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The following correction for the paper [1] should be noted.
In the proof of Theorem 1, the authors prove that

ps(xn, xn+1) � 4φn(p(x1, x0)
)

and from this inequality they obtain

lim
n→∞ ps(xn, xn+1) = 0. (0.1)

In order to prove that {xn} is a Cauchy sequence in the metric space (X, ps) they use the following inequality

ps(xn+k, xn) � ps(xn+k, xn+k−1) + · · · + ps(xn+1, xn)

� 4φn+k−1(p(x1, x0)
) + · · · + 4φn(p(x1, x0)

)
(0.2)

and (0.1).
This argument is false as it is proved with the following example. Consider (R,d), where d is the usual metric in R and

xn = ∑n
i=1

1
i . Obviously,

lim
n→∞d(xn+1, xn) = lim

n→∞|xn+1 − xn| = lim
n→∞

1

n + 1
= 0.

On the other hand, the sequence {xn} is not a Cauchy sequence because it is not convergent.
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The argument is correct when (X,d) is an ultrametric space.
In order to obtain the conclusion of Theorem 1 we must impose some conditions to the function φ : [0,∞) → [0,∞).
Suppose that φ : [0,∞) → [0,∞) is a nondecreasing function and such that

∑∞
n=0 φn(t) is a convergent series for any

t > 0. These functions are known in the literature as (c)-comparison functions.
It is easily proved that if φ is a (c)-comparison function then φ(t) < t for any t > 0.
Then Theorem 1 can be replaced by the following theorem.

Theorem 1. Let (X, p) be a complete partial metric space and F : X → X be a map such that

p(F x, F y) � φ

(
max

{
p(x, y), p(x, F x), p(y, F y),

1

2

[
p(x, F y) + p(y, F x)

]})

for all x, y ∈ X where φ : [0,∞) → [0,∞) is a (c)-comparison function. Then F has a unique fixed point.

Proof. Following the lines of the proof of Theorem 1 of [1], from (0.2) we obtain

ps(xn+k, xn) � 4
n+k−1∑

p=n

φp(
p(x1, x0)

)
and, as

∑∞
p=0 φp(p(x1, x0)) is convergent, from the last inequality, using Cauchy’s criterium for convergent series, we obtain

that {xn} is a Cauchy sequence. �
On the other hand, the authors of [1] use the continuity of φ in order to prove that p(x, F x) = 0.
More precisely, they obtain the following inequality

p(x, F x) � p(x, xn+1) + φ

(
max

{
p(x, xn), p(x, F x), p(xn, xn+1),

1

2

[
p(x, xn+1) + p(xn, x) + p(x, F x)

]})
(0.3)

and letting n → ∞ and using the continuity of φ

p(x, F x) � φ
(

p(x, F x)
)

and from this fact the authors obtain p(x, F x) = 0.
The following argument proves that the continuity of φ is not necessary in order to obtain the same conclusion.
As φ is a (c)-comparison function, φ(t) < t for t > 0.
Now, suppose that p(x, F x) > 0, as limn→∞ p(xn+1, xn) = 0 and limn→∞ p(xn, x) = 0, there exists n0 ∈ N such that for

n > n0,

p(xn+1, xn) <
1

3
p(x, F x) (0.4)

and there exists n1 ∈ N such that for n > n1,

p(xn, x) <
1

3
p(x, F x). (0.5)

If we take n > max{n0,n1} then, by (0.4), (0.5) and triangular inequality, we have

1

2

[
p(xn, F x) + p(x, F xn)

]
� 1

2

[
p(xn, x) + p(x, F x) − p(x, x) + p(x, F xn)

]
� 1

2

[
1

3
p(x, F x) + p(x, F x) + 1

3
p(x, F x)

]

= 5

6
p(x, F x). (0.6)

Now for n > max{n0,n1}, by (0.4), (0.5) and (0.6), we have

p(xn+1, F x) = p(F xn, F x)

� φ

(
max

{
p(xn, x), p(xn, F xn), p(x, F x),

1

2

[
p(xn, F x) + p(x, F xn)

]})
� φ

(
p(x, F x)

)
.

Letting n → ∞ in the last inequality, we have p(x, F x) � φ(p(x, F x)), which is a contradiction. Thus p(x, F x) = 0. Therefore,
Theorem 1 is an improvement of Theorem 1 of [1].
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Finally, we present an example of a discontinuous (c)-comparison function.
Let φ : R+ → R+ be the function defined by

φ(t) =
{

1
4 t, 0 � t < 1,

t
t+1 , 1 � t.

It is easily seen that φ is a (c)-comparison function and it is not continuous at t0 = 1.
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