AN APPLICATION OF RITT-WU'S ZERO DECOMPOSITION ALGORITHM TO NULL BERTRAND TYPE CURVES IN MINKOWSKI 3-SPACE

Mehmet Yıldırım* and Kazım İlarslan* ${ }^{*}$

Received 26:01:2010 : Accepted 20:04:2010

Abstract

Bertrand curves were first studied using a computer by W.-T. Wu in (A mechanization method of geometry and its applications II. Curve pairs of Bertrand type, Kexue Tongbao 32, 585-588, 1987). The same problem was studied using an improved version of Ritt-Wu's decomposition algorithm by S. -C. Chao and X. -S. Gao (Automated reasoning in differential geometry and mechanics: Part 4: Bertrand curves, System Sciences and Mathematical Sciences 6 (2), 186-192, 1993). In this paper, we investigate the same problem for null Bertrand type curves in Minkowski 3 -space \mathbb{E}_{1}^{3} by using the well known algorithm given by Chao and Gao, and obtain new results for null Bertrand type curves in Minkowski 3 -space \mathbb{E}_{1}^{3}.

Keywords: Mechanical theorem proving, Ritt-Wu's method, Bertrand curves, Mannheim curves, Minkowski 3 -space, Null curves.
2000 AMS Classification: 53 C 50, 53 C 40, 53 B 30, 68 W 30.

1. Introduction

The general theory of curves in an Euclidean space (or more generally, in a Riemannian manifold) has been developed a long time ago and we have a deep knowledge of its local geometry as well as its global geometry. In the theory of curves in Euclidean space, one of the important and interesting problems is the characterizations of a regular curve. In the solution of the problem, the curvature functions k_{1} (or \varkappa) and k_{2} (or τ) of a regular curve have an effective role. For example: if $k_{1}=0=k_{2}$, then the curve is a geodesic,

[^0]or if $k_{1}=$ constant $\neq 0$ and $k_{2}=0$, then the curve is a circle with radius $1 / k_{1}$, etc. Thus we can determine the shape and size of a regular curve by using its curvatures.

Another approach to the solution of the problem is considering the relationship between the Frenet vectors of the curves (see [10]). For instance, for Bertrand curves:

In 1845, Saint Venant (see [18]) proposed the question whether upon the surface generated by the principal normal of a curve, a second curve can exist which has for its principal normal the principal normal of the given curve. This question was answered by Bertrand in 1850 in a paper (see [2]) in which he showed that a necessary and sufficient condition for the existence of such a second curve is that a linear relationship with constant coefficients shall exist between the first and second curvatures of the given original curve. In other word, if we denote the first and second curvatures of the given curve by k_{1} and k_{2} respectively, then for $\lambda, \mu \in \mathbb{R}$ we have $\lambda k_{1}+\mu k_{2}=1$. Since the time of Bertrand's paper, pairs of curves of this kind have been called Conjugate Bertrand Curves, or more commonly just Bertrand Curves (see [10]). Bertrand curves have been studied in Euclidean and non-Euclidean spaces by many authors (for example, see $[1,3,8]$).

Another interesting example is that of Mannheim curves:
If there exists a corresponding relationship between the space curves α and β such that, at corresponding points of the curves, the principal normal lines of α coincide with the binormal lines of β, then α is called a Mannheim curve, β is called the Mannheim partner curve of α. Mannheim partner curves were studied by Liu and Wang (see [11]) in Euclidean 3-space and in Minkowski 3-space.

Euclidean geometry is geometry in an affine space arising from the existence of a positive definite inner product among its vectors. When such an inner product is replaced by an nondegenerate inner product of signature $(-,+,+, \ldots,+)$, what results is called Lorentzian geometry (see [10, 12]). It is well known that Lorentzian geometry of 4 dimensions (also known Minkowski space-time) is the most appropriate mathematical model for the special theory of relativity. The theory of curves in Minkowski 3-space is more interesting than the Euclidean case.

Many of the classical results from Riemannian geometry have Lorentz counterparts. In fact, spacelike curves or timelike curves can be studied using a similar approach to that used in positive definite Riemannian geometry (see [5, 12]). However, null curves have many properties very different from spacelike or timelike curves. In other words, null curve theory has many results which have no Riemannian analogues. In the geometry of null curves, difficulties arise since the arc length vanishes, so that it is not possible to normalize the tangent vector in the usual way. The importance of the study of null curves and its presence in the physical theories is clear from the fact that the classical relativistic string is a surface or world-sheet in Minkowski space which satisfies the Lorentzian analogue of the minimal surface equation.

Null curves have been studied in Minkowski 3-space, Minkowski spacetime, Lorentzian space and Lorentzian manifolds, and semi-Riemannian spaces with index 2 by many authors $[3,4,6,7,8]$. Null Bertrand curves (in the classical sense, i.e. at the corresponding points of the given two curves, the principal normal lines of one curve coincides with the principal normal lines of the other curve) have been studied in Minkowski 3-space by Balgetir, Bektaş and Inoguchi in [1]. They showed that null Bertrand curves are null geodesic or Cartan framed null curves with constant second curvature.
1.1. An improved version of Ritt-Wu's decomposition algorithm. Proving theorems in differential geometry mechanically was initiated by Professor Wen-Tsun Wu, following the mechanical thought of ancient Chinese mathematics. Wu began to work on
mechanical theorem proving in geometry in 1976 (see [19, 21, 23]), and published his first paper the year after. He extended the characteristic set method, a method developed by J. F. Ritt [13] in algebraic geometry and differential algebra, to a well-ordering principle that can be used for mechanical theorem proving, and discovering in differential geometry and mechanics. This method is now widely known as Wu's method. Wu's method is capable of proving and discovering theorems in differential geometry and mechanics mechanically and efficiently. For example, the theorems of Bertrand, Mannheim and Schell (see [22]) may be proved or even discovered automatically and so may Newton's laws be derived from Kepler's laws using an implementation of this method [20].

An improved version of Ritt-Wu's decomposition algorithm was obtained by Chou and Gao [14]. They improved the original algorithm in two aspects. First, by using a weak ascending chain and W-prem, the sizes of the differential polynomials occurring in the decomposition can be reduced. Second, by using a special reduction procedure, the number of branches in the decomposition can be controlled effectively. A detailed description of the improved version of Ritt-Wu's decomposition algorithm and its applications can be found in the papers of Chou and Gao [14, 15, 16, 17].

The Bertrand curves problem was first studied using a computer by Wu [22]. The same problem was studied using the improved version of Ritt-Wu's decomposition algorithm by Chou and Gao [17]. They studied 18 types of Betrand curves in metric and affine differential geometry in Euclidean 3 -space. By using the algorithm, pseudo null Bertrand curves were studied by the present authors in [9].

In this paper, we investigate the null Bertrand type curves by using the improved version of Ritt-Wu's decomposition in Minkowski 3 -space. We show that the algorithm works successfully for null curves in Minkowski 3-space, and we give previously unknown results for such curves in the same space.

2. Preliminaries

The Minkowski space \mathbb{E}_{1}^{3} is the Euclidean 3 -space \mathbb{E}^{3} equipped with indefinite flat metric given by

$$
g=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2},
$$

where $\left(x_{1}, x_{2}, x_{3}\right)$ is a rectangular coordinate system of \mathbb{E}_{1}^{3}. Recall that a vector $v \in$ $\mathbb{E}_{1}^{3} \backslash\{0\}$ can be spacelike if $g(v, v)>0$, timelike if $g(v, v)<0$ and null (lightlike) if $g(v, v)=0$ and $v \neq 0$. In particular, the vector $v=0$ is a spacelike. The norm of a vector v is given by $\|v\|=\sqrt{|g(v, v)|}$, and two vectors v and w are said to be orthogonal, if $g(v, w)=0$. An arbitrary curve $\alpha(s)$ in \mathbb{E}_{1}^{3}, can locally be spacelike, timelike or null (lightlike), if all its velocity vectors $\alpha^{\prime}(s)$ are respectively spacelike, timelike or null. A spacelike or a timelike curve $\alpha(s)$ has unit speed, if $g\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right)= \pm 1$ [12]. A null curve α has unit speed, if $g\left(\alpha^{\prime \prime}(s), \alpha^{\prime \prime}(s)\right)= \pm 1$.

Let $\{T, N, B\}$ be the moving Frenet frame along a curve α in \mathbb{E}_{1}^{3}, consisting of the tangent, the principal normal and the binormal vector fields, respectively. If α is a null curve, the Frenet equations are given by $[5,8]$:

$$
\left[\begin{array}{l}
T^{\prime} \tag{2.1}\\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa_{1} & 0 \\
\kappa_{2} & 0 & -\kappa_{1} \\
0 & -\kappa_{2} & 0
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right],
$$

where $g(T, T)=g(B, B)=g(T, N)=g(N, B)=0$ and $g(N, N)=g(T, B)=1$, The first curvature $\kappa_{1}(s)=0$, if $\alpha(s)$ is straight line, or $\kappa_{1}(s)=1$ in all other cases.

3. Application of the improved version of Ritt-Wu's decomposition algorithm to null Bertrand type curves

In this section, we characterize the null Bertrand curves by using the improved version of Ritt-Wu's decomposition algorithm given in [17].

Let us consider two null curves C_{1} and C_{2} in \mathbb{E}_{1}^{3}, and let us attach the moving frames $\left\{e_{11}, e_{12}, e_{13}\right\}$ and $\left\{e_{21}, e_{22}, e_{23}\right\}$ to C_{1} and C_{2} at the corresponding points of C_{1} and C_{2}, respectively. For shortness, we denote the curves and their moving frames by ($C_{1}, e_{11}, e_{12}, e_{13}$) and ($\left.C_{2}, e_{21}, e_{22}, e_{23}\right)$. In addition, we denote the arcs, curvatures and torsions of C_{1} and C_{2} by s_{1}, k_{1}, t_{1} and s_{2}, k_{2}, t_{2}, respectively. Here, the parameter s_{2} can be considered as a function of s_{1}, and we put $r=\frac{d s_{2}}{d s_{1}}$. The vectorial relationship between C_{1} and C_{2} can be given as follows:

$$
\left.\begin{array}{c}
C_{2}=C_{1}+a_{1} e_{11}+a_{2} e_{12}+a_{3} e_{13} \\
e_{21}=u_{11} e_{11}+u_{12} e_{12}+u_{13} e_{13} \\
e_{22}=u_{21} e_{11}+u_{22} e_{12}+u_{23} e_{13} \tag{3.2}\\
e_{23}=u_{31} e_{11}+u_{32} e_{12}+u_{33} e_{13}
\end{array}\right\}
$$

where $a_{i},(i=1,2,3)$, are variables and $U=\left(u_{i j}\right)$ is a matrix of variables satisfying certain relations which will be presented in the following sections.

In this paper, we mainly consider cases which are more general than the classical Bertrand curve for a given couple of null curves. These cases can be given (with indices i, j) in the following forms:
$M I_{i j}:(1 \leq i \leq j \leq 3)$, means that $e_{2 j}$ is identical with $e_{1 i}$ in metrical structure.
$M P_{i j}:(1 \leq i \leq j \leq 3)$, means that $e_{2 j}$ is parallel with $e_{1 i}$ in metrical structure.
We will consider Bertrand type null curves C_{1} and C_{2} in \mathbb{E}_{1}^{3} satisfying the conditions $M I_{i j}$ and $M P_{i j}$. Thus we will investigate 12 kinds of Bertrand type null curves in Minkowski 3 -space \mathbb{E}_{1}^{3}.
3.1. Bertrand type null curves in Minkowski 3-space. As determined above, let $\left\{e_{11}, e_{12}, e_{13}\right\}$ and $\left\{e_{21}, e_{22}, e_{23}\right\}$ be the Frenet frames of C_{1} and C_{2}, respectively. Differentiating these vectors with respect to s_{1}, we get the following Frenet formulae.

$$
\begin{align*}
& e_{11}^{\prime}=k_{1} e_{12}, \quad e_{12}^{\prime}=t_{1} e_{11}-k_{1} e_{13}, e_{13}^{\prime}=-t_{1} e_{12} \tag{3.3}\\
& e_{21}^{\prime}=r k_{2} e_{22}, \quad e_{22}^{\prime}=r t_{2} e_{21}-r k_{2} e_{23}, \quad e_{23}^{\prime}=-r t_{2} e_{22} \tag{3.4}
\end{align*}
$$

We know from [4,5] that for null curves, having $k_{1}=0$ is equivalent to the curve being part of a straight line. This case will be excluded throughout this paper, that is, we assume that $k_{1}=1$ and $k_{2}=1$. With these assumptions (3.3) and (3.4) become,

$$
\begin{align*}
& e_{11}^{\prime}=e_{12}, e_{12}^{\prime}=t_{1} e_{11}-e_{13}, e_{13}^{\prime}=-t_{1} e_{12} \\
& e_{21}^{\prime}=r e_{22}, e_{22}^{\prime}=r t_{2} e_{21}-r e_{23}, e_{23}^{\prime}=-r t_{2} e_{22} \tag{3.5}
\end{align*}
$$

Differentiating (3.1) and (3.2); eliminating $e_{11}^{\prime}, e_{12}^{\prime}, e_{13}^{\prime}, e_{21}^{\prime}, e_{22}^{\prime}$ and e_{23}^{\prime} using (3.5) and (3.6); eliminating e_{21}, e_{22} and e_{23} using (3.2); and finally comparing coefficients for the vectors e_{11}, e_{12} and e_{13}, we obtain

$$
\left.\begin{array}{l}
a_{1}^{\prime}+t_{1} a_{2}-r u_{11}+1=0 \\
a_{2}^{\prime}+a_{1}-t_{1} a_{3}-r u_{12}=0
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
u_{21}^{\prime}+t_{1} u_{22}-r t_{2} u_{11}+r u_{31}=0 \\
u_{22}^{\prime}+u_{21}-t_{1} u_{23}-r t_{2} u_{12}+r u_{32}=0 \\
u_{23}^{\prime}-u_{22}-r t_{2} u_{13}+r u_{33}=0, \\
u_{31}^{\prime}+t_{1} u_{32}+r t_{2} u_{21}=0 \tag{3.9}\\
u_{32}^{\prime}+u_{31}-t_{1} u_{33}+r t_{2} u_{22}=0 \\
u_{33}^{\prime}-u_{32}+r t_{2} u_{23}=0 .
\end{array}\right\}
$$

In addition, from (3.2), $\left(u_{i j}\right)$ must satisfy;

$$
\left.\begin{array}{l}
u_{12}^{2}+2 u_{11} u_{13}=0 \\
u_{22}^{2}+2 u_{21} u_{23}=1, \\
u_{32}^{2}+2 u_{31} u_{33}=0, \\
u_{11} u_{23}+u_{12} u_{22}+u_{13} u_{21}=0, \\
u_{11} u_{33}+u_{12} u_{32}+u_{13} u_{31}=1, \tag{3.10}\\
u_{21} u_{33}+u_{22} u_{32}+u_{23} u_{31}=0, \\
\left(u_{11} u_{22}-u_{12} u_{21}\right) u_{33} \\
\quad-\left(u_{11} u_{23}-u_{13} u_{21}\right) u_{32} \\
\quad+\left(u_{12} u_{23}-u_{13} u_{22}\right) u_{31}=\mp 1 .
\end{array}\right\}
$$

3.2. The identical case. For the case $M I_{i j}$, the variables a_{i} and $u_{i j}$ must satisfy
(3.11) $a_{m}=0$ for $m \neq i, u_{j i}=1, u_{j n}=0$ for $n \neq i$.

Throughout this paper we assume that $r \neq 0$. Otherwise, i.e. for $r=0, C_{2}$ will be a fixed point.
3.2.1. Case $M I_{11}: e_{21}=e_{11}$. From (3.5) - (3.12), we get $a_{2}=a_{3}=0, u_{22}=\mp 1$. In this case we obtain $a_{1}^{\prime}-r+1,=0$. Since $a_{1}=0$, we get $r=1$. This means that the curves C_{1} and C_{2} are identical.
3.1. Corollary. Let C_{1} and C_{2} be two null curves in \mathbb{E}_{1}^{3}, with Frenet frames $\left\{e_{11}, e_{12}, e_{13}\right\}$ and $\left\{e_{21}, e_{22}, e_{23}\right\}$. If the relation $e_{21}=e_{11}$ holds, then C_{1} and C_{2} are identical.
3.2.2. Case $M I_{12}$: $e_{22}=e_{11}$. Under this condition, it is already seen that $u_{22}^{2}+$ $2 u_{21} u_{23}=0$. This is a contradiction with the second equality of (3.11).
3.2. Corollary. Let C_{1} and C_{2} be two null curves in \mathbb{E}_{1}^{3}, with Frenet frames $\left\{e_{11}, e_{12}, e_{13}\right\}$ and $\left\{e_{21}, e_{22}, e_{23}\right\}$. There exist no null curves in \mathbb{E}_{1}^{3} satisfying the relation $e_{22}=e_{11}$.
3.2.3. Case $M I_{13}: e_{23}=e_{11}$. There exist no curves satisfying $e_{23}=e_{11}$ under the condition $r \neq 0$.
3.3. Corollary. Let C_{1} and C_{2} be two null curves in \mathbb{E}_{1}^{3}, with Frenet frames $\left\{e_{11}, e_{12}, e_{13}\right\}$ and $\left\{e_{21}, e_{22}, e_{23}\right\}$. There are no null curves in \mathbb{E}_{1}^{3} satisfying the relation $e_{23}=e_{11}$.
3.2.4. Case $M I_{22}$: $e_{22}=e_{12}$. From (3.11) we obtain $u_{12}=u_{32}=0$. So, to be consistent with (3.11), these equalities must be satisfied:

$$
u_{11} u_{13}=0 \text { and } u_{31} u_{33}=0
$$

According to this we discuss the following four possible case:
(i) $u_{11}=0$ and $u_{33}=0$,
(ii) $u_{13}=0$ and $u_{31}=0$,
(iii) $u_{11}=0$ and $u_{31}=0$,
(iv) $u_{13}=0$ and $u_{33}=0$.

It is clear that in the cases (iii) and (iv), the transition matrix $U=\left(u_{i j}\right)$ is singular. Thus we deal only with the cases (i) and (ii).
Case (i). $u_{11}=0$ and $u_{33}=0$. In this case, we easily obtain from (3.5)-(3.11):

$$
\begin{aligned}
& u_{12}=u_{32}=u_{21}=u_{23}=0, \frac{1}{u_{31}}=u_{13}=\lambda_{1}(\text { constant }), a_{2}=\lambda(\text { constant }), \\
& t_{1}=\frac{-1}{\lambda}, t_{2}=-\frac{\lambda}{\lambda_{1}^{2}} \text { and } r=\frac{\lambda_{1}}{\lambda}
\end{aligned}
$$

It is clear that $\operatorname{det}\left(u_{i j}\right)=-1$.
Case (ii). $u_{13}=0$ and $u_{31}=0$. In this case, from (3.5)-(3.11), we have:

$$
\begin{array}{r}
u_{12}=u_{13}=u_{21}=u_{23}=u_{31}=u_{32}=0, u_{11} u_{33}=1, a_{2}=0, \\
t_{1}=t_{2}, r=\mp 1 .
\end{array}
$$

It is clear that $\operatorname{det}\left(u_{i j}\right)=1$. In this case we obtain that $C_{1}=C_{2}$.
Thus we have proved the following theorem:
3.4. Theorem. Let C_{1} and C_{2} be two null curve in \mathbb{E}_{1}^{3}, with Frenet vectors and non-zero curvature functions $\left\{e_{11}, e_{12}, e_{13}, k_{1}=1, t_{1}\right\},\left\{e_{21}, e_{22}, e_{23}, k_{2}=1, t_{2}\right\}$, respectively. If the relationship $e_{22}=e_{12}$ holds then C_{1} and C_{2} must satisfy one of the following conditions:
(i) $C_{2}=C_{1}$,
(ii) $C_{2}=C_{1}+\mu e_{12}$, where $\mu=\frac{-1}{t_{1}}$. In this case the second curvatures t_{1} and t_{2} of the curves C_{1} and C_{2} are constant functions and $t_{1} t_{2}>0$.
3.5. Corollary. Let C_{1} be a null curve in \mathbb{E}_{1}^{3} with Frenet frame e_{11}, e_{12}, e_{13} and curvatures $k_{1}=1$ and t_{1}. If C_{1} is a Bertrand curve then there exist only two Bertrand mates of the curve C_{1} : one is $C_{2}=C_{1}$, the other is $C_{2}=C_{1}+\mu e_{12}$, where $\mu=\frac{-1}{t_{1}}$.
3.6. Example. We consider the null curve $C_{1}(s)=(\sinh s, s, \cosh s)$ in \mathbb{E}_{1}^{3}. We can easily obtain the Frenet vectors and the curvatures of the curve C_{1} as follows:

$$
\begin{aligned}
e_{11} & =(\cosh s, 1, \sinh s) \\
e_{12} & =(\sinh s, 0, \cosh s) \\
e_{13} & =\left(-\frac{1}{2} \cosh s, \frac{1}{2},-\frac{1}{2} \sinh s\right), \\
k_{1} & =1, t_{1}=\frac{1}{2}
\end{aligned}
$$

By using the above theorem, we can easily find one of its Bertrand mates as $C_{2}=$ $C_{1}-\frac{1}{t_{1}} e_{12}$, and $C_{2}(s)=(-\sinh s, s,-\cosh s)$ (see Figure 1).
3.7. Corollary. The null Bertrand curve C_{1} and its Bertrand mate $C_{2}\left(C_{2} \neq C_{1}\right)$ have opposite orientations.

Proof. This is clear from the fact that the determinant of the transition matrix $U=\left(u_{i j}\right)$ is $\operatorname{det}\left(u_{i j}\right)=-1$.

Figure 1. Null curves satisfying the condition $e_{22}=e_{12}$ in \mathbb{E}_{1}^{3}

3.2.5. Case $M I_{23}: e_{23}=e_{12}$. There exist no curves satisfying $e_{23}=e_{11}$ under the condition $\operatorname{det}\left(u_{i j}\right) \neq 0$.
3.8. Remark. In Euclidean 3-space, if there exist a corresponding relationship between the space curves α and β such that, at the corresponding points of the curves, the principal normal lines of α coincide with the binormal lines of β, then α is called a Mannheim curve, and β a Mannheim partner curve of α. Mannheim partner curves in Euclidean 3 -space and Minkowski 3 -space (for non-null curves) have been studied by Liu and Wang [11].

Thus we can give the following interesting corollary as a result of case $M I_{23}$.
3.9. Corollary. There are no null Mannheim partner curves in Minkowski 3-space.
3.2.6. Case $I_{33}: \quad e_{23}=e_{13}$. By considering (3.5) - (3.11), and after some calculations, we obtain $u_{22}=\mp 1, u_{11}=1, u_{21}=0$ and the following cases,
(i) If $u_{22}=1$, we get

$$
u_{12}=u_{13}=u_{23}=0, a_{3}=\mu(\text { const. }), r=1 \text { and } t_{1}=t_{2} .
$$

(ii) If $u_{22}=-1$, we obtain the following,

$$
u_{12}=u_{13}=u_{23}=0, a_{3}=\mu \text { (const.), } r=1 \text { and } t_{1}=-t_{2} .
$$

Thus we obtain the following theorem:
3.10. Theorem. Let C_{1} and C_{2} be two null curves in \mathbb{E}_{1}^{3}, with Frenet vectors and nonzero curvature functions $\left\{e_{11}, e_{12}, e_{13}, k_{1}=1, t_{1}\right\},\left\{e_{21}, e_{22}, e_{23}, k_{2}=1, t_{2}\right\}$, respectively. If the relationship $e_{23}=e_{13}$ holds then C_{1} and C_{2} must satisfy one of the following conditions:
(i) $C_{2}=C_{1}$,
(ii) $C_{2}=C_{1}+\mu e_{12}$, where μ is non zero constant. In this case the second curvatures t_{1} and t_{2} of the curves C_{1} and C_{2} satisfy the condition $t_{1}=t_{2}=0$.
3.11. Remark. We note that the curves which satisfy the condition (ii) in the above theorem are null cubic curves with curvatures $k_{1}=k_{2}=1, t_{1}=t_{2}=0$.
3.12. Example. We consider the null cubic curves

$$
C_{1}(s)=\left(\frac{1}{\sqrt{2}}\left(\frac{\frac{s^{3}}{3}+s^{2}+3 s+1}{2}\right), \frac{1}{\sqrt{2}}\left(\frac{-\frac{s^{3}}{3}-s^{2}+s-1}{2}\right), \frac{1}{2} s^{2}+s+1\right)
$$

in \mathbb{E}_{1}^{3}. We can easily obtain the Frenet vectors and the curvatures of the curve C_{1} as follows:

$$
\begin{aligned}
e_{11} & =\left(\frac{1}{\sqrt{2}}\left(\frac{s^{2}+2 s+3}{2}\right), \frac{1}{\sqrt{2}}\left(\frac{-s^{2}-2 s+1}{2}\right), s+1\right), \\
e_{12} & =\left(\frac{1}{\sqrt{2}}(s+1),-\frac{1}{\sqrt{2}}(s+1), 1\right) \\
e_{13} & =\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right) \\
k_{1} & =1, t_{1}=0
\end{aligned}
$$

By using the above theorem, we can easily find some its Bertrand mates in the form $C_{2}=C_{1}+\mu e_{13}$ by taking $\mu=\sqrt{2}, 5 \sqrt{2},-5 \sqrt{2}$ (see Figure 2).

Figure 2. Null curves satisfying the condition $e_{23}=e_{13}$ in \mathbb{E}_{1}^{3}

3.13. Corollary. Let C_{1} and C_{2} be two null curves in \mathbb{E}_{1}^{3}, with Frenet vectors and nonzero curvature functions $\left\{e_{11}, e_{12}, e_{13}, k_{1}=1, t_{1}\right\}$, $\left\{e_{21}, e_{22}, e_{23}, k_{2}=1, t_{2}\right\}$, respectively. If the relationship $e_{23}=e_{13}$ holds then C_{1} is congruent to C_{2}.
3.3. The parallel case. For the case $M P_{i j}$, the variables $u_{i j}$ must satisfy $u_{i k}=0$ for $k \neq j$. Throughout this paper we assume that $r \neq 0$. Otherwise, i.e. for $r=0, C_{2}$ will be a fixed point.
3.3.1. Case $M P_{11}$: $e_{21}=u_{11} e_{11}$. Considering (3.5)-(3.11), and after some calculations, we obtain $u_{22}=\mp 1$, and the following cases.
(i) If $u_{22}=1$ we get,

$$
u_{11}=\frac{1}{u_{33}}=r=\mu(\text { const. } \neq 0), u_{21}=u_{23}=u_{31}=u_{32}=0
$$

$$
a_{3} a_{1}+a_{3} a_{2}+a_{2} a_{1}=a_{3}\left(\mu^{2}-1\right) \text { and } t_{1}-\mu^{2} t_{2}=0,
$$

(ii) If $u_{22}=-1$, we get:

$$
\begin{aligned}
& u_{11}=\frac{1}{u_{33}}=-r=\mu(\text { const. } \neq 0), u_{21}=u_{23}=u_{31}=u_{32}=0, \\
& a_{3} a_{1}+a_{3} a_{2}+a_{2} a_{1}=-a_{3}\left(\mu^{2}+1\right) \text { and } t_{1}-\mu^{2} t_{2}=0
\end{aligned}
$$

3.14. Corollary. Let C_{1} and C_{2} be two null curves in \mathbb{E}_{1}^{3}, with Frenet vectors and nonzero curvature functions $\left\{e_{11}, e_{12}, e_{13}, k_{1}=1, t_{1}\right\},\left\{e_{21}, e_{22}, e_{23}, k_{2}=1, t_{2}\right\}$, respectively. If the Frenet vector e_{21} of C_{2} is parallel to the Frenet vector e_{11} of C_{1} then the components
of the transition matrix $U=\left(u_{i j}\right)$ and second curvatures of the curves must satisfy the following conditions:

$$
\begin{aligned}
& u_{22}=\mp 1, u_{21}=u_{23}=u_{31}=u_{32}=0 \\
& a_{3} a_{1}+a_{3} a_{2}+a_{2} a_{1}=a_{3} \lambda, \lambda \in \mathbb{R}_{0} \\
& \frac{t_{1}}{t_{2}}=\text { const. }
\end{aligned}
$$

3.3.2. Case $M P_{12}$: $e_{22}=u_{21} e_{11}$. There exist no curves satisfying $e_{22}=u_{11} e_{21}$ under the condition $\operatorname{det}\left(u_{i j}\right) \neq 0$.
3.3.3. Case $M P_{13}: e_{23}=u_{31} e_{11}$. Considering (3.5)-(3.11), and after some calculations, we obtain $u_{22}=\mp 1$, and the following conditions,

$$
\begin{aligned}
& u_{11}=\mp \frac{1}{2} \frac{\left(\sigma^{\prime}\right)^{2}}{\sigma^{3}}, u_{12}=\mp \frac{\sigma^{\prime}}{\sigma^{2}}, u_{13}= \pm \frac{1}{\sigma}, \\
& u_{21}=\mp \frac{\sigma^{\prime}}{\sigma}, u_{23}=0, u_{31}= \pm \sigma, \\
& t_{1}=r \sigma-\frac{\sigma^{\prime \prime}}{\sigma}+\frac{3}{2}\left(\frac{\sigma^{\prime}}{\sigma}\right)^{2},
\end{aligned}
$$

where $\sigma=r t_{2}$.
3.15. Corollary. Let C_{1} and C_{2} be two null curves in \mathbb{E}_{1}^{3}, with Frenet vectors and nonzero curvature functions $\left\{e_{11}, e_{12}, e_{13}, k_{1}=1, t_{1}\right\}$, $\left\{e_{21}, e_{22}, e_{23}, k_{2}=1, t_{2}\right\}$, respectively. If the Frenet vector e_{23} of C_{2} is parallel to the Frenet vector e_{11} of C_{1} then the components of the transition matrix $U=\left(u_{i j}\right)$ and second curvatures of the curves must satisfy the following conditions:

$$
\begin{aligned}
& u_{22}=\mp 1, u_{23}=u_{32}=u_{33}=0 \\
& t_{1}=r \sigma-\frac{\sigma^{\prime \prime}}{\sigma}+\frac{3}{2}\left(\frac{\sigma^{\prime}}{\sigma}\right)^{2}, \text { where } \sigma=r t_{2}
\end{aligned}
$$

3.3.4. Case $M P_{22}$: $e_{22}=u_{22} e_{12}$. From (3.11), we obtain $u_{12}=u_{32}=0$ and $u_{22}=\mp 1$. So, in order to be consistent with (3.11), these equalities must be satisfied:

$$
u_{11} u_{13}=0 \text { and } u_{31} u_{33}=0
$$

According to this we discuss the following four possible case:
(i) $u_{11}=0$ and $u_{33}=0$,
(ii) $u_{13}=0$ and $u_{31}=0$,
(iii) $u_{11}=0$ and $u_{31}=0$,
(iv) $u_{13}=0$ and $u_{33}=0$.

It is clear that in the cases (iii) and (iv), the transition matrix $U=\left(u_{i j}\right)$ is singular. Thus we deal only with the cases (i) and (ii).
(i.1) If $u_{22}=1$ then $u_{11}=u_{33}=0$, and the following are obtained:

$$
\begin{aligned}
& u_{12}=u_{32}=u_{21}=u_{23}=0, \frac{1}{u_{31}}=u_{13}=\lambda \text { (const.) } \\
& t_{1}=\frac{-r}{\lambda}, t_{2}=-\frac{1}{r \lambda} \\
& a_{3} a_{1}^{\prime}+a_{2} a_{3}^{\prime}+a_{1} a_{2}+a_{3}=0
\end{aligned}
$$

(i.2) If $u_{22}=-1$ then $u_{11}=u_{33}=0$, and the following are obtained:

$$
\begin{aligned}
& u_{12}=u_{21}=u_{23}=u_{32}=0, \frac{1}{u_{31}}=u_{13}=\lambda \\
& t_{1}=\frac{r}{\lambda}, t_{2}=\frac{1}{r \lambda} \\
& a_{2} a_{3}-a_{2}^{2}-\lambda a_{1}=\lambda
\end{aligned}
$$

(ii.1) If $u_{22}=1$ then $u_{13}=u_{31}=0$, and the following are obtained:

$$
\begin{aligned}
& u_{12}=u_{32}=u_{21}=u_{23}=0, u_{11}=\frac{1}{u_{33}}=r=\lambda(\text { const. }) \\
& t_{1}-\lambda^{2} t_{2}=0, a_{2}=a_{3}^{\prime} \\
& a_{3} a_{1}+a_{2}+a_{1}+a_{3}\left(-\lambda^{2}+1\right)=0
\end{aligned}
$$

(ii.2) If $u_{22}=-1$ then $u_{13}=u_{31}=0$, and the following are obtained:

$$
\begin{aligned}
& u_{12}=u_{21}=u_{23}=u_{32}=0, u_{11}=\frac{1}{u_{33}}=-r \\
& t_{1}-\lambda^{2} t_{2}=0, a_{2}=a_{3}^{\prime} \\
& a_{3} a_{1}+a_{2}+a_{1}+a_{3}\left(\lambda^{2}+1\right)=0
\end{aligned}
$$

Thus we have proved the following theorem:
3.16. Theorem. Let C_{1} and C_{2} be two null curves in \mathbb{E}_{1}^{3}, with Frenet vectors and nonzero curvature functions $\left\{e_{11}, e_{12}, e_{13}, k_{1}=1, t_{1}\right\},\left\{e_{21}, e_{22}, e_{23}, k_{2}=1, t_{2}\right\}$, respectively. If the Frenet vector e_{22} of C_{2} is parallel to the Frenet vector e_{12} of C_{1} then the components of the transition matrix $U=\left(u_{i j}\right)$ and second curvatures of the curves must satisfy one of the following conditions:
(i) $u_{22}=\mp 1, u_{11}=u_{33}=0$ and $t_{1} t_{2}=$ const. >0,
(ii) $u_{22}=\mp 1, u_{13}=u_{31}=0$ and $\frac{t_{1}}{t_{2}}=$ const. >0.
3.3.5. Case $M P_{23}: e_{23}=u_{33} e_{12}$. There exist no curves satisfying $e_{22}=u_{11} e_{21}$ under the condition $\operatorname{det}\left(u_{i j}\right) \neq 0$.
3.3.6. Case $M P_{33}: e_{23}=u_{33} e_{13}$. Considering (3.5)-(3.11), and after some calculations, we obtain $u_{31}=u_{32}=0$, and $u_{22}=\mp 1$. Hence, we get:

$$
\begin{align*}
& u_{11}=\mp \frac{t_{1}}{r t_{2}}, u_{13}= \pm \frac{1}{2} \frac{\left(\sigma^{\prime} t_{1}-\sigma t_{1}^{\prime}\right)^{2}}{\left(t_{1} \sigma\right)^{3}} \\
& u_{12}=\mp \frac{\sigma^{\prime} t_{1}-\sigma t_{1}^{\prime}}{t_{1} \sigma^{2}}, u_{23}=\mp \frac{\sigma t_{1}^{\prime}-\sigma^{\prime} t_{1}}{\sigma t_{1}^{2}} \tag{3.12}\\
& u_{33}=\frac{1}{u_{11}}, u_{21}=0 \\
& a_{1}^{\prime}+t_{1} a_{2}-r u_{11}+1=0 \\
& a_{2}^{\prime}+a_{1}-t_{1} a_{3}-r u_{12}=0 \tag{3.13}\\
& a_{3}-a_{2}-r u_{13}=0
\end{align*}
$$

Also we find that $\operatorname{det} U=\mp 1$. Thus we have proved the following theorem:
3.17. Theorem. Let C_{1} and C_{2} be two null curves in \mathbb{E}_{1}^{3}, with Frenet vectors and nonzero curvature functions $\left\{e_{11}, e_{12}, e_{13}, k_{1}=1, t_{1}\right\},\left\{e_{21}, e_{22}, e_{23}, k_{2}=1, t_{2}\right\}$, respectively. If the Frenet vector e_{23} of C_{2} is parallel to the Frenet vector e_{13} of C_{1} then the components of the transition matrix $U=\left(u_{i j}\right)$ and the curvatures of the curves must satisfy the following conditions:
(i) $u_{22}=\mp 1, u_{21}=u_{31}=u_{32}=0$, and the equalities in (3.13),
(ii) The equations given in (3.14).

References

[1] Balgetir, H., Bektaş, M. and Inoguchi, J. Null Bertrand curves in Minkowski 3-space and their characterizations, Note Mat. 23 (1), 7-13, 2004/05.
[2] Bertrand, J. M. Mémoire sur la théorie des courbes á double courbure, Comptes Rendus 36, 1850.
[3] Çöken, C. and Çiftci, Ü. On the Cartan curvatures of a null curve in Minkowski spacetime, Geometriae Dedicata 114, 71-78, 2005.
[4] Duggal, K. L. A report on canonical null curves and screen distributions for lightlike geometry, Acta Appl. Math. 95, 135-149, 2007.
[5] Duggal, K. L. and Bejancu, A. Lightlike Submanifolds of Semi-Riemannian Manifolds and applications (Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1996).
[6] Ferrández, A., Giménez A. and Lucas, P. Characterization of null curves in LorentzMinkowski spaces, Proceedings of the IX Fall Workshop on Geometry and Physics, Vilanova i la Geltru, Publicaciones de la RSME 3, 221-226, 2000.
[7] Honda, K. and Inoguchi, J. Deformations of Cartan framed null curves preserving the torsion, Differ. Geom. Dyn. Syst. 5 (1), 31-37, 2003.
[8] Inoguchi, J. and Lee, S. Null curves in Minkowski 3-space, Int. Electron. J. Geom. 1 (2), 40-83, 2008.
[9] İlarslan, K. and Yıldırım, M. An Application of Ritt-Wu's zero decomposition algorithm to the pseudo null Bertrand type curves in Minkowski 3-space, J. Syst. Sci. Complex, To appear, 2009.
[10] Kuhnel, W. Differential geometry: curves-surfaces-manifolds (Braunschweig, Wiesbaden, 1999).
[11] Liu, H. and Wang, F. Mannheim partner curves in 3-space, Journal of Geometry 88, 120126, 2008.
[12] O'Neill, B. Semi-Riemannian geometry with applications to relativity (Academic Press, New York, 1983).
[13] Ritt, J. F. Differential Algebra (New York, Amer. Math. Soc. Colloquium, 1950).
[14] Chou Shang-Ching and Gao Xiao-shan, Automated reasoning in differential geometry and mechanics: Part 1. An improved version of Ritt-Wu's decomposition algorithm, J. of Automated Reasoning 10, 161-172, 1993.
[15] Chou, Shang-Ching and Gao Xiao-shan, Automated reasoning in differential geometry and mechanics: Part 2: Mechanical theorem proving, J. of Automated Reasoning 10, 173-189, 1993.
[16] Chou, Shang-Ching and Gao Xiao-shan, Automated reasoning in differential geometry and mechanics: Part 3: Mechanical formula derivation, IFIP Transaction on automated reasoning, 1-12, 1993.
[17] Chou Shang-Ching and Gao Xiao-shan, Automated reasoning in differential geometry and mechanics: Part 4: Bertrand curves, System Sciences and Mathematical Sciences 6 (2), 186-192, 1993.
[18] Saint Venant, B. Mémoire sur les lignes courbes non planes, Journal de l'Ecole Polytechnique 18, 1-76, 1845.
[19] Wu, W.-T. On the decision problem and the mechanization of theorem-proving in elementary geometry, Scientia Sinica 21, 159-172, 1978.
[20] Wu, W.-T. Mechanical derivation of Newton's gravitational laws from Kepler's laws, MMPreprints, MMRC 1, 53-61, 1987.
[21] Wu, W.-T. On the foundation of algebraic differential geometry, Systems Sci. Math. Sci. 2, 289-312, 1989.
[22] Wu, W.-T. A mechanization method of geometry and its applications II. Curve pairs of Bertrand type, Kexue Tongbao 32, 585-588, 1987.
[23] Wu, W.-T. Mechanical theorem proving of differential geometries and some of its applications in mechanics, J. Automat. Reason 7 (2), 171-191, 1991.

[^0]: *Kırıkkale University, Faculty of Arts and Sciences, Department of Mathematics, 71450 Yahşihan, Kırıkkale, Turkey. E-mail: (M. Yıldırım) mehmet05tr@yahoo.com (K. İlarslan) kilarslan@yahoo.com
 ${ }^{\dagger}$ Corresponding Author.

