
Hacettepe Journal of Mathematics and Statistics
Volume 39 (4) (2010), 555 – 565

AN APPLICATION OF RITT-WU’S

ZERO DECOMPOSITION ALGORITHM

TO NULL BERTRAND TYPE CURVES

IN MINKOWSKI 3-SPACE

Mehmet Yıldırım
∗

and Kazım İlarslan
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Abstract

Bertrand curves were first studied using a computer by W. -T. Wu in
(A mechanization method of geometry and its applications II. Curve

pairs of Bertrand type, Kexue Tongbao 32, 585–588, 1987). The same
problem was studied using an improved version of Ritt-Wu’s decompo-
sition algorithm by S. -C. Chao and X. -S. Gao (Automated reasoning in

differential geometry and mechanics: Part 4: Bertrand curves, System
Sciences and Mathematical Sciences 6 (2), 186–192, 1993).

In this paper, we investigate the same problem for null Bertrand type
curves in Minkowski 3-space E

3

1 by using the well known algorithm
given by Chao and Gao, and obtain new results for null Bertrand type
curves in Minkowski 3-space E

3

1.

Keywords: Mechanical theorem proving, Ritt-Wu’s method, Bertrand curves, Mannheim
curves, Minkowski 3-space, Null curves.
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1. Introduction

The general theory of curves in an Euclidean space (or more generally, in a Riemannian
manifold) has been developed a long time ago and we have a deep knowledge of its local
geometry as well as its global geometry. In the theory of curves in Euclidean space, one
of the important and interesting problems is the characterizations of a regular curve. In
the solution of the problem, the curvature functions k1 (or κ) and k2 (or τ ) of a regular
curve have an effective role. For example: if k1 = 0 = k2, then the curve is a geodesic,
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or if k1 = constant 6= 0 and k2 = 0, then the curve is a circle with radius 1/k1, etc. Thus
we can determine the shape and size of a regular curve by using its curvatures.

Another approach to the solution of the problem is considering the relationship be-
tween the Frenet vectors of the curves (see [10]). For instance, for Bertrand curves:

In 1845, Saint Venant (see [18]) proposed the question whether upon the surface
generated by the principal normal of a curve, a second curve can exist which has for its
principal normal the principal normal of the given curve. This question was answered by
Bertrand in 1850 in a paper (see [2]) in which he showed that a necessary and sufficient
condition for the existence of such a second curve is that a linear relationship with
constant coefficients shall exist between the first and second curvatures of the given
original curve. In other word, if we denote the first and second curvatures of the given
curve by k1 and k2 respectively, then for λ, µ ∈ R we have λk1 + µk2 = 1. Since
the time of Bertrand’s paper, pairs of curves of this kind have been called Conjugate

Bertrand Curves, or more commonly just Bertrand Curves (see [10]). Bertrand curves
have been studied in Euclidean and non-Euclidean spaces by many authors (for example,
see [1, 3, 8]).

Another interesting example is that of Mannheim curves:

If there exists a corresponding relationship between the space curves α and β such
that, at corresponding points of the curves, the principal normal lines of α coincide with
the binormal lines of β, then α is called a Mannheim curve, β is called the Mannheim

partner curve of α. Mannheim partner curves were studied by Liu and Wang (see [11])
in Euclidean 3-space and in Minkowski 3-space.

Euclidean geometry is geometry in an affine space arising from the existence of a
positive definite inner product among its vectors. When such an inner product is replaced
by an nondegenerate inner product of signature (−, +,+, . . . , +), what results is called
Lorentzian geometry (see [10, 12]). It is well known that Lorentzian geometry of 4
dimensions (also known Minkowski space-time) is the most appropriate mathematical
model for the special theory of relativity. The theory of curves in Minkowski 3-space is
more interesting than the Euclidean case.

Many of the classical results from Riemannian geometry have Lorentz counterparts.
In fact, spacelike curves or timelike curves can be studied using a similar approach to
that used in positive definite Riemannian geometry (see [5, 12]). However, null curves
have many properties very different from spacelike or timelike curves. In other words,
null curve theory has many results which have no Riemannian analogues. In the ge-
ometry of null curves, difficulties arise since the arc length vanishes, so that it is not
possible to normalize the tangent vector in the usual way. The importance of the study
of null curves and its presence in the physical theories is clear from the fact that the
classical relativistic string is a surface or world-sheet in Minkowski space which satisfies
the Lorentzian analogue of the minimal surface equation.

Null curves have been studied in Minkowski 3-space, Minkowski spacetime, Lorentzian
space and Lorentzian manifolds, and semi-Riemannian spaces with index 2 by many au-
thors [3, 4, 6, 7, 8]. Null Bertrand curves (in the classical sense, i.e. at the corresponding
points of the given two curves, the principal normal lines of one curve coincides with
the principal normal lines of the other curve) have been studied in Minkowski 3-space
by Balgetir, Bektaş and Inoguchi in [1]. They showed that null Bertrand curves are null
geodesic or Cartan framed null curves with constant second curvature.

1.1. An improved version of Ritt-Wu’s decomposition algorithm. Proving the-
orems in differential geometry mechanically was initiated by Professor Wen-Tsun Wu,
following the mechanical thought of ancient Chinese mathematics. Wu began to work on
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mechanical theorem proving in geometry in 1976 (see [19, 21, 23]), and published his first
paper the year after. He extended the characteristic set method, a method developed by
J. F. Ritt [13] in algebraic geometry and differential algebra, to a well-ordering principle
that can be used for mechanical theorem proving, and discovering in differential geom-
etry and mechanics. This method is now widely known as Wu’s method. Wu’s method
is capable of proving and discovering theorems in differential geometry and mechanics
mechanically and efficiently. For example, the theorems of Bertrand, Mannheim and
Schell (see [22]) may be proved or even discovered automatically and so may Newton’s
laws be derived from Kepler’s laws using an implementation of this method [20].

An improved version of Ritt-Wu’s decomposition algorithm was obtained by Chou and
Gao [14]. They improved the original algorithm in two aspects. First, by using a weak
ascending chain and W-prem, the sizes of the differential polynomials occurring in the
decomposition can be reduced. Second, by using a special reduction procedure, the num-
ber of branches in the decomposition can be controlled effectively. A detailed description
of the improved version of Ritt-Wu’s decomposition algorithm and its applications can
be found in the papers of Chou and Gao [14, 15, 16, 17].

The Bertrand curves problem was first studied using a computer by Wu [22]. The same
problem was studied using the improved version of Ritt-Wu’s decomposition algorithm
by Chou and Gao [17]. They studied 18 types of Betrand curves in metric and affine
differential geometry in Euclidean 3-space. By using the algorithm, pseudo null Bertrand
curves were studied by the present authors in [9].

In this paper, we investigate the null Bertrand type curves by using the improved
version of Ritt-Wu’s decomposition in Minkowski 3-space. We show that the algorithm
works successfully for null curves in Minkowski 3-space, and we give previously unknown
results for such curves in the same space.

2. Preliminaries

The Minkowski space E
3

1 is the Euclidean 3-space E
3 equipped with indefinite flat

metric given by

g = −dx2

1 + dx2

2 + dx2

3,

where (x1, x2, x3) is a rectangular coordinate system of E
3

1. Recall that a vector v ∈
E

3

1 \ {0} can be spacelike if g(v, v) > 0, timelike if g(v, v) < 0 and null (lightlike) if
g(v, v) = 0 and v 6= 0. In particular, the vector v = 0 is a spacelike. The norm of a

vector v is given by ||v|| =
√

|g(v, v)|, and two vectors v and w are said to be orthogonal,

if g(v,w) = 0. An arbitrary curve α(s) in E
3

1, can locally be spacelike, timelike or null

(lightlike), if all its velocity vectors α′(s) are respectively spacelike, timelike or null. A
spacelike or a timelike curve α(s) has unit speed, if g(α′(s), α′(s)) = ±1 [12]. A null
curve α has unit speed, if g(α′′(s), α′′(s)) = ±1.

Let {T, N, B} be the moving Frenet frame along a curve α in E
3

1, consisting of the
tangent, the principal normal and the binormal vector fields, respectively. If α is a null
curve, the Frenet equations are given by [5, 8]:

(2.1)





T ′

N ′

B′



 =





0 κ1 0
κ2 0 −κ1

0 −κ2 0









T
N
B



 ,

where g(T,T ) = g(B,B) = g(T,N) = g(N, B) = 0 and g(N,N) = g(T, B) = 1, The first
curvature κ1(s) = 0, if α(s) is straight line, or κ1(s) = 1 in all other cases.
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3. Application of the improved version of Ritt-Wu’s decomposi-

tion algorithm to null Bertrand type curves

In this section, we characterize the null Bertrand curves by using the improved version
of Ritt-Wu’s decomposition algorithm given in [17].

Let us consider two null curves C1 and C2 in E
3

1, and let us attach the moving
frames {e11, e12, e13} and {e21, e22, e23} to C1 and C2 at the corresponding points of
C1 and C2, respectively. For shortness, we denote the curves and their moving frames
by (C1, e11, e12, e13) and (C2, e21, e22, e23). In addition, we denote the arcs, curvatures
and torsions of C1 and C2 by s1, k1, t1 and s2, k2, t2, respectively. Here, the parameter
s2 can be considered as a function of s1, and we put r = ds2

ds1
. The vectorial relationship

between C1 and C2 can be given as follows:

(3.1) C2 = C1 + a1e11 + a2e12 + a3e13,

(3.2)

e21 = u11e11 + u12e12 + u13e13

e22 = u21e11 + u22e12 + u23e13

e23 = u31e11 + u32e12 + u33e13











where ai, (i = 1, 2, 3), are variables and U = (uij) is a matrix of variables satisfying
certain relations which will be presented in the following sections.

In this paper, we mainly consider cases which are more general than the classical
Bertrand curve for a given couple of null curves. These cases can be given (with indices
i, j) in the following forms:

MIij : (1 ≤ i ≤ j ≤ 3), means that e2j is identical with e1i in metrical structure.

MPij : (1 ≤ i ≤ j ≤ 3), means that e2j is parallel with e1i in metrical structure.

We will consider Bertrand type null curves C1 and C2 in E
3

1 satisfying the conditions
MIij and MPij . Thus we will investigate 12 kinds of Bertrand type null curves in
Minkowski 3-space E

3

1.

3.1. Bertrand type null curves in Minkowski 3-space. As determined above, let
{e11, e12, e13} and {e21, e22, e23} be the Frenet frames of C1 and C2, respectively. Differ-
entiating these vectors with respect to s1, we get the following Frenet formulae.

e′11 = k1e12, e′12 = t1e11 − k1e13, e′13 = −t1e12,(3.3)

e′21 = rk2e22, e′22 = rt2e21 − rk2e23, e′23 = −rt2e22.(3.4)

We know from [4, 5] that for null curves, having k1 = 0 is equivalent to the curve being
part of a straight line. This case will be excluded throughout this paper, that is, we
assume that k1 = 1 and k2 = 1. With these assumptions (3.3) and (3.4) become,

(3.5)
e′11 = e12, e′12 = t1e11 − e13, e′13 = −t1e12,

e′21 = re22, e′22 = rt2e21 − re23, e′23 = −rt2e22.

Differentiating (3.1) and (3.2); eliminating e′11, e′12, e′13, e′21, e′22 and e′23 using (3.5) and
(3.6); eliminating e21, e22 and e23 using (3.2); and finally comparing coefficients for the
vectors e11, e12 and e13, we obtain

(3.6)
a′

1 + t1a2 − ru11 + 1 = 0

a′

2 + a1 − t1a3 − ru12 = 0

}

(3.7)

u′

11 + t1u12 − ru21 = 0

u′

12 + u11 − t1u13 − ru22 = 0

u′

13 − u12 − ru23 = 0,
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(3.8)

u′

21 + t1u22 − rt2u11 + ru31 = 0

u′

22 + u21 − t1u23 − rt2u12 + ru32 = 0

u′

23 − u22 − rt2u13 + ru33 = 0,











(3.9)

u′

31 + t1u32 + rt2u21 = 0

u′

32 + u31 − t1u33 + rt2u22 = 0

u′

33 − u32 + rt2u23 = 0.











In addition, from (3.2), (uij) must satisfy;

(3.10)

u2

12 + 2u11u13 = 0,

u2

22 + 2u21u23 = 1,

u2

32 + 2u31u33 = 0,

u11u23 + u12u22 + u13u21 = 0,

u11u33 + u12u32 + u13u31 = 1,

u21u33 + u22u32 + u23u31 = 0,

(u11u22 − u12u21)u33

− (u11u23 − u13u21)u32

+ (u12u23 − u13u22)u31 = ∓1.











































































3.2. The identical case. For the case MIij , the variables ai and uij must satisfy

(3.11) am = 0 for m 6= i, uji = 1, ujn = 0 for n 6= i.

Throughout this paper we assume that r 6= 0. Otherwise, i.e. for r = 0, C2 will be a
fixed point.

3.2.1. Case MI11: e21 = e11. From (3.5) - (3.12), we get a2 = a3 = 0, u22 = ∓1. In
this case we obtain a′

1 − r + 1, = 0. Since a1 = 0, we get r = 1. This means that the
curves C1 and C2 are identical.

3.1. Corollary. Let C1 and C2 be two null curves in E
3

1, with Frenet frames {e11, e12, e13}
and {e21, e22, e23}. If the relation e21 = e11 holds, then C1 and C2 are identical.

3.2.2. Case MI12: e22 = e11. Under this condition, it is already seen that u2

22 +
2u21u23 = 0. This is a contradiction with the second equality of (3.11).

3.2. Corollary. Let C1 and C2 be two null curves in E
3

1, with Frenet frames {e11, e12, e13}
and {e21, e22, e23}. There exist no null curves in E

3

1 satisfying the relation e22 = e11.

3.2.3. Case MI13: e23 = e11. There exist no curves satisfying e23 = e11 under the
condition r 6= 0.

3.3. Corollary. Let C1 and C2 be two null curves in E
3

1, with Frenet frames {e11, e12, e13}
and {e21, e22, e23}. There are no null curves in E

3

1 satisfying the relation e23 = e11.

3.2.4. Case MI22: e22 = e12. From (3.11) we obtain u12 = u32 = 0. So, to be consistent
with (3.11), these equalities must be satisfied:

u11u13 = 0 and u31u33 = 0.

According to this we discuss the following four possible case:

(i) u11 = 0 and u33 = 0,
(ii) u13 = 0 and u31 = 0,
(iii) u11 = 0 and u31 = 0,
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(iv) u13 = 0 and u33 = 0.

It is clear that in the cases (iii) and (iv), the transition matrix U = (uij) is singular.
Thus we deal only with the cases (i) and (ii).

Case (i). u11 = 0 and u33 = 0. In this case, we easily obtain from (3.5)-(3.11):

u12 = u32 = u21 = u23 = 0,
1

u31

= u13 = λ1 (constant), a2 = λ (constant),

t1 =
−1

λ
, t2 = − λ

λ2

1

and r =
λ1

λ
.

It is clear that det(uij) = −1.

Case (ii). u13 = 0 and u31 = 0. In this case, from (3.5)-(3.11), we have:

u12 = u13 = u21 = u23 = u31 = u32 = 0, u11u33 = 1, a2 = 0,

t1 = t2, r = ∓1.

It is clear that det(uij) = 1. In this case we obtain that C1 = C2.

Thus we have proved the following theorem:

3.4. Theorem. Let C1 and C2 be two null curve in E
3

1, with Frenet vectors and non-zero

curvature functions {e11, e12, e13, k1 = 1, t1}, {e21, e22, e23, k2 = 1, t2}, respectively. If the

relationship e22 = e12 holds then C1 and C2 must satisfy one of the following conditions:

(i) C2 = C1,

(ii) C2 = C1 + µe12, where µ = −1

t1
. In this case the second curvatures t1 and t2 of

the curves C1 and C2 are constant functions and t1t2 > 0.

3.5. Corollary. Let C1 be a null curve in E
3

1 with Frenet frame e11, e12, e13 and curva-

tures k1 = 1 and t1. If C1 is a Bertrand curve then there exist only two Bertrand mates

of the curve C1: one is C2 = C1, the other is C2 = C1 + µe12, where µ = −1

t1
.

3.6. Example. We consider the null curve C1(s) = (sinh s, s, cosh s) in E
3

1. We can
easily obtain the Frenet vectors and the curvatures of the curve C1 as follows:

e11 = (cosh s, 1, sinh s),

e12 = (sinh s, 0, cosh s),

e13 =
(

− 1

2
cosh s,

1

2
,−1

2
sinh s

)

,

k1 = 1, t1 =
1

2
.

By using the above theorem, we can easily find one of its Bertrand mates as C2 =
C1 − 1

t1
e12, and C2(s) = (− sinh s, s,− cosh s) (see Figure 1).

3.7. Corollary. The null Bertrand curve C1 and its Bertrand mate C2 (C2 6= C1) have

opposite orientations.

Proof. This is clear from the fact that the determinant of the transition matrix U = (uij)
is det(uij) = −1. �
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Figure 1. Null curves satisfying the condition e22 = e12 in E
3

1

3.2.5. Case MI23: e23 = e12. There exist no curves satisfying e23 = e11 under the
condition det(uij) 6= 0.

3.8. Remark. In Euclidean 3-space, if there exist a corresponding relationship between
the space curves α and β such that, at the corresponding points of the curves, the
principal normal lines of α coincide with the binormal lines of β, then α is called a
Mannheim curve, and β a Mannheim partner curve of α. Mannheim partner curves in
Euclidean 3-space and Minkowski 3-space (for non-null curves) have been studied by Liu
and Wang [11].

Thus we can give the following interesting corollary as a result of case MI23.

3.9. Corollary. There are no null Mannheim partner curves in Minkowski 3-space.

3.2.6. Case MI33: e23 = e13. By considering (3.5) - (3.11), and after some calculations,
we obtain u22 = ∓1, u11 = 1, u21 = 0 and the following cases,

(i) If u22 = 1, we get

u12 = u13 = u23 = 0, a3 = µ (const.), r = 1 and t1 = t2.

(ii) If u22 = −1, we obtain the following,

u12 = u13 = u23 = 0, a3 = µ (const.), r = 1 and t1 = −t2.

Thus we obtain the following theorem:

3.10. Theorem. Let C1 and C2 be two null curves in E
3

1, with Frenet vectors and non-

zero curvature functions {e11, e12, e13, k1 = 1, t1}, {e21, e22, e23, k2 = 1, t2}, respectively.

If the relationship e23 = e13 holds then C1 and C2 must satisfy one of the following

conditions:

(i) C2 = C1,

(ii) C2 = C1 +µe12, where µ is non zero constant. In this case the second curvatures

t1 and t2 of the curves C1 and C2 satisfy the condition t1 = t2 = 0.

3.11. Remark. We note that the curves which satisfy the condition (ii) in the above
theorem are null cubic curves with curvatures k1 = k2 = 1, t1 = t2 = 0.

3.12. Example. We consider the null cubic curves

C1(s) =

(

1√
2

( s3

3
+ s2 + 3s + 1

2

)

,
1√
2

(− s3

3
− s2 + s − 1

2

)

,
1

2
s2 + s + 1

)
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in E
3

1. We can easily obtain the Frenet vectors and the curvatures of the curve C1 as
follows:

e11 =

(

1√
2

(

s2 + 2s + 3

2

)

,
1√
2

(

−s2 − 2s + 1

2

)

, s + 1

)

,

e12 =

(

1√
2
(s + 1),− 1√

2
(s + 1), 1

)

,

e13 =

(

1√
2
,− 1√

2
, 0

)

,

k1 = 1, t1 = 0.

By using the above theorem, we can easily find some its Bertrand mates in the form
C2 = C1 + µe13 by taking µ =

√
2, 5

√
2, −5

√
2 (see Figure 2).

Figure 2. Null curves satisfying the condition e23 = e13 in E
3

1

3.13. Corollary. Let C1 and C2 be two null curves in E
3

1, with Frenet vectors and non-

zero curvature functions {e11, e12, e13, k1 = 1, t1}, {e21, e22, e23, k2 = 1, t2}, respectively.

If the relationship e23 = e13 holds then C1 is congruent to C2.

3.3. The parallel case. For the case MPij , the variables uij must satisfy uik = 0 for
k 6= j. Throughout this paper we assume that r 6= 0. Otherwise, i.e. for r = 0, C2 will
be a fixed point.

3.3.1. Case MP11 : e21 = u11e11. Considering (3.5)-(3.11), and after some calculations,
we obtain u22 = ∓1, and the following cases.

(i) If u22 = 1 we get,

u11 =
1

u33

= r = µ (const. 6= 0), u21 = u23 = u31 = u32 = 0,

a3a1 + a3a2 + a2a1 = a3(µ
2 − 1) and t1 − µ2t2 = 0,

(ii) If u22 = −1, we get:

u11 =
1

u33

= −r = µ (const. 6= 0), u21 = u23 = u31 = u32 = 0,

a3a1 + a3a2 + a2a1 = −a3(µ
2 + 1) and t1 − µ2t2 = 0.

3.14. Corollary. Let C1 and C2 be two null curves in E
3

1, with Frenet vectors and non-

zero curvature functions {e11, e12, e13, k1 = 1, t1}, {e21, e22, e23, k2 = 1, t2}, respectively.

If the Frenet vector e21 of C2 is parallel to the Frenet vector e11 of C1 then the components
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of the transition matrix U = (uij) and second curvatures of the curves must satisfy the

following conditions:

u22 = ∓1, u21 = u23 = u31 = u32 = 0,

a3a1 + a3a2 + a2a1 = a3λ, λ ∈ R0,

t1
t2

= const.

3.3.2. Case MP12 : e22 = u21e11. There exist no curves satisfying e22 = u11e21 under
the condition det(uij) 6= 0.

3.3.3. Case MP13 : e23 = u31e11. Considering (3.5)-(3.11), and after some calculations,
we obtain u22 = ∓1, and the following conditions,

u11 = ∓1

2

(σ′)2

σ3
, u12 = ∓ σ′

σ2
, u13 = ± 1

σ
,

u21 = ∓σ′

σ
, u23 = 0, u31 = ±σ,

t1 = rσ − σ′′

σ
+

3

2

(σ′

σ

)2

,

where σ = rt2.

3.15. Corollary. Let C1 and C2 be two null curves in E
3

1, with Frenet vectors and non-

zero curvature functions {e11, e12, e13, k1 = 1, t1}, {e21, e22, e23, k2 = 1, t2}, respectively.

If the Frenet vector e23 of C2 is parallel to the Frenet vector e11 of C1 then the components

of the transition matrix U = (uij) and second curvatures of the curves must satisfy the

following conditions:

u22 = ∓1, u23 = u32 = u33 = 0,

t1 = rσ − σ′′

σ
+

3

2

(σ′

σ

)2

, where σ = rt2.

3.3.4. Case MP22: e22 = u22e12. From (3.11), we obtain u12 = u32 = 0 and u22 = ∓1.
So, in order to be consistent with (3.11), these equalities must be satisfied:

u11u13 = 0 and u31u33 = 0.

According to this we discuss the following four possible case:

(i) u11 = 0 and u33 = 0,
(ii) u13 = 0 and u31 = 0,
(iii) u11 = 0 and u31 = 0,
(iv) u13 = 0 and u33 = 0.

It is clear that in the cases (iii) and (iv), the transition matrix U = (uij) is singular.
Thus we deal only with the cases (i) and (ii).

(i.1) If u22 = 1 then u11 = u33 = 0, and the following are obtained:

u12 = u32 = u21 = u23 = 0,
1

u31

= u13 = λ (const.)

t1 =
−r

λ
, t2 = − 1

rλ
,

a3a
′

1 + a2a
′

3 + a1a2 + a3 = 0.
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(i.2) If u22 = −1 then u11 = u33 = 0, and the following are obtained:

u12 = u21 = u23 = u32 = 0,
1

u31

= u13 = λ,

t1 =
r

λ
, t2 =

1

rλ
,

a2a3 − a2

2 − λa1 = λ.

(ii.1) If u22 = 1 then u13 = u31 = 0, and the following are obtained:

u12 = u32 = u21 = u23 = 0, u11 =
1

u33

= r = λ (const.),

t1 − λ2t2 = 0, a2 = a′

3,

a3a1 + a2 + a1 + a3(−λ2 + 1) = 0.

(ii.2) If u22 = −1 then u13 = u31 = 0, and the following are obtained:

u12 = u21 = u23 = u32 = 0, u11 =
1

u33

= −r,

t1 − λ2t2 = 0, a2 = a′

3,

a3a1 + a2 + a1 + a3(λ
2 + 1) = 0.

Thus we have proved the following theorem:

3.16. Theorem. Let C1 and C2 be two null curves in E
3

1, with Frenet vectors and non-

zero curvature functions {e11, e12, e13, k1 = 1, t1}, {e21, e22, e23, k2 = 1, t2}, respectively.

If the Frenet vector e22 of C2 is parallel to the Frenet vector e12 of C1 then the components

of the transition matrix U = (uij) and second curvatures of the curves must satisfy one

of the following conditions:

(i) u22 = ∓1, u11 = u33 = 0 and t1t2 = const. > 0,
(ii) u22 = ∓1, u13 = u31 = 0 and t1

t2
= const. > 0.

3.3.5. Case MP23: e23 = u33e12. There exist no curves satisfying e22 = u11e21 under
the condition det(uij) 6= 0.

3.3.6. Case MP33: e23 = u33e13. Considering (3.5)-(3.11), and after some calculations,
we obtain u31 = u32 = 0, and u22 = ∓1. Hence, we get:

u11 = ∓ t1
rt2

, u13 = ±1

2

(σ′t1 − σt′1)
2

(t1σ)3
,

u12 = ∓σ′t1 − σt′1
t1σ2

, u23 = ∓σt′1 − σ′t1
σt2

1

,

u33 =
1

u11

, u21 = 0.

(3.12)

a′

1 + t1a2 − ru11 + 1 = 0

a′

2 + a1 − t1a3 − ru12 = 0

a3 − a2 − ru13 = 0.

(3.13)

Also we find that detU = ∓1. Thus we have proved the following theorem:

3.17. Theorem. Let C1 and C2 be two null curves in E
3

1, with Frenet vectors and non-

zero curvature functions {e11, e12, e13, k1 = 1, t1}, {e21, e22, e23, k2 = 1, t2}, respectively.

If the Frenet vector e23 of C2 is parallel to the Frenet vector e13 of C1 then the components

of the transition matrix U = (uij) and the curvatures of the curves must satisfy the

following conditions:
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(i) u22 = ∓1, u21 = u31 = u32 = 0, and the equalities in (3.13),
(ii) The equations given in (3.14). �
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