					

Çizelge E6.1. Değişen c ve f_3 için kesikli özdeğerler (Bozkır et. al. 2022b)

Çizelge E6.2. c = 0,5 ve değişen f_3 için albedo değerleri (Bozkır et. al. 2022b)

f_3	$\mathrm{H_{N}}\;(N=10)$	$\mathbf{F}_{\mathbf{N}} \; (N=11)$	SVD ($N = 500$)	SVD ($N = 1000$)
-0,14	0,1471606618	0,1471581477	0,1464149742	0,1468234125
-0,10	0,1469869992	0,1469844846	0,1462633260	0,1466593065
-0,05	0,1467672271	0,1467647120	0,1460694640	0,1464507954
0,05	0,1463183694	0,1463158542	0,1456676818	0,1460224369
0,10	0,1460890976	0,1460865828	0,1454598528	0,1458025209
0,14	0,1459032656	0,1459007512	0,1452902780	0,1456237908

Çizelge E6.3. c = 0,7 ve değişen f_3 için albedo değerleri (Bozkır et. al. 2022b)

f_3	$\mathrm{H}_{\mathrm{N}}\;(N=10)$	$\mathbf{F}_{\mathbf{N}} (N = 11)$	SVD ($N = 500$)	SVD ($N = 1000$)
-0,14	0,2571920897	0,2571900989	0,2569937314	0,2571006931
-0,10	0,2570143334	0,2570123466	0,2568043191	0,2569175537
-0,05	0,2567879273	0,2567859464	0,2565611737	0,2566834184
0,05	0,2563202936	0,2563183277	0,2560501254	0,2561957383
0,10	0,2560786166	0,2560766605	0,2557796102	0,2559407396
0,14	0,2558812790	0,2558793325	0,2555542339	0,2557304407

f_3	$\mathrm{H}_{\mathrm{N}}\;(N=10)$	$\mathbf{F}_{\mathbf{N}} \; (N=11)$	SVD ($N = 500$)	SVD ($N = 1000$)
-0,14	0,4783852762	0,4783844842	0,4783464701	0,4783672973
-0,10	0,4782854516	0,4782846620	0,4782424520	0,4782655268
-0,05	0,4781570834	0,4781562971	0,4781073131	0,4781340179
0,05	0,4778873877	0,4778866106	0,4778144809	0,4778535657
0,10	0,4777454665	0,4777446958	0,4776505089	0,4777013073
0,14	0,4776282279	0,4776274636	0,4775034349	0,4775698705

Çizelge E6.4. c = 0.9 ve değişen f_3 için albedo değerleri (Bozkır et. al. 2022b)

0.1472 0.2572 0.2570 0.1470 • c=0.5 • c=0.7 0.2568 0.1468 م ^{0.1466} 0.2566 0.2564 0.1464 0.2562 0.1462 0.2560 0.1460 0.2558 -0.15 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 f_3 f_3 (a) **(b)** 0.50 0.4784 0.45 • c=0.9 - f₃=0.14 0.4782 0.40 0.35 °, 0.4780 0.30 0.25 0.4778 0.20 0.15 0.4776 0.00 f₃ 0.10 -0.10 -0.05 0.05 0.15 0.7 c 0.5 0.8 0.9 0.6

Şekil E6.1. N = 10 için H_N yöntemiyle **a.** c = 0,5 için β ile f_3 karşılaştırması **b.** c = 0,7 için β ile f_3 karşılaştırması **c.** c = 0,9 için β ile f_3 karşılaştırması **d.** $f_3 = 0,14$ için β ile c karşılaştırması (Bozkır et. al. 2022b)

(**d**)

(c)

EK-7. Lineer-Triplet Anizotropik Saçılma için Sayısal Sonuçlar

$3f_1$	c			7	f_3		
		-1	-0,512	-0,216	0,125	0,343	0,729
0.8	0.7				1 11940554	1 12098648	1 12407355
0,0	0.8	_	_	_	1 28337920	1 28418140	1 28575890
	0,0	_	_	_	1 71080059	1 71104849	1 71153388
	0,99	_	_	_	5 15600597	5 15601276	5 15602597
	0.999	_	_	_	16.23034468	16.23034489	16.23034530
	0,9999	_	_	_	51,30150974	51,30150975	51,30150976
-0,6	0,7	_	_	1,13685082	1,13894865	1,14040931	1,14325851
	0,8	_	_	1,31005885	1,31113162	1,31188198	1,31335469
	0,9	_	_	1,75300034	1,75333955	1,75357609	1,75403872
	0,99	_	_	5,29610806	5,29611758	5,29612418	5,29613701
	0,999	_	_	16,67472761	16,67472791	16,67472811	16,67472851
	0,9999	_	_	52,70717523	52,70717524	52,70717524	52,70717525
-0,4	0,7	_	1,15656692	1,15810280	1,16004444	1,16139477	1,16402541
	0,8	_	1,33917403	1,33996606	1,34097135	1,3416/341	1,34304872
	0,9	-	1,79869395	1,79894961	1,79927326	1,79949875	1,79993928
	0,99		5,44829449	5,44850185	5,44851100	5,44851747	5,44852991
	0,999		54 22510202	54 22510202	54 22510204	54 22510204	54 22510206
	0,9999		54,25510292	14,23310293	1 1 0 0 0 0 0 7 0	1 10 10 (00)	34,23310290
-0,2	0,7		1,17959762	1,18102228	1,18282072	1,18406986	1,18649989
	0,8		1,3/146485	1,3/220831	1,3/315041	1,3/380/32	1,3/509183
	0,9		1,84852205	1,848/0001	1,84907497	1,84928908	1,849/08/3
	0,99		3,01441269	3,01441999	3,01442893	3,01443313	3,01444/18
	0,999		55,90411033	55,90411034	55,90411035	55,90411035	55,90411036
0.1	0.7	1.21571548	1.21760866	1.21888311	1.22048828	1.22160089	1.22376033
0,1	0.8	1.42394622	1.42494639	1.42562223	1.42647660	1.42707101	1.42823024
	0,9	1,93146442	1,93180021	1,93202685	1,93231314	1,93251216	1,93289999
	0,99	5,89478162	5,89479165	5,89479839	5,89480688	5,89481277	5,89482421
	0,999	18,57664471	18,57664503	18,57664524	18,57664550	18,57664569	18,57664605
	0,9999	58,72426969	58,72426970	58,72426971	58,72426971	58,72426972	58,72426973
0,3	0,7	1,24379210	1,24555404	1,24673803	1,24822695	1,24925753	_
	0,8	1,46357562	1,46451521	1,46514903	1,46594907	1,46650488	_
	0,9	1,99376264	1,99408208	1,99429749	1,99456934	1,99475817	_
	0,99	6,10685742	6,10686708	6,10687358	6,10688176	6,10688743	-
	0,999	19,25164061	19,25164091	19,25164112	19,25164138	19,25164155	—
	0,9999	60,86015826	60,86015827	60,86015827	60,86015828	60,86015829	_
0,5	0,7	1,27423335	1,27587361	1,27697387	1,27835535	1,27931022	_
	0,8	1,50688046	1,50776242	1,50835640	1,50910503	1,50962442	-
	0,9	2,06256499	2,06286830	2,06307264	2,06333029	2,06350913	_
	0,99	6,34360536	6,34361464	6,34362089	6,34362875	6,34363420	_
	0,999	20,00600240	20,00600269	20,00600289	20,00600314	20,00600331	_
	0,99999	63,24/45065	63,24/45066	63,24/45066	63,24/4506/	63,24/45068	_
0,7	0,7	1,30734750	1,30887456	1,30989710	1,31117901	_	_
	0,8	2 13008/06	2 13037140	2 13956481	2 13980848	_	_
	0,9	6 61021288	6 61022177	6 61022775	6 61023528	_	_
	0.999	20.85661104	20.85661132	20.85661151	20.85661175	_	_
	0,9999	65,93968153	65,93968153	65,93968154	65,93968155	_	_
1,0	0,7	1,36287074	1,36424187	1,36515763	_	_	_
	0,8	1,63545004	1,63619892	1,63670131	_	_	_
	0,9	2,27185826	2,27212185	2,27229903	_	_	_
	0,99	7,08174115	7,08174943	7,08175499	_	_	_
	0,999	22,36403597	22,36403624	22,36403641	_	_	_
	0,9999	70,71173887	70,71173888	70,71173889	-	-	_
1,125	0,7	-	1,38971573	1,39059007	-	-	-
	0,8	_	1,0/399/91	1,0/44/893	_	_	_
	0,9	_	2,33326030	2,33343070	_	_	_
	0,99	_	23 (19632282	23 09632290	_	_	_
	0.9999	_	73.03040476	73.03040477	_	_	_

Çizelge E7.1. Değişen c, $7f_3$ ve $3f_1$ için kesikli özdeğerler (Türeci et. al. 2023)

$3f_1$	Yöntem	N			7	f ₃		
			-1	-0,512	-0,216	0,125	0,343	0,729
-0,8	H _N SVD SVD SVD	6 500 1000 5000				0,29444965 0,29411976 0,29429815 0,29442426	0,29431441 0,29397167 0,29415697 0,29428802	0,29407046 0,29370220 0,29390123 0,29404207
-0,6	H _N SVD SVD SVD	6 500 1000 5000	- - -	- - - -	0,28582812 0,28554127 0,28569627 0,28580600	0,28561569 0,28530946 0,28547489 0,28559205	0,28547755 0,28515744 0,28533035 0,28545283	0,28522834 0,28488016 0,28506818 0,28520142
-0,4	H _N SVD SVD SVD	6 500 1000 5000	- - -	0,27676863 0,27651763 0,27665315 0,27674924	0,27658378 0,27631759 0,27646129 0,27656320	0,27636670 0,27608046 0,27623496 0,27634455	0,27622552 0,27592474 0,27608707 0,27620224	0,27597077 0,27564013 0,27581854 0,27594515
-0,2	H _N SVD SVD SVD	6 500 1000 5000	- - -	0,26707716 0,26684368 0,26696964 0,26705909	0,26688818 0,26663941 0,26677360 0,26686890	0,26666620 0,26639704 0,26654221 0,26664533	0,26652182 0,26623770 0,26639093 0,26649978	0,26626125 0,26594599 0,26611598 0,26623676
0,1	H _N SVD SVD SVD	6 500 1000 5000	0,25191726 0,25172609 0,25182914 0,25190244	0,25160228 0,25139017 0,25150449 0,25158582	0,25140667 0,25117936 0,25130186 0,25138901	0,25117684 0,25092899 0,25106255 0,25115757	0,25102732 0,25076419 0,25090597 0,25100685	0,25075738 0,25046189 0,25062108 0,25073436
0,3	H _N SVD SVD SVD	6 500 1000 5000	0,24091195 0,24073213 0,24082901 0,24089799	0,24058942 0,24038903 0,24049697 0,24057384	0,24038906 0,24017363 0,24028967 0,24037230	0,24015362 0,23991768 0,24004475 0,24013525	0,24000042 0,23974913 0,23988445 0,23998084	_ _ _ _
0,5	H _N SVD SVD SVD	6 500 1000 5000	0,22928354 0,22911346 0,22920504 0,22927031	0,22895299 0,22876273 0,22886517 0,22893818	0,22874761 0,22854249 0,22865292 0,22873163	0,22850621 0,22828070 0,22840210 0,22848863	0,22834910 0,22810822 0,22823788 0,22833031	- - -
0,7	H _N SVD SVD SVD	6 500 1000 5000	0,21696491 0,21680323 0,21689025 0,21695232	0,21662585 0,21644438 0,21654204 0,21661170	0,21641512 0,21621899 0,21632454 0,21639982	0,21616739 0,21595102 0,21606745 0,21615050	-	
1,0	H _N SVD SVD SVD	6 500 1000 5000	0,19701785 0,19686674 0,19694803 0,19700606	0,19666495 0,19649461 0,19658623 0,19665165	0,19644553 0,19626084 0,19636017 0,19643110	- - -	- - -	- - -
1,125	H _N SVD SVD SVD	6 500 1000 5000	- - -	0,18776172 0,18759539 0,18768484 0,18774873	0,18753841 0,18735785 0,18745495 0,18752430	- - -	- - -	- - -

Çizelge E7.2. c = 0,7'de değişen $7f_3$ ve $3f_1$ için albedo değerleri (Türeci et. al. 2023)

$3f_1$	Yöntem	N			7	f_3		
			-1	-0,512	-0,216	0,125	0,343	0,729
-0,8	H_{N}	6	_	_	_	0,38244224	0,38232618	0,38211592
	SVD	500	_	_	_	0,38227890	0,38214774	0,38190244
	SVD	1000	_	_	_	0,38236680	0,38224375	0,38201725
	SVD	5000	_	_	_	0,38242947	0,38231222	0,38209917
-0,6	H_{N}	6	_	_	0,37328947	0,37310711	0,37298808	0,37277239
	SVD	500	_	_	0,37315044	0,37294932	0,37281532	0,37256465
	SVD	1000	_	_	0,37322524	0,37303420	0,37290824	0,37267632
	SVD	5000	_	_	0,37327861	0,37309477	0,37297455	0,37275606
-0,4	H_N	6	_	0,36360302	0,36344434	0,36325718	0,36313499	0,36291352
	SVD	500	_	0,36348137	0,36330995	0,36310427	0,36296725	0,36271089
	SVD	1000	_	0,36354681	0,36338223	0,36318650	0,36305744	0,36281977
	SVD	5000	_	0,36359353	0,36343383	0,36324521	0,36312184	0,36289758
-0.2	ΗN	6	_	0.35319497	0.35303198	0.35283971	0.35271415	0.35248654
- /	SVD	500	_	0.35307720	0.35290169	0.35269113	0.35255086	0.35228844
	SVD	1000	_	0.35314053	0.35297175	0.35277101	0.35263864	0.35239486
	SVD	5000	_	0,35318576	0,35302179	0,35282807	0,35270134	0,35247094
0.1	HM	6	0 33665628	0 33638399	0 33621401	0 33601341	0 33588238	0 33564475
0,1	SVD	500	0.33655906	0.33627118	0 33608894	0 33587036	0.33572478	0 33545245
	SVD	1000	0.33661132	0.33633182	0.33615616	0 33594724	0.33580946	0.33555571
	SVD	5000	0,33664868	0,33637516	0,33620421	0,33600219	0,33587000	0,33562959
0.3	HN	6	0.32455008	0.32426975	0.32409468	0.32388804	0.32375303	_
0,2	SVD	500	0.32445541	0.32415972	0.32397256	0.32374810	0.32359863	_
	SVD	1000	0.32450629	0.32421884	0.32403818	0.32382329	0.32368157	_
	SVD	5000	0,32454268	0,32426113	0,32408511	0,32387706	0,32374090	_
0.5	HM	6	0.31161561	0.31132661	0.31114609	0.31093295	0.31079366	_
0,0	SVD	500	0.31152314	0.31121900	0.31102651	0.31079569	0.31064201	_
	SVD	1000	0.31157283	0.31127681	0.31109075	0.31086942	0.31072346	_
	SVD	5000	0,31160837	0,31131818	0,31113671	0,31092217	0,31078173	_
07	HN	6	0 29774556	0 29744722	0 29726082	0 29704066	_	_
0,7	SVD	500	0.29765498	0.29734168	0.29714340	0.29690568	_	_
	SVD	1000	0 29770364	0 29739837	0 29720647	0.29697817	_	_
	SVD	5000	0,29773847	0,29743895	0,29725160	0,29703005	_	_
1.0	H	6	0 27489709	0 27458327	0 27438708	_	_	_
1,0	SVD	500	0.27480879	0.27448019	0.27427225	_	_	_
	SVD	1000	0.27485622	0.27453555	0.27433391	_	_	_
	SVD	5000	0,27489018	0,27457519	0,27437806	_	_	_
1.125	HN	6	_	0.26422043	0.26401978	_	_	_
1,123	SVD	500	_	0.26411817	0.26390579	_	_	_
	SVD	1000	_	0.26417308	0.26396699	_	_	_
	SVD	5000	_	0 26421241	0 26401082	_	_	_

Çizelge E7.3. c = 0,8'de değişen $7f_3$ ve $3f_1$ için albedo değerleri (Türeci et. al. 2023)

$3f_1$	Yöntem	N	7f3						
			-1	-0,512	-0,216	0,125	0,343	0,729	
-0,8	H_{N}	5	_	_	_	0,51750367	0,51742835	0,51729105	
	SVD	500	_	_	_	0,51744111	0,51735688	0,51719558	
	SVD	1000	_	_	_	0,51747467	0,51739520	0,51724666	
	SVD	5000	_	—	—	0,51749873	0,51742269	0,51728341	
-0,6	H_N	5	_	_	0,50868465	0,50856629	0,50848861	0,50834700	
	SVD	500	_	_	0,50863226	0,50850367	0,50841705	0,50825130	
	SVD	1000	_	_	0,50866037	0,50853726	0,50845542	0,50830249	
	SVD	5000	_	_	0,50868052	0,50856134	0,50848294	0,50833934	
-0,4	H_{N}	6	_	0,49927274	0,49916975	0,49904757	0,49896737	0,49882111	
	SVD	500	_	0,49922676	0,49911726	0,49898480	0,49889560	0,49872502	
	SVD	1000	_	0,49925143	0,49914543	0,49901847	0,49893408	0,49877642	
	SVD	5000	_	0,49926913	0,49916562	0,49904261	0,49896169	0,49881342	
-0,2	H_N	6	_	0,48911089	0,48900445	0,48887814	0,48879522	0,48864395	
	SVD	500	_	0,48906475	0,48895177	0,48881511	0,48872312	0,48854730	
	SVD	1000	_	0,48908951	0,48898003	0,48884892	0,48876177	0,48859899	
	SVD	5000	_	0,48910726	0,48900030	0,48887317	0,48878951	0,48863621	
0.1	H_N	6	0.47264423	0.47246578	0.47235363	0.47222048	0.47213302	0.47197344	
,	SVD	500	0,47260556	0,47241924	0,47230045	0,47215681	0,47206016	0,47187560	
	SVD	1000	0,47262631	0,47244422	0,47232898	0,47219095	0,47209921	0,47192792	
	SVD	5000	0,47264119	0,47246213	0,47234944	0,47221545	0,47212725	0,47196560	
0,3	H_N	6	0,46047003	0,46028490	0,46016849	0,46003026	0,45993945	_	
	SVD	500	0,46043105	0,46023795	0,46011485	0,45996601	0,45986588	_	
	SVD	1000	0,46045196	0,46026314	0,46014362	0,46000046	0,45990531	_	
	SVD	5000	0,46046697	0,46028120	0,46016426	0,46002518	0,45993362	_	
0,5	H_N	6	0,44728149	0,44708903	0,44696797	0,44682418	0,44672969	_	
,	SVD	500	0,44724209	0,44704157	0,44691373	0,44675917	0,44665523	_	
	SVD	1000	0,44726323	0,44706703	0,44694282	0,44679403	0,44669514	_	
	SVD	5000	0,44727839	0,44708529	0,44696369	0,44681904	0,44672379	_	
0,7	H_N	6	0,43292010	0,43271956	0,43259338	0,43244347	_	_	
	SVD	500	0,43288019	0,43267147	0,43253839	0,43237753	-	_	
	SVD	1000	0,43290160	0,43269727	0,43256788	0,43241288	_	_	
	SVD	5000	0,43291696	0,43271578	0,43258905	0,43243825	_	_	
1,0	H_N	6	0,40873450	0,40852016	0,40838523	_	_	_	
-,-	SVD	500	0,40869358	0,40847081	0,40832877	_	_	_	
	SVD	1000	0,40871554	0,40849728	0,40835904	_	_	_	
	SVD	5000	0,40873129	0,40851628	0,40838077	_	_	_	
1,125	H_N	6	_	0,39732117	0,39718211	_	_	_	
,	SVD	500	_	0,39727117	0,39712491	_	_	_	
	SVD	1000	_	0,39729798	0,39715558	_	_	_	
	SVD	5000	_	0.39731723	0.39717760	_	_	_	

Çizelge E7.4. c = 0.9'da değişen $7f_3$ ve $3f_1$ için albedo değerleri (Türeci et. al. 2023)

$3f_1$	Yöntem	N			7	f_3		
			-1	-0,512	-0,216	0,125	0,343	0,729
-0,8	H _N SVD SVD SVD	5 500 1000 5000	- - - -	- - - -	- - - -	0,81502873 0,81502392 0,81502650 0,81502835	0,81501943 0,81501372 0,81501678 0,81501898	0,81500230 0,81499380 0,81499832 0,81500160
-0,6	H _N SVD SVD SVD	5 500 1000 5000	- - -	- - -	0,81052405 0,81052004 0,81052219 0,81052373	0,81050941 0,81050440 0,81050708 0,81050901	0,81049971 0,81049377 0,81049695 0,81049924	0,81048184 0,81047299 0,81047769 0,81048111
-0,4	H _N SVD SVD SVD	5 500 1000 5000	- - -	0,80565574 0,80565217 0,80565408 0,80565545	0,80564297 0,80563879 0,80564103 0,80564264	0,80562767 0,80562244 0,80562524 0,80562725	0,80561753 0,80561132 0,80561464 0,80561703	0,80559884 0,80558961 0,80559452 0,80559808
-0,2	H _N SVD SVD SVD	5 500 1000 5000	- - -	0,80036084 0,80035712 0,80035911 0,80036055	0,80034746 0,80034309 0,80034543 0,80034712	0,80033143 0,80032597 0,80032889 0,80033099	0,80032080 0,80031431 0,80031778 0,80032028	0,80030121 0,80029155 0,80029669 0,80030042
0,1	H _N SVD SVD SVD	5 500 1000 5000	0,79152198 0,79151875 0,79152048 0,79152172	0,79149927 0,79149526 0,79149741 0,79149896	0,79148484 0,79148014 0,79148266 0,79148447	0,79146755 0,79146167 0,79146481 0,79146708	0,79145608 0,79144910 0,79145283 0,79145552	0,79143494 0,79142454 0,79143007 0,79143409
0,3	H _N SVD SVD SVD	5 500 1000 5000	0,78488248 0,78487908 0,78488090 0,78488221	0,78485850 0,78485427 0,78485654 0,78485817	0,78484326 0,78483830 0,78484096 0,78484287	0,78482499 0,78481879 0,78482211 0,78482449	0,78481288 0,78480551 0,78480945 0,78481228	_ _ _ _
0,5	H _N SVD SVD SVD	5 500 1000 5000	0,77753284 0,77752923 0,77753116 0,77753255	0,77750741 0,77750293 0,77750533 0,77750705	0,77749124 0,77748599 0,77748880 0,77749083	0,77747186 0,77746529 0,77746881 0,77747134	0,77745901 0,77745121 0,77745538 0,77745839	- - -
0,7	H _N SVD SVD SVD	5 500 1000 5000	0,76933381 0,76932998 0,76933203 0,76933351	0,76930672 0,76930196 0,76930451 0,76930635	0,76928950 0,76928391 0,76928690 0,76928906	0,76926885 0,76926186 0,76926560 0,76926829	-	- - -
1,0	H _N SVD SVD SVD	5 500 1000 5000	0,75503043 0,75502618 0,75502845 0,75503009	0,75500033 0,75499504 0,75499787 0,75499991	0,75498118 0,75497497 0,75497830 0,75498069	- - -	- - -	- - -
1,125	H _N SVD SVD SVD	5 500 1000 5000	- - -	0,74815355 0,74814800 0,74815097 0,74815311	0,74813345 0,74812693 0,74813042 0,74813293	- - -	- - -	- - -

Çizelge E7.5. c = 0,99'da değişen 7 f_3 ve $3f_1$ için albedo değerleri (Türeci et. al. 2023)

$3f_1$	Yöntem	Ν	7f3						
			-1	-0,512	-0,216	0,125	0,343	0,729	
-0,8	H_{N}	4	_	_	_	0,93727991	0,93727903	0,93727740	
	SVD	500	_	_	_	0,93727945	0,93727848	0,93727658	
	SVD	1000	_	_	_	0,93727970	0,93727878	0,93727702	
	SVD	5000	—	—	—	0,93727987	0,93727899	0,93727733	
-0,6	H_{N}	4	_	—	0,93562294	0,93562154	0,93562062	0,93561891	
	SVD	500	_	_	0,93562255	0,93562106	0,93562004	0,93561804	
	SVD	1000	_	_	0,93562276	0,93562132	0,93562035	0,93561850	
	SVD	5000	_	_	0,93562290	0,93562150	0,93562057	0,93561884	
-0,4	H_{N}	4	_	0,93382517	0,93382395	0,93382248	0,93382151	0,93381971	
	SVD	500	_	0,93382483	0,93382355	0,93382198	0,93382090	0,93381880	
	SVD	1000	_	0,93382501	0,93382376	0,93382225	0,93382123	0,93381928	
	SVD	5000	_	0,93382514	0,93382392	0,93382244	0,93382146	0,93381964	
-0.2	H_N	4	_	0,93186436	0,93186307	0,93186152	0,93186049	0,93185859	
	SVD	500	_	0,93186400	0,93186264	0,93186099	0,93185985	0,93185763	
	SVD	1000	_	0,93186419	0,93186287	0,93186127	0,93186020	0,93185814	
	SVD	5000	_	0,93186433	0,93186304	0,93186148	0,93186044	0,93185851	
0,1	H_N	4	0,92856333	0,92856112	0,92855971	0,92855801	0,92855689	0,92855481	
	SVD	500	0,92856301	0,92856072	0,92855924	0,92855743	0,92855619	0,92855375	
	SVD	1000	0,92856318	0,92856093	0,92855949	0,92855774	0,92855656	0,92855431	
	SVD	5000	0,92856330	0,92856108	0,92855967	0,92855797	0,92855683	0,92855472	
0,3	H_{N}	4	0,92607003	0,92606767	0,92606617	0,92606436	0,92606316	_	
	SVD	500	0,92606969	0,92606725	0,92606567	0,92606374	0,92606241	_	
	SVD	1000	0,92606988	0,92606748	0,92606594	0,92606407	0,92606281	_	
	SVD	5000	0,92607001	0,92606764	0,92606613	0,92606431	0,92606310	_	
0,5	H_N	4	0,92329173	0,92328920	0,92328758	0,92328565	0,92328436	_	
	SVD	500	0,92329136	0,92328874	0,92328705	0,92328497	0,92328356	_	
	SVD	1000	0,92329156	0,92328898	0,92328733	0,92328533	0,92328399	_	
	SVD	5000	0,92329170	0,92328916	0,92328754	0,92328559	0,92328429	_	
0,7	H_N	4	0,92016921	0,92016648	0,92016474	0,92016266	-	_	
	SVD	500	0,92016882	0,92016599	0,92016417	0,92016193	-	_	
	SVD	1000	0,92016903	0,92016626	0,92016448	0,92016232	_		
	SVD	5000	0,92016918	0,92016644	0,92016470	0,92016260	_	_	
1,0	H_N	4	0,91466215	0,91465905	0,91465708	_	_	_	
	SVD	500	0,91466171	0,91465850	0,91465643	_	_	_	
	SVD	1000	0,91466195	0,91465880	0,91465678	_	_	_	
	SVD	5000	0,91466212	0,91465901	0,91465703	_	_	—	
1,125	H_N	4	_	0,91199580	0,91199370	_	_	_	
	SVD	500	_	0,91199521	0,91199301	_	_	_	
	SVD	1000	_	0,91199552	0,91199338	_	_	_	
	SVD	5000	_	0,91199575	0,91199365	_	_	_	

Çizelge E7.6. c = 0,999'da değişen $7f_3$ ve $3f_1$ için albedo değerleri (Türeci et. al. 2023)

$3f_1$	Yöntem	Ν	$7f_3$						
			-1	-0,512	-0,216	0,125	0,343	0,729	
-0,8	H _N	3	_	_	_	0,97970233	0,97970224	0,97970209	
	SVD	500	_	_	—	0,97970228	0,97970219	0,97970201	
	SVD SVD	1000 5000	_	_	_	0,97970231	0,97970222	0,97970205	
-0,6	H_{N}	3	_	_	0,97915248	0,97915235	0,97915226	0,97915209	
	SVD	500	_	_	0,97915244	0,97915230	0,97915220	0,97915201	
	SVD	1000	_	_	0,97915246	0,97915232	0,97915223	0,97915205	
	SVD	5000	_	_	0,97915248	0,97915234	0,97915225	0,97915209	
-0,4	H_{N}	3	_	0,97855516	0,97855504	0,97855490	0,97855481	0,97855463	
	SVD	500	_	0,97855512	0,97855500	0,97855485	0,97855474	0,97855454	
	SVD	1000	-	0,97855514	0,97855502	0,97855488	0,97855478	0,97855459	
	SVD	5000	—	0,97855515	0,97855504	0,97855489	0,97855480	0,97855462	
-0,2	H_{N}	3	_	0,97790300	0,97790287	0,97790273	0,97790263	0,97790244	
	SVD	500	_	0,97790296	0,97790283	0,97790267	0,97790256	0,97790235	
	SVD	1000	_	0,97790298	0,97790285	0,97790270	0,97790260	0,97790240	
	SVD	5000	_	0,97790300	0,97790287	0,97790272	0,97790262	0,97790243	
0,1	H_N	3	0,97680229	0,97680208	0,97680194	0,97680177	0,97680167	0,97680146	
	SVD	500	0,97680226	0,97680204	0,97680189	0,97680172	0,97680159	0,97680136	
	SVD	1000	0,97680228	0,97680206	0,97680192	0,97680175	0,97680163	0,97680141	
	SVD	5000	0,97680229	0,97680207	0,97680193	0,97680177	0,97680166	0,97680145	
0,3	H_{N}	3	0,97596938	0,97596915	0,97596900	0,97596882	0,97596870	_	
	SVD	500	0,97596934	0,97596910	0,97596895	0,97596876	0,97596863	_	
	SVD	1000	0,97596936	0,97596913	0,97596897	0,97596879	0,97596867	_	
	SVD	5000	0,97596937	0,97596914	0,97596899	0,97596882	0,97596870	_	
0,5	H_N	3	0,97503931	0,97503906	0,97503890	0,97503871	0,97503859	_	
	SVD	500	0,97503927	0,97503902	0,97503885	0,97503865	0,97503851	_	
	SVD	1000	0,97503929	0,97503904	0,97503888	0,97503868	0,97503855	_	
	SVD	5000	0,97503931	0,97503906	0,97503890	0,97503871	0,97503858	_	
0,7	H_N	3	0,97399156	0,97399130	0,97399112	0,97399092	-	_	
	SVD	500	0,97399152	0,97399124	0,97399106	0,97399084	-	_	
	SVD	1000	0,97399154	0,97399127	0,97399110	0,97399088	_	-	
	SVD	5000	0,97399156	0,97399129	0,97399112	0,97399091	_	_	
1,0	H_N	3	0,97213732	0,97213701	0,97213681	_	_	_	
	SVD	500	0,97213727	0,97213695	0,97213675	_	_	_	
	SVD	1000	0,97213730	0,97213698	0,97213678	-	-	_	
	SVD	5000	0,97213731	0,97213701	0,97213681	_	_	—	
1,125	H_N	3	_	0,97123738	0,97123717	_	_	_	
	SVD	500	_	0,97123732	0,97123711	_	_	_	
	SVD	1000	_	0,97123736	0,97123714	—	—	_	
	SVD	5000	_	0,97123738	0,97123717	_	_	_	

Çizelge E7.7. c = 0,9999'da değişen $7f_3$ ve $3f_1$ için albedo değerleri (Türeci et. al. 2023)
		x -					
с	Yöntem	Ν	μ	$3f_1 =$	= -0,8	$3f_1 =$	= 0,7
				$7f_3 = 0,125$	$7f_3 = 0,729$	$7f_3 = -1,0$	$7f_3 = 0,125$
0,8	$\begin{array}{c} \mathrm{H}_{\mathrm{N}}\\ \mathrm{SVD} \end{array}$	6 5000	0,0	0,56055216 0,56655881	0,56009283 0,56611179	0,53206159 0,53838594	0,53113085 0,53747832
	H _N SVD	6 5000	0,1	0,50980386 0,50953527	0,50795443 0,50768766	0,47334312 0,47305873	0,46969685 0,46941222
	H _N SVD	6 5000	0,2	0,47374225 0,47387104	0,47111471 0,47124685	0,42909504 0,42922453	0,42390155 0,42403369
	H _N SVD	6 5000	0,3	0,44589361 0,44592731	0,44297339 0,44301054	0,39286781 0,39289716	0,38706234 0,38709405
	H _N SVD	6 5000	0,4	0,42291745 0,42285619	0,42010073 0,42004251	0,36137149 0,36130249	0,35572886 0,35566124
	H _N SVD	6 5000	0,5	0,40328727 0,40328084	0,40090719 0,40090379	0,33313291 0,33312122	0,32831723 0,32830713
	H _N SVD	6 5000	0,6	0,38632348 0,38637686	0,38466758 0,38472397	0,30751344 0,30756375	0,30410993 0,30416221
	H _N SVD	6 5000	0,7	0,37157865 0,37159405	0,37089981 0,37091771	0,28408748 0,28409844	0,28262151 0,28263387
	H _N SVD	6 5000	0,8	0,35857483 0,35854027	0,35909822 0,35906535	0,26238149 0,26234113	0,26332995 0,26329009
	H _N SVD	6 5000	0,9	0,34689323 0,34692349	0,34882154 0,34885296	0,24197371 0,24200104	0,24577377 0,24580169
	H _N SVD	6 5000	1,0	0,33661601 0,33651922	0,34013531 0,34003831	0,22295456 0,22285077	0,23001491 0,22990995
0,999	H _N SVD	4 5000	0,0	0,97082283 0,97164174	0,97076524 0,97159704	0,96333712 0,96433072	0,96322899 0,96423587
	H _N SVD	4 5000	0,1	0,96486445 0,96482690	0,96470272 0,96466752	0,95597614 0,95592309	0,95563262 0,95558117
	H _N SVD	4 5000	0,2	0,95937029 0,95934344	0,95913564 0,95910761	0,94911819 0,94908873	0,94861808 0,94858739
	H _N SVD	4 5000	0,3	0,95422300 0,95423484	0,95394923 0,95395993	0,94261087 0,94262975	0,94203229 0,94205033
	H _N SVD	4 5000	0,4	0,94932637 0,94934467	0,94904921 0,94906770	0,93632994 0,93635316	0,93575025 0,93577376
	$\begin{array}{c} \mathrm{H}_{\mathrm{N}}\\ \mathrm{SVD} \end{array}$	4 5000	0,5	0,94460535 0,94460948	0,94436177 0,94436720	0,93017939 0,93018173	0,92967504 0,92967840
	$\begin{array}{c} H_{N} \\ \text{SVD} \end{array}$	4 5000	0,6	0,94000604 0,93999646	0,93983357 0,93982546	0,92409136 0,92407612	0,92373777 0,92372350
	H _N SVD	4 5000	0,7	0,93549570 0,93548624	0,93543172 0,93542292	0,91802623 0,91801340	0,91789767 0,91788517
	H _N SVD	4 5000	0,8	0,93106274 0,93106627	0,93114383 0,93114691	0,91197256 0,91197902	0,91214199 0,91214810
	H _N SVD	4 5000	0,9	0,92671674 0,92672792	0,92697796 0,92698867	0,90594708 0,90596312	0,90648608 0,90650184
	H _N SVD	4 5000	1,0	0,92248839 0,92246489	0,92296267 0,92294179	0,89999476 0,89995865	0,90097335 0,90093892

Çizelge E7.8. c = 0.8 ve c = 0.999 için H_N ve SVD yöntemleriyle elde edilen çıkış dağılımları (Türeci et. al. 2023)

Çizelge E7.8.'de $\mu = 0,0$ yerine $\mu = 1 \times 10^{-16}$ kullanıldı.

EK-8. Anlı-Güngör Saçılma Fonksiyonu için Sayısal Sonuçlar

c	N			t		
		-1,0	-0,8	-0,6	-0,4	-0,2
0,7	100	0,30335955	0,29406609	0,28466770	0,27507462	0,26521517
	500	0,30503909	0,29569674	0,28621678	0,27652944	0,26657709
	1000	0,30521160	0,29586421	0,28637616	0,27667954	0,26671809
	5000	0,30533376	0,29598284	0,28648913	0,27678605	0,26681825
	10.000	0,30534688	0,29599559	0,28650128	0,27679752	0,26682905
0,8	100	0,39221226	0,38268259	0,37287537	0,36271009	0,35211638
	500	0,39316072	0,38355674	0,37368768	0,36347335	0,35284289
	1000	0,39325997	0,38364829	0,37377287	0,36355353	0,35291934
	5000	0,39333076	0,38371361	0,37383368	0,36361077	0,35297395
	10.000	0,39333843	0,38372069	0,37384027	0,36361698	0,35297987
0,9	100	0,52665849	0,51784762	0,50861968	0,49889977	0,48861019
	500	0,52707202	0,51820809	0,50894812	0,49920931	0,48891022
	1000	0,52711571	0,51824626	0,50898296	0,49924218	0,48894211
	5000	0,52714706	0,51827363	0,50900793	0,49926575	0,48896498
	10.000	0,52715048	0,51827661	0,50901065	0,49926831	0,48896747

Çizelge E8.1. $0.7 \le c \le 0.9$ ve $-1.0 \le t \le -0.2$ için SVD yöntemi ile albedo değerleri (Bozkır et. al. 2022a)

Çizelge E8.2. $0.7 \le c \le 0.9$ ve $0.2 \le t \le 1.0$ için SVD yöntemi ile albedo değerleri (Bozkır et. al. 2022a)

с	N			t		
		0,2	0,4	0,6	0,8	1,0
0,7	100	0,24447509	0,23350450	0,22208356	0,21018280	0,19778343
	500	0,24568457	0,23466072	0,22320366	0,21128521	0,19888894
	1000	0,24581071	0,23478174	0,22332129	0,21140134	0,19900572
	5000	0,24590051	0,23486798	0,22340521	0,21148426	0,19908918
	10.000	0,24591021	0,23487731	0,22341428	0,21149324	0,19909822
0,8	100	0,32937774	0,31709788	0,30411637	0,29035841	0,27574862
	500	0,33006597	0,31778497	0,30481615	0,29108824	0,27653281
	1000	0,33013863	0,31785761	0,30489023	0,29116558	0,27661595
	5000	0,33019058	0,31790958	0,30494326	0,29122097	0,27667553
	10.000	0,33019622	0,31791522	0,30494902	0,29122699	0,27668201
0,9	100	0,46597708	0,45343348	0,43991252	0,42526873	0,40932909
	500	0,46628090	0,45375106	0,44025443	0,42565063	0,40977773
	1000	0,46631323	0,45378487	0,44029083	0,42569125	0,40982540
	5000	0,46633643	0,45380913	0,44031695	0,42572043	0,40985965
	10.000	0,46633895	0,45381177	0,44031980	0,42572361	0,40986340

Çizelge E8.3. $0.7 \le c \le 0.9$ ve $-1.0 \le t \le -0.2$ için F_N yöntemi ile albedo değerleri (Bozkır et. al. 2022a)

c	N			t		
		-1,0	-0,8	-0,6	-0,4	-0,2
0,7	0	0,29341748	0,28285273	0,27245502	0,26203472	0,25145851
	1	0,32239774	0,31110973	0,30025350	0,28964048	0,27913577
	2	0,31001992	0,30019329	0,29035832	0,28042271	0,27031408
	3	0,30549742	0,29617859	0,28670487	0,27701475	0,26705624
	4	0,30552030	0,29615550	0,28665070	0,27693926	0,26696578
	5	0,30538703	0,29603575	0,28654123	0,27683721	0,26686863
	6	0,30538814	0,29603443	0,28653793	0,27683237	0,26686258
	7	0,30536730	0,29601554	0,28652063	0,27681626	0,26684726
	8	0,30536793	0,29601568	0,28652034	0,27681561	0,26684634
	9	0,30536207	0,29601036	0,28651547	0,27681109	0,26684204
	10	0,30536242	0,29601054	0,28651550	0,27681100	0,26684185
	11	0,30536020	0,29600853	0,28651366	0,27680929	0,26684023
0,8	0	0,38245432	0,37220596	0,36180445	0,35110431	0,33999556
	1	0,40520312	0,39416730	0,38333450	0,37250471	0,36153667
	2	0,39637662	0,38646898	0,37638310	0,36602289	0,35530734
	3	0,39343842	0,38384871	0,37398530	0,36377277	0,35314304
	4	0,39345719	0,38382860	0,37394080	0,36371274	0,35307299
	5	0,39336420	0,38374737	0,37386733	0,36364424	0,35300736
	6	0,39336635	0,38374638	0,37386434	0,36363994	0,35300219
	7	0,39335124	0,38373317	0,37385242	0,36362886	0,35299159
	8	0,39335207	0,38373328	0,37385206	0,36362820	0,35299072
	9	0,39334773	0,38372950	0,37384866	0,36362505	0,35298771
	10	0,39334812	0,38372964	0,37384864	0,36362491	0,35298750
	11	0,39334645	0,38372819	0,37384734	0,36362371	0,35298636
0,9	0	0,51959357	0,51050453	0,50100300	0,49099033	0,48037424
	1	0,53267679	0,52317515	0,51350297	0,50351615	0,49310039
	2	0,52844615	0,51947399	0,51013800	0,50035075	0,49002808
	3	0,52720446	0,51834419	0,50908680	0,49935008	0,48905325
	4	0,52720619	0,51832747	0,50905857	0,49931461	0,48901320
	5	0,52716305	0,51828995	0,50902440	0,49928235	0,48898180
	6	0,52716399	0,51828891	0,50902222	0,49927948	0,48897850
	7	0,52715655	0,51828253	0,50901646	0,49927407	0,48897324
	8	0,52715699	0,51828247	0,50901612	0,49927356	0,48897263
	9	0,52715479	0,51828061	0,50901446	0,49927200	0,48897112
	10	0,52715501	0,51828065	0,50901439	0,49927187	0,48897095
	11	0,52715416	0,51827993	0,50901375	0,49927128	0,48897038

Çizelge E8.4. 0,7 $\leq c \leq$ 0,9 ve 0,2 $\leq t \leq$ 1,0 için F_N yöntemi ile albedo değerleri (Bozkır et. al. 2022a)

c	N			t		
		0,2	0,4	0,6	0,8	1,0
0,7	0	0,22946787	0,21791802	0,20593210	0,19347857	0,18054799
	1	0,25809258	0,24744382	0,23667931	0,22581337	0,21490445
	2	0,24935080	0,23840456	0,22710023	0,21541304	0,20333277
	3	0,24615336	0,23512773	0,22367101	0,21175376	0,19935729
	4	0,24604454	0,23501411	0,22355599	0,21164238	0,19925760
	5	0,24595046	0,23491844	0,22345667	0,21153714	0,19914374
	6	0,24594272	0,23491014	0,22344802	0,21152848	0,19913561
	7	0,24592788	0,23489501	0,22343223	0,21151165	0,19911726
	8	0,24592656	0,23489356	0,22343072	0,21151013	0,19911588
	9	0,24592240	0,23488932	0,22342627	0,21150538	0,19911068
	10	0,24592208	0,23488895	0,22342589	0,21150500	0,19911035
	11	0,24592051	0,23488735	0,22342421	0,21150321	0,19910838
0,8	0	0,31618839	0,30332094	0,28969875	0,27523697	0,25985468
	1	0,33878632	0,32685664	0,31448768	0,30165348	0,28836385
	2	0,33252110	0,32031195	0,30746696	0,29391786	0,27960076
	3	0,33036983	0,31809269	0,30512870	0,29140563	0,27685356
	4	0,33028972	0,31801165	0,30505028	0,29133525	0,27679995
	5	0,33022469	0,31794451	0,30497931	0,29125834	0,27671426
	6	0,33021855	0,31793822	0,30497313	0,29125274	0,27671005
	7	0,33020803	0,31792730	0,30496151	0,29124004	0,27669575
	8	0,33020693	0,31792617	0,30496041	0,29123910	0,27669516
	9	0,33020394	0,31792306	0,30495710	0,29123546	0,27669103
	10	0,33020366	0,31792277	0,30495682	0,29123524	0,27669094
	11	0,33020253	0,31792159	0,30495556	0,29123385	0,27668936
0,9	0	0,45694146	0,44390138	0,42980082	0,41447662	0,39773581
	1	0,47058036	0,45827907	0,44514658	0,43107459	0,41595599
	2	0,46742166	0,45493850	0,44151343	0,42700781	0,41126186
	3	0,46643049	0,45390527	0,44041406	0,42581633	0,40995048
	4	0,46638638	0,45386149	0,44037292	0,42578152	0,40992799
	5	0,46635410	0,45382749	0,44033615	0,42574056	0,40988074
	6	0,46635040	0,45382380	0,44033270	0,42573776	0,40987935
	7	0,46634499	0,45381806	0,44032644	0,42573070	0,40987105
	8	0,46634428	0,45381736	0,44032581	0,42573024	0,40987097
	9	0,46634273	0,45381571	0,44032400	0,42572819	0,40986852
	10	0,46634253	0,45381552	0,44032384	0,42572809	0,40986857
	11	0,46634194	0,45381489	0,44032314	0,42572729	0,40986761

EK–9. Kritik Slab Kalınlığı için Sayısal Sonuçlar

	Ν	R	$c_U = $	1,1750	$c_{Pu} =$	$p_u = 2,1934$	
			2b (mfp)	d (cm)	2b (mfp)	d (cm)	
1	00	0,00	2,84688308	3,57244708	0,51677199	0,01026967	
		0,10	2,63436986	3,30577219	0,44765767	0,00889618	
		0,20	2,39756087	3,00860945	0,38165499	0,00758453	
		0,30	2,13603541	2,68043093	0,31936849	0,00634673	
		0,40	1,85113247	2,32291689	0,26119356	0,00519063	
		0,50	1,54653787	1,94069252	0,20732947	0,00412020	
		0,60	1,22852417	1,54162902	0,15780862	0,00313609	
		0,70	0,90556323	1,13635743	0,11253332	0,00223634	
		0,80	0,58725291	0,73692171	0,07131283	0,00141718	
		0,90	0,28285826	0,35494825	0,03389635	0,00067361	
		0,99	0,02714712	0,03406591	0,00323966	0,00006438	
5	00	0,00	2,84881621	3,57487289	0,51798745	0,01029383	
		0,10	2,63650997	3,30845774	0,44881561	0,00891919	
		0,20	2,39986444	3,01150011	0,38272124	0,00760572	
		0,30	2,13843104	2,68343712	0,32031707	0,00636558	
		0,40	1,85351857	2,32591111	0,26200720	0,00520680	
		0,50	1,54878734	1,94351530	0,20799900	0,00413351	
		0,60	1,23049865	1,54410672	0,15833178	0,00314649	
		0,70	0,90713511	1,13832991	0,11291318	0,00224389	
		0,80	0,58832835	0,73827124	0,07155628	0,00142202	
		0,90	0,28339250	0,35561864	0,03401274	0,00067593	
		0,99	0,02719890	0,03413088	0,00325080	0,00006460	
10	000	0,00	2,84905747	3,57517565	0,51813976	0,01029685	
		0,10	2,63677714	3,30879299	0,44896080	0,00892208	
		0,20	2,40015209	3,01186107	0,38285501	0,00760838	
		0,30	2,13873029	2,68381263	0,32043616	0,00636794	
		0,40	1,85381672	2,32628526	0,26210940	0,00520883	
		0,50	1,54906853	1,94386815	0,20808315	0,00413518	
		0,60	1,23074555	1,54441655	0,15839757	0,00314779	
		0,70	0,90733173	1,13857665	0,11296098	0,00224484	
		0,80	0,58846292	0,73844010	0,07158693	0,00142263	
		0,90	0,28345936	0,35570255	0,03402740	0,00067622	
		0,99	0,02720538	0,03413901	0,00325220	0,00006463	

Çizelge E9.1. mfp(2b) ve cm(d) cinsinden SVD Midpoint yaklaşımı için birincil kritik kalınlık değerleri

N	R	$c_U =$	1,1750	$c_{Pu} =$	2,1934
		2b (mfp)	d (cm)	2b (mfp)	d (cm)
100	0,00	2,85024423	3,57666486	0,51850829	0,01030418
	0,10	2,63807655	3,31042358	0,44931072	0,00892903
	0,20	2,40153551	3,01359708	0,38317655	0,00761477
	0,30	2,14015368	2,68559880	0,32072195	0,00637362
	0,40	1,85522004	2,32804623	0,26235459	0,00521370
	0,50	1,55037908	1,94551271	0,20828516	0,00413920
	0,60	1,23188641	1,54584817	0,15855578	0,00315094
	0,70	0,90823387	1,13970871	0,11307622	0,00224713
	0,80	0,58907717	0,73921091	0,07166109	0,00142410
	0,90	0,28376371	0,35608446	0,03406303	0,00067693
	0,99	0,02723486	0,03417601	0,00325562	0,00006470
500	0,00	2,84945696	3,57567694	0,51832747	0,01030058
	0,10	2,63721696	3,30934491	0,44913940	0,00892563
	0,20	2,40062294	3,01245193	0,38301931	0,00761164
	0,30	2,13921738	2,68442386	0,32058223	0,00637085
	0,40	1,85429946	2,32689102	0,26223465	0,00521132
	0,50	1,54952154	1,94443661	0,20818620	0,00413723
	0,60	1,23114158	1,54491351	0,15847811	0,00314939
	0,70	0,90764597	1,13897098	0,11301949	0,00224601
	0,80	0,58867740	0,73870924	0,07162446	0,00142337
	0,90	0,28356576	0,35583606	0,03404536	0,00067657
	0,99	0,02721568	0,03415194	0,00325392	0,00006466
1000	0,00	2,84937228	3,57557069	0,51830856	0,01030021
	0,10	2,63712456	3,30922896	0,44912156	0,00892527
	0,20	2,40052491	3,01232891	0,38300301	0,00761132
	0,30	2,13911686	2,68429773	0,32056782	0,00637056
	0,40	1,85420069	2,32676709	0,26222235	0,00521108
	0,50	1,54942961	1,94432125	0,20817611	0,00413703
	0,60	1,23106179	1,54481339	0,15847023	0,00314924
	0,70	0,90758305	1,13889202	0,11301377	0,00224589
	0,80	0,58863464	0,73865559	0,07162078	0,00142330
	0,90	0,28354461	0,35580952	0,03404360	0,00067654
	0,99	0,02721364	0,03414938	 0,00325375	0,00006466

Çizelge E9.2. mfp(2b) ve cm(d) cinsinden SVD Lineer yaklaşımı için birincil kritik kalınlık değerleri

N	R	$c_U =$	1,1750	$c_{Pu} =$	$c_{Pu} = 2,1934$	
		2b (mfp)	d (cm)	2b (mfp)	d (cm)	
1	0,00	2,84928830	3,57546531	0,51818061	0,01029767	
	0,10	2,63673154	3,30873577	0,44921024	0,00892704	
	0,20	2,40003667	3,01171624	0,38297564	0,00761077	
	0,30	2,13874084	2,68382587	0,32037666	0,00636676	
	0,40	1,85409508	2,32663456	0,26188183	0,00520431	
	0,50	1,54965019	1,94459805	0,20773980	0,00412836	
	0,60	1,23152278	1,54539186	0,15800702	0,00314003	
	0,70	0,90807097	1,13950429	0,11259072	0,00223749	
	0,80	0,58890493	0,73899477	0,07129085	0,00141674	
	0,90	0,28349620	0,35574878	0,03385095	0,00067271	
	0,99	0,02715459	0,03407528	0,00322922	0,00006417	
3	0,00	2,84929864	3,57547828	0,51829228	0,01029989	
	0,10	2,63704718	3,30913186	0,44909761	0,00892480	
	0,20	2,40048866	3,01228342	0,38297603	0,00761078	
	0,30	2,13901608	2,68417127	0,32054333	0,00637007	
	0,40	1,85410560	2,32664777	0,26220378	0,00521071	
	0,50	1,54933979	1,94420854	0,20816387	0,00413679	
	0,60	1,23097940	1,54471001	0,15846315	0,00314910	
	0,70	0,90751163	1,13880240	0,11300879	0,00224579	
	0,80	0,58858199	0,73858952	0,07161787	0,00142324	
	0,90	0,28351991	0,35577853	0,03404369	0,00067654	
	0,99	0,02721184	0,03414712	0,00325334	0,00006465	
5	0,00	2,84929864	3,57547828	0,51829213	0,01029988	
	0,10	2,63704433	3,30912829	0,44910615	0,00892497	
	0,20	2,40043986	3,01222218	0,38298896	0,00761104	
	0,30	2,13902958	2,68418820	0,32055524	0,00637031	
	0,40	1,85411510	2,32665968	0,26220691	0,00521077	
	0,50	1,54934860	1,94421961	0,20816680	0,00413684	
	0,60	1,23099814	1,54473352	0,15845875	0,00314901	
	0,70	0,90756435	1,13886855	0,11300820	0,00224578	
	0,80	0,58858493	0,73859321	0,07161766	0,00142324	
	0,90	0,28354611	0,35581141	0,03404369	0,00067654	
	0,99	0,02721265	0,03414814	0,00325337	0,00006465	

Çizelge E9.3. *mfp* (2b) ve *cm* (d) cinsinden H_N yöntemi için birincil kritik kalınlık değerleri

Ν	R	$c_U = 1$	1,1750		$c_{Pu} =$	2,1934
		2b (mfp)	d (cm)	_	2b (mfp)	d (cm)
100	0,00	10,96714217	13,76225646		2,89459056	0,05752343
	0,10	10,75494583	13,49597920		2,82725520	0,05618529
	0,20	10,51859192	13,19938753		2,76266226	0,05490165
	0,30	10,25770615	12,87201174		2,70125319	0,05368129
	0,40	9,97366599	12,51558036		2,64328699	0,05252934
	0,50	9,67015135	12,13471120		2,58886246	0,05144778
	0,60	9,35331652	11,73712701		2,53795044	0,05043602
	0,70	9,03130828	11,33305092		2,49042827	0,04949162
	0,80	8,71310688	10,93375188		2,44611122	0,04861092
	0,90	8,40704847	10,54969064		2,40477848	0,04778953
	0,99	8,14736952	10,22382924		2,36993464	0,04709708
500	0,00	10,96907010	13,76467574		2,89577725	0,05754701
	0,10	10,75707844	13,49865534		2,82838790	0,05620780
	0,20	10,52088494	13,20226495		2,76370946	0,05492247
	0,30	10,26008748	12,87499997		2,70219071	0,05369992
	0,40	9,97603364	12,51855144		2,64409812	0,05254546
	0,50	9,67237876	12,13750628		2,58953730	0,05146119
	0,60	9,35526731	11,73957499		2,53848477	0,05044664
	0,70	9,03285846	11,33499619		2,49082221	0,04949945
	0,80	8,71416689	10,93508206		2,44636807	0,04861602
	0,90	8,40757611	10,55035275		2,40490360	0,04779201
	0,99	8,14742093	10,22389375		2,36994684	0,04709733
1000	0,00	10,96931072	13,76497768		2,89592592	0,05754997
	0,10	10,75734467	13,49898942		2,82852989	0,05621062
	0,20	10,52117128	13,20262427		2,76384080	0,05492508
	0,30	10,26038494	12,87537325		2,70230835	0,05370226
	0,40	9,97632951	12,51892271		2,64419995	0,05254748
	0,50	9,67265720	12,13785569		2,58962207	0,05146287
	0,60	9,35551126	11,73988111		2,53855191	0,05044797
	0,70	9,03305238	11,33523953		2,49087174	0,04950043
	0,80	8,71429953	10,93524850		2,44640037	0,04861667
	0,90	8,40764215	10,55043563		2,40491934	0,04779232
	0,99	8,14742736	10,22390182		2,36994837	0,04709736

Çizelge E9.4. mfp(2b) ve cm(d) cinsinden SVD Midpoint yaklaşımı için ikincil kritik kalınlık değerleri

N	R	$c_U = 1$	1,1750	$c_{Pu} =$	2,1934
		2b (mfp)	d (cm)	2b (mfp)	d (cm)
100	0,00	10,97048868	13,76645587	2,89625464	0,05755650
	0,10	10,75863167	13,50060443	2,82883783	0,05621674
	0,20	10,52253754	13,20433874	2,76412013	0,05493063
	0,30	10,26178524	12,87713043	2,70255365	0,05370713
	0,40	9,97770293	12,52064616	2,64440807	0,05255162
	0,50	9,67393115	12,13945432	2,58979180	0,05146625
	0,60	9,35661073	11,74126080	2,53868360	0,05045059
	0,70	9,03391280	11,33631924	2,49096685	0,04950232
	0,80	8,71487855	10,93597509	2,44646109	0,04861787
	0,90	8,40792559	10,55079130	2,40494829	0,04779290
	0,99	8,14745455	10,22393594	2,36995114	0,04709741
500	0,00	10,96970818	13,76547644	2,89610400	0,05755351
	0,10	10,75778162	13,49953774	2,82869886	0,05621398
	0,20	10,52163815	13,20321012	2,76399607	0,05492816
	0,30	10,26086666	12,87597774	2,70244652	0,05370500
	0,40	9,97680529	12,51951975	2,64431876	0,05254985
	0,50	9,67310176	12,13841355	2,58972030	0,05146483
	0,60	9,35589787	11,74036626	2,53862920	0,05044951
	0,70	9,03335736	11,33562223	2,49092836	0,04950156
	0,80	8,71450649	10,93550821	2,44643705	0,04861740
	0,90	8,40774435	10,55056388	2,40493709	0,04779268
	0,99	8,14743725	10,22391423	2,36995009	0,04709739
1000	0,00	10,96962424	13,76537111	2,89608829	0,05755320
	0,10	10,75769026	13,49942309	2,82868445	0,05621370
	0,20	10,52154154	13,20308889	2,76398329	0,05492791
	0,30	10,26076806	12,87585401	2,70243556	0,05370479
	0,40	9,97670902	12,51939894	2,64430970	0,05254967
	0,50	9,67301287	12,13830201	2,58971311	0,05146468
	0,60	9,35582154	11,74027048	2,53862378	0,05044940
	0,70	9,03329794	11,33554767	2,49092457	0,04950148
	0,80	8,71446673	10,93545831	2,44643471	0,04861735
	0,90	8,40772501	10,55053960	2,40493601	0,04779266
	0,99	8,14743540	10,22391191	2,36994999	0,04709739

Çizelge E9.5. mfp(2b) ve cm(d) cinsinden SVD Lineer yaklaşımı için ikincil kritik kalınlık değerleri

N	R	$c_U = 1$	1,1750	$c_{Pu} =$	$c_{Pu} = 2,1934$		
		2b (mfp)	d (cm)	2b (mfp)	d (cm)		
1	0,00	10,96954045	13,76526597	2,89602682	0,05755197		
	0,10	10,75731216	13,49894862	2,82855352	0,05621109		
	0,20	10,52110539	13,20254159	2,76320179	0,05491238		
	0,30	10,26052440	12,87554825	2,70070493	0,05367039		
	0,40	9,97689123	12,51962759	2,64139446	0,05249173		
	0,50	9,67379317	12,13928118	2,58545293	0,05138002		
	0,60	9,35726602	11,74208309	2,53292803	0,05033621		
	0,70	9,03533997	11,33811014	2,48376134	0,04935913		
	0,80	8,71691542	10,93853108	2,43781824	0,04844612		
	0,90	8,41030881	10,55378192	2,39491458	0,04759350		
	0,99	8,14989083	10,22699314	2,35872504	0,04687432		
3	0,00	10,96955124	13,76527951	2,89607481	0,05755293		
	0,10	10,75761450	13,49932802	2,82864463	0,05621291		
	0,20	10,52149541	13,20303101	2,76390667	0,05492638		
	0,30	10,26067867	12,87574184	2,70231797	0,05370245		
	0,40	9,97662892	12,51929843	2,64415158	0,05254652		
	0,50	9,67294330	12,13821470	2,58951835	0,05146081		
	0,60	9,35576540	11,74020003	2,53839813	0,05044491		
	0,70	9,03325731	11,33549669	2,49067530	0,04949653		
	0,80	8,71444198	10,93542725	2,44616879	0,04861206		
	0,90	8,40771514	10,55052722	2,40466035	0,04778718		
	0,99	8,14743675	10,22391360	2,36967193	0,04709186		
5	0,00	10,96955124	13,76527951	2,89607466	0,05755292		
	0,10	10,75761110	13,49932376	2,82867234	0,05621346		
	0,20	10,52145801	13,20298407	2,76397570	0,05492776		
	0,30	10,26068252	12,87574666	2,70242307	0,05370454		
	0,40	9,97662498	12,51929348	2,64415158	0,05254652		
	0,50	9,67293535	12,13820474	2,58971112	0,05146464		
	0,60	9,35575468	11,74018658	2,53862512	0,05044942		
	0,70	9,03324408	11,33548008	2,49091731	0,04950134		
	0,80	8,71442907	10,93541106	2,44643054	0,04861727		
	0,90	8,40768337	10,55048735	2,40495063	0,04779295		
	0,99	8,14743193	10,22390756	2,36995578	0,04709750		

Çizelge E9.6. mfp(2b) ve cm(d) cinsinden H_N yöntemi için ikincil kritik kalınlık değerleri

N	R	$c_U =$	1,1750	$c_{Pu} =$	2,1934
		2b (mfp)	<i>d</i> (<i>cm</i>)	2b (mfp)	d (cm)
100	0,00	19,08673763	23,95123307	5,26099100	0,10455028
	0,10	18,87454131	23,68495584	5,19366306	0,10321229
	0,20	18,63818742	23,38836419	5,12906574	0,10192856
	0,30	18,37730168	23,06098844	5,06764063	0,10070788
	0,40	18,09326155	22,70455710	5,00964831	0,09955541
	0,50	17,78974694	22,32368797	4,95519038	0,09847319
	0,60	17,47291212	21,92610380	4,90424135	0,09746069
	0,70	17,15090386	21,52202769	4,85668275	0,09651557
	0,80	16,83270241	21,12272859	4,81233429	0,09563424
	0,90	16,52664393	20,73866725	4,77097957	0,09481241
	0,99	16,26696493	20,41280579	4,73612757	0,09411981
500	0,00	19,08866556	23,95365235	5,26217699	0,10457385
	0,10	18,87667392	23,68763197	5,19479520	0,10323479
	0,20	18,64048044	23,39124161	5,13011254	0,10194937
	0,30	18,37968300	23,06397666	5,06857791	0,10072651
	0,40	18,09562920	22,70752818	5,01045935	0,09957153
	0,50	17,79197435	22,32648305	4,95586524	0,09848660
	0,60	17,47486291	21,92855178	4,90477574	0,09747131
	0,70	17,15245405	21,52397296	4,85707677	0,09652340
	0,80	16,83376243	21,12405876	4,81259118	0,09563935
	0,90	16,52717157	20,73932937	4,77110470	0,09481490
	0,99	16,26701635	20,41287030	4,73613977	0,09412005
1000	0,00	19,08890618	23,95395429	5,26232557	0,10457680
	0,10	18,87694015	23,68796605	5,19493711	0,10323761
	0,20	18,64076678	23,39160093	5,13024383	0,10195198
	0,30	18,37998047	23,06434994	5,06869553	0,10072884
	0,40	18,09592507	22,70789944	5,01056117	0,09957355
	0,50	17,79225279	22,32683246	4,95595000	0,09848828
	0,60	17,47510686	21,92885790	4,90484289	0,09747264
	0,70	17,15264797	21,52421630	4,85712630	0,09652438
	0,80	16,83389507	21,12422521	4,81262349	0,09563999
	0,90	16,52723761	20,73941224	4,77112044	0,09481521
	0,99	16,26702278	20,41287838	4,73614130	0,09412008

Çizelge E9.7. mfp(2b) ve cm(d) cinsinden SVD Midpoint yaklaşımı için üçüncül kritik kalınlık değerleri

N	R	$c_U = 1,1750$		$c_{Pu} = 2,1934$	
		2b (mfp)	d (cm)	2b (mfp)	d (cm)
100	0,00	19,09008414	23,95543248	5,26265237	0,10458330
	0,10	18,87822715	23,68958106	5,19524314	0,10324369
	0,20	18,64213304	23,39331540	5,13052136	0,10195749
	0,30	18,38138077	23,06610712	5,06893923	0,10073369
	0,40	18,09729848	22,70962289	5,01076796	0,09957766
	0,50	17,79352673	22,32843108	4,95611870	0,09849163
	0,60	17,47620633	21,93023758	4,90497386	0,09747525
	0,70	17,15350838	21,52529600	4,85722097	0,09652627
	0,80	16,83447408	21,12495179	4,81268400	0,09564119
	0,90	16,52752105	20,73976791	4,77114934	0,09481579
	0,99	16,26704997	20,41291250	4,73614407	0,09412014
500	0,00	19,08930364	23,95445305	5,26250325	0,10458033
	0,10	18,87737710	23,68851437	5,19510570	0,10324096
	0,20	18,64123365	23,39218678	5,13039875	0,10195505
	0,30	18,38046219	23,06495443	5,06883340	0,10073158
	0,40	18,09640085	22,70849649	5,01067975	0,09957591
	0,50	17,79269734	22,32739031	4,95604806	0,09849023
	0,60	17,47549347	21,92934304	4,90492006	0,09747418
	0,70	17,15295294	21,52459900	4,85718285	0,09652551
	0,80	16,83410202	21,12448491	4,81266014	0,09564072
	0,90	16,52733981	20,73954049	4,77113818	0,09481556
	0,99	16,26703267	20,41289078	4,73614302	0,09412012
1000	0,00	19,08921970	23,95434772	5,26248771	0,10458002
	0,10	18,87728574	23,68839972	5,19509146	0,10324068
	0,20	18,64113704	23,39206556	5,13038613	0,10195480
	0,30	18,38036359	23,06483071	5,06882258	0,10073137
	0,40	18,09630458	22,70837568	5,01067080	0,09957573
	0,50	17,79260846	22,32727878	4,95604096	0,09849009
	0,60	17,47541714	21,92924726	4,90491471	0,09747407
	0,70	17,15289353	21,52452444	4,85717910	0,09652543
	0,80	16,83406227	21,12443502	4,81265782	0,09564067
	0,90	16,52732047	20,73951621	4,77113712	0,09481554
	0,99	16,26703082	20,41288847	4,73614292	0,09412011

Çizelge E9.8. mfp(2b) ve cm(d) cinsinden SVD Lineer yaklaşımı için üçüncül kritik kalınlık değerleri

\overline{N}	R	$c_U = 1,1750$		$c_{Pu} =$	$c_{Pu} = 2,1934$	
		2b (mfp)	d (cm)	2b (mfp)	d (cm)	
1	0,00	19,08913591	23,95424257	2,89602682	0,10427123	
	0,10	18,87690764	23,68792526	2,82855352	0,10323850	
	0,20	18,64070090	23,39151825	2,76320179	0,10193926	
	0,30	18,38011995	23,06452497	2,70070493	0,10069636	
	0,40	18,09648681	22,70860436	2,64139446	0,09951638	
	0,50	17,79338881	22,32825801	2,58545293	0,09840303	
	0,60	17,47686170	21,93105998	2,53292803	0,09735740	
	0,70	17,15493567	21,52708705	2,48376134	0,09637850	
	0,80	16,83651110	21,12750796	2,43781824	0,09546385	
	0,90	16,52990441	20,74275870	2,39491458	0,09460998	
	0,99	16,26948631	20,41596977	2,35872504	0,09389013	
3	0,00	19,08914670	23,95425611	5,26247438	0,10457976	
	0,10	18,87720998	23,68830465	5,19505974	0,10324005	
	0,20	18,64109091	23,39200767	5,13032427	0,10195357	
	0,30	18,38027420	23,06471853	5,06872464	0,10072942	
	0,40	18,09622448	22,70827517	5,01053511	0,09957304	
	0,50	17,79253889	22,32719148	4,95586917	0,09848667	
	0,60	17,47536101	21,92917683	4,90471028	0,09747001	
	0,70	17,15285291	21,52447347	4,85694654	0,09652081	
	0,80	16,83403752	21,12440397	4,81240384	0,09563563	
	0,90	16,52731061	20,73950384	4,77086620	0,09481016	
	0,99	16,26703217	20,41289016	4,73586134	0,09411452	
5	0,00	19,08914670	23,95425611	5,26247423	0,10457976	
	0,10	18,87720658	23,68830039	5,19507955	0,10324044	
	0,20	18,64105351	23,39196073	5,13037699	0,10195462	
	0,30	18,38027805	23,06472336	5,06881139	0,10073115	
	0,40	18,09622054	22,70827022	5,01066891	0,09957570	
	0,50	17,79253094	22,32718150	4,95603892	0,09849005	
	0,60	17,47535029	21,92916337	4,90491587	0,09747409	
	0,70	17,15283966	21,52445685	4,85720861	0,09652602	
	0,80	16,83402460	21,12438776	4,81265724	0,09564066	
	0,90	16,52727882	20,73946395	4,77115543	0,09481591	
	0,99	16,26702735	20,41288412	4,73614993	0,09412025	

Çizelge E9.9. mfp(2b) ve cm(d) cinsinden H_N yöntemi için üçüncül kritik kalınlık değerleri

Şekil E9.1. N = 1000 SVD Midpoint yaklaşımıyla **a.** $c_U = 1,1750$ için birincil kalınlık 2b ile R karşılaştırması **b.** $c_U = 1,1750$ için birincil kalınlık d ile R karşılaştırması **c.** $c_{Pu} = 2,1934$ için birincil kalınlık 2b ile R karşılaştırması **d.** $c_{Pu} = 2,1934$ için birincil kalınlık d ile R karşılaştırması **e.** $c_U = 1,1750$ için ikincil kalınlık 2b ile R karşılaştırması **f.** $c_U = 1,1750$ için ikincil kalınlık 2b ile R karşılaştırması **f.** $c_U = 1,1750$ için ikincil kalınlık d ile R karşılaştırması

Şekil E9.2. N = 1000 SVD Midpoint yaklaşımıyla **a.** $c_{Pu} = 2,1934$ için ikincil kalınlık 2b ile R karşılaştırması **b.** $c_{Pu} = 2,1934$ için ikincil kalınlık d ile R karşılaştırması **c.** $c_U = 1,1750$ için üçüncül kalınlık 2b ile R karşılaştırması **d.** $c_U = 1,1750$ için üçüncül kalınlık d ile R karşılaştırması **e.** $c_{Pu} = 2,1934$ için üçüncül kalınlık 2b ile R karşılaştırması **f.** $c_{Pu} = 2,1934$ için üçüncül kalınlık 2b ile R karşılaştırması **f.** $c_{Pu} = 2,1934$ için üçüncül kalınlık d ile R karşılaştırması

ÖZGEÇMİŞ

Adı Soyadı: Ali Zafer BOZKIRDoğum Tarihi: 1975Yabancı Dil: İngilizce

Eğitim Durumu: (Kurum ve Yıl)

Lisans: Orta Doğu Teknik Üniversitesi 1998Yüksek Lisans: Kırıkkale Üniversitesi 2017

Çalıştığı Kurumlar ve Yıllar:

Alaca İmam Hatip Lisesi 1998/2006 Yıldırım Bayezid İlköğretim Okulu 2006/2008 Sakarya İlköğretim Okulu 2008/2010 Bayat Anadolu Lisesi 2010/2014 Çorum Spor Lisesi 2014/2021 Buharaevler Mesleki ve Teknik Anadolu Lisesi 2021/halen

Yayınları (SCI):

- Bozkır, A.Z., Türeci, R.G., Sahni, D.C. (2022). Half-space albedo problem with pure-triplet scattering and Legendre polynomial outgoing flux. J. Comput. Theor. Transp. 51 (7): 393-417, https://doi.org/10.1080/23324309.2022.2150645.
- Bozkır, A.Z., Türeci, R.G., Sahni, D.C. (2022). Half-space albedo problem for the Anlı-Güngör scattering function. Kerntechnik 87 (2): 237-248, https://doi.org/10.1515/kern-2021-1028.
- Sahni, D.C., Tureci, R.G., Bozkir, A.Z. (2020). Partial range completeness of Case eigenfunctions and numerical solution of singular integral equations of particle transport problems. J. Comput. Theor. Transp. 49: 349–367, https://doi.org/10.1080/23324309.2020.1819329.
- Türeci, R.G., Sahni, D.C., Aydın, A., Bozkır, A.Z., "Half-space albedo problem for linear-triplet anisotropic scattering with the H_N and SVD methods", J. Comput. Theor. Transp., İsimli dergiye sunuldu. (2023)

Yayınları (Diğer):

- Bozkır, A.Z., Türeci R.G. (2022). The criticality problem for the pure quadratic anisotropic scattering with the F_N Method. NSP 2022, Kırıkkale, Türkiye, 28–30 June 2022.
- Sahni, D.C., Tureci, R.G., Bozkir, A.Z. (2019). Partial range completeness of Case eigenfunctions and numerical solution of singular integral equations of particle transport problems. *Paper presented at 26th International Conference on Transport Theory (ICTT-26)*, Paris, France, 23–27 September 2019.
- Bozkır, A.Z., Türeci R.G. (2018). The effect of varying constant source over albedo problem for quadratically anisotropic scattering. TESNAT 2018, Antalya, Türkiye, 20–22 April 2018.
- Bozkır A.Z., Türeci D., Türeci R.G. (2016). Slab albedo problem with inner reflected boundary conditions for triplet anisotropic scattering kernel with Modified F_N Method. TESNAT 2016, Hatay, Türkiye, 28–30 April 2016.

Araştırma Alanları: Nötron trasnport teori, reaktör fiziği, yarı-uzay albedo hesaplamaları, kritik kalınlık hesaplamaları.