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ABSTRACT. In the present paper we propose a generalization of the Baskakov
operators, based on q integers. We also estimate the rate of convergence in the
weighted norm. In the last section, we study some shape preserving properties
and the property of monotonicity of q-Baskakov operators.
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1. Introduction

Along with the prevalence of q-analysis methods in approximation theory, the
study of operators sequence has attracted more and more attention. Currently
it continues being an important subject of study. It has been shown that linear
positive operators constructed by q-numbers are quite effective as far as the rate
of convergence is concerned and we can have some unexpected results, which
are not observed for classical case. This type of construction was first used
to generate Bernstein operators. In 1987, Lupas [17] defined a q-analogue of
Bernstein operators and studied some approximation properties of them. In
1997, Phillips [25] (see also [27]) introduced another generalization of Bernstein
operators based on the q-integers called q-Bernstein operators. Research results
show that q-Bernstein operators possess good convergence and approximation
properties in C [0, 1]. These operators have been studied by a number of authors,
we mention the some due to II’inskii and Ostrovska [16], Oruc and Tuncer [21],
Ostrovska [22], [23] and Videnskii [28] etc. Heping [14], Heping and Fanjun
[15] discussed Voronovskaya-type formulas and saturation of convergence for
q-Bernstein polynomials for arbitrary fixed q, 0 < q < 1. Further results on
certain q-Bernstein Durrmeyer operators are also discussed recently by Finta
and Gupta [10] and Gupta and Heping [13].
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The q-analogue of Szász Mirakyan operators was introduced and approxima-
tion properties of them were obtained in [4] and [5].

This, along with the recent work in this area, motivated us to study further
in this direction. The aim of this paper is to study the approximation properties
of a new generalization of the Baskakov operator based on q-integers. First, we
recall classical Baskakov operators [7], which for f ∈ C [0,∞) are defined as

Bn (f, x) =

∞∑
k=0

(
n+ k − 1

k

)
xk (1 + x)−n−k f

(
k

n

)
(1.1)

for x ∈ [0,∞) and n ∈ N. We mention here that some generalizations of the
operators (1.1) are proposed and studied by several researchers see e.g. ([12],
[11], [1], [2], [8] and [24]).

We denote

(x, q)n = (1− x) (1− qx) . . .
(
1− qn−1x

)
=

n−1∏
j=0

(1− qjx).

Let parameter q be a positive real number and n a non-negative integer. [n]q
denotes a q-integer, defined by

[n]q =

{
(1− qn) / (1− q) , q �= 1,
n, q = 1.

The factorial of q-number [n]q, which is defined by

[n]q! =

{
[n]q [n− 1]q . . . [1]q, n = 1, 2, . . . ,
1, n = 0

is called q-factorial of n.

The q-binomial coefficient

[
n
k

]
q

which is the generating function for re-

stricted partitions is defined by[
n
k

]
q

:=
(q, q)n

(q, q)k(q, q)n−k
=

[n]q!

[k]q! [n− k]q!

for n ≥ k ≥ 1, and has the value 1 when k = 0 and value zero otherwise (see
[26] and [3]).

We recall that the q-derivative operator Dq is given by

Dqf (x) :=
f (qx)− f (x)

(q − 1)x
, x �= 0 (1.2)

and Dqf (x)|x=0 := f ′ (0). Also D0
q f := f , Dn

q f := Dq

(
Dn−1

q f
)
, n = 1, 2, 3, . . . .

The q-analogue of product and quotient rules are as follows:

Dq (f (x) g (x)) = g (x)Dqf (x) + f (qx)Dqg (x) . (1.3)
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Dq

(
f (x)

g (x)

)
=

g (x)Dqf (x)− f (x)Dqg (x)

g (x) g (qx)
. (1.4)

For details see [9].

Very recently we [6] introduced the following q-analogues of the Baskakov op-
erators. For f ∈ C [0, ∞), q ∈ (0, 1) and each positive integer n, the q-Baskakov
operators discussed in [6] are defined as

Pn,q(f ;x) =

(
qx

1 + x
, q

)
n

∞∑
k=0

f

(
[k]q

qk [n]q

)[
n+ k − 1

k

]
q

(
qx

1 + x

)k

(1.5)

and

P ∗
n,q(f ;x) =

(
q2x

1 + x
, q

)
n

∞∑
k=0

f

(
[k]q

qk+1 [n]q

)[
n+ k + 1

k

]
q

(
q2x

1 + x

)k

. (1.6)

The above q-analogues of Baskakov operators are defined for q ∈ (0, 1). For
these analogues we are not able to study the q-derivatives and their applica-
tions. The new operators which we propose in the present paper are defined for
q > 0, also for the new generalization we obtain q-derivative and applications of
q-derivative to them.

The present paper is organized as follows: in Section 2, we introduce a new
generalization of Baskakov operators (1.1) by using q-integers which is different
and improved from (1.5) and (1.6), we also establish moments using the q-deri-
vatives. Also we propose a representation of the q-Baskakov operators in terms
of divided differences. In Section 3, we deal with rate of convergence in the
weighted norm. In the last section, we study some shape preserving properties
and the property of monotonicity of q-Baskakov operators.

2. Construction of operators and some properties of them

For f ∈ C [0,∞), q > 0 and each positive integer n, a new q-Baskakov
operators can be defined as

Bn,q(f, x) =

∞∑
k=0

[
n+ k − 1

k

]
q

q
k(k−1)

2 xk (−x, q)
−1
n+k f

(
[k]q

qk−1[n]q

)

=

∞∑
k=0

Pq
n,k (x) f

(
[k]q

qk−1[n]q

)
. (2.1)

While for q = 1 these polynomial coincide with the classical ones.
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���������� 1� Let f be a function defined on an interval (a, b) and h be a
positive real number. The q-forward differences ∇r

h of f are defined recursively
as

∇0
qf (xj) := f (xj) ,

∇r+1
q f (xj) := qr∇r

qf (xj+1)−∇r
qf (xj)

for r ≥ 0.

Note that the above definition is different from definition given in [26, pp. 44].

As usual, we show divided differences with f [x0, x1, . . . , xn] at the abscissas
x0, x1, . . . , xn.

We now show following general relation that connect the divided differences
f [x0, x1, . . . , xn] and q-forward differences.

��		
 1� For all j, r ≥ 0, we have

f [xj, xj+1, . . . , xj+r] = q
r(2j+r−1)

2
∇r

qf (xj)

[r]q!
, (2.2)

where xj =
[j]q
qj−1 .

P r o o f. Let us use induction on r. By Definition 1, the result is obvious for
r = 0. Let us assume that the equality (2.2) is true for some r ≥ 0 and all j ≥ 0.
Since

xj+r+1 − xj =
[r + 1]q
qj+r

we have

f [xj , xj+1, . . . , xj+r+1]

=
f [xj+1, . . . , xj+r+1]− f [xj , . . . , xj+r]

xj+r+1 − xj

=
qj+r

[r + 1]q

(
q

r(2j+r+1)
2

∇r
qf (xj+1)

[r]q!
− q

r(2j+r−1)
2

∇r
qf (xj)

[r]q!

)

= q
r(2j+r−1)

2 +j+r

(
qr∇r

qf (xj+1)−∇r
qf (xj)

[r + 1]q!

)

= q
(r+1)(2j+r)

2
∇r+1

q f (xj)

[r + 1]q!
.

�
��		
 2� For n, k ≥ 0, we have

Dq

[
xk (−x, q)

−1
n+k

]
= [k]q x

k−1 (−x, q)
−1
n+k − qkxk [n+ k]q (−x, q)

−1
n+k+1 (2.3)
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P r o o f. First, we prove that Dq (−x, q)n = [n]q (−qx, q)n−1. Using q-derivative
operator (1.2) we have

Dq (−x, q)n =
1

(q − 1)x

( n−1∏
j=0

(
1 + qj+1x

)− n−1∏
j=0

(
1 + qjx

))

=
1

(q − 1)x

n−2∏
j=0

(
1 + qj+1x

) (
(1 + qnx)− (1 + x)

)

=
qn − 1

q − 1

n−2∏
j=0

(
1 + qj+1x

)
= [n]q (−qx, q)n−1 .

The q-derivative formula for a quotient (1.4) imply that

Dq (−x, q)
−1
n+k =

− [n+ k]q (−qx, q)n+k−1

(−x, q)n+k (−qx, q)n+k

= − [n+ k]q (−x, q)
−1
n+k+1 . (2.4)

Also it is obvious that

Dqx
k = [k]q x

k−1. (2.5)

Then using (2.5) and (2.4), the result follows by (1.3)

Dq

[
xk (−x, q)−1

n+k

]
= [k]q x

k−1 (−x, q)−1
n+k − qkxk [n+ k]q (−x, q)−1

n+k+1 .

�

We wish to calculate the moments. For this purpose we give q-derivative of
Bn,q. Next Theorem gives a representation of the rth derivative of Bn,q in terms
of q-forward differences.

����
�	 1� Let r ≥ 0. Then the rth derivative of q-Baskakov operator has the
representation

Dr
qBn,q(f, x) =

[n+ r − 1]q!

[n− 1]q!

∞∑
k=0

qrkPq
n+r,k (x)∇r

qf

(
[k]q

qk−1[n]q

)
(2.6)

P r o o f. We use induction on r. Equality (2.3),[
n+ k
k + 1

]
q

[k + 1]q = [n]q

[
n+ k
k

]
q

and [
n+ k − 1

k

]
q

[n+ k]q = [n]q

[
n+ k
k

]
q
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imply that

DqBn,q(f, x)

=

∞∑
k=1

[
n+ k − 1

k

]
q

q
k(k−1)

2 [k]q x
k−1 (−x, q)

−1
n+k f

(
[k]q

qk−1[n]q

)

−
∞∑
k=0

[
n+ k − 1

k

]
q

q
k(k−1)

2 qkxk [n+ k]q (−x, q)
−1
n+k+1 f

(
[k]q

qk−1[n]q

)

= [n]q

∞∑
k=0

[
n+ k
k

]
q

q
k(k−1)

2 +kxk (−x, q)−1
n+k+1

(
f

(
[k + 1]q
qk[n]q

)
− f

(
[k]q

qk−1[n]q

))

= [n]q

∞∑
k=0

qkPq
n+1,k (x)∇1

qf

(
[k]q

qk−1[n]q

)
.

It is clear that (2.6) holds for r = 1. Let us assume that (2.6) holds for some
r ≥ 2. Applying q-derivative operator to (2.6) we have

Dr+1
q (Bn,q(f, x))

=
[n+ r − 1]q!

[n− 1]q!

∞∑
k=1

[
n+ k + r − 1

k

]
q

q
k(k−1)

2 +rk[k]q

× xk−1 (−x, q)−1
n+k+r ∇r

qf

(
[k]q

qk−1[n]q

)

− [n+ r − 1]q!

[n− 1]q!

∞∑
k=0

[
n+ k + r − 1

k

]
q

[n+ k + r]qq
kq

k(k−1)
2 +rk

× xk (−x, q)
−1
n+k+r+1∇r

qf

(
[k]q

qk−1[n]q

)

=
[n+ r]q !

[n− 1]q!

∞∑
k=0

[
n+ k + r

k

]
q

q
k(k−1)

2 +(r+1)kxk (−x, q)
−1
n+k+r+1

×
(
qr∇r

qf

(
[k + 1]q
qk[n]q

)
−∇r

qf

(
[k]q

qk−1[n]q

))

=
[n+ r]q !

[n− 1]q!

∞∑
k=0

q(r+1)kPq
n+r+1,k (x)∇r+1

q f

(
[k]q

qk−1[n]q

)

This completes the proof by induction. �

��
���

� 1� q-Baskakov operators can be represent as

Bn,q(f, x) =

∞∑
r=0

[n+ r − 1]q!

[n− 1]q!
∇r

qf (0)
xr

[r]q !
.
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P r o o f. By Theorem 1 we have

Dr
q (Bn,q(f, x))

∣∣
x=0

=
[n+ r − 1]q!

[n− 1]q!
Pq

n+r,0 (0)∇r
qf (0)

=
[n+ r − 1]q!

[n− 1]q!
∇r

qf (0)

for r ≥ 1. By using above equality in q-Taylor formula given in [9], we get

Bn,q(f, x) =

∞∑
r=0

[n+ r − 1]q!

[n− 1]q!
∇r

qf (0)
xr

[r]q !
. (2.7)

�

From Lemma 1 and Corrollary 1, we have following corollary.

��
���

� 2� q-Baskakov operators can be represent as

Bn,q(f, x) =

∞∑
r=0

[n+ r − 1]q!

[n− 1]q!
q−

r(r−1)
2 f

[
0,

1

[n]q
,
[2]q
q[n]q

, . . . ,
[r]q

qr−1[n]q

]
xr

[n]rq
.

We are now in a position to give the moments of the first and second order
of the operators Bn,q.

��		
 3� For Bn,q(t
m, x), m = 0, 1, 2, one has

Bn,q(1, x) = 1.

Bn,q(t, x) = x,

Bn,q(t
2, x) = x2 +

x

[n]q

(
1 +

1

q
x

)
.

P r o o f. It is well known [26, pp. 10] that

f [x0, x1, . . . , xr] =
f (r) (ξ)

r!
, (2.8)

where ξ ∈ (x0, xr). We also see from Lemma 1 and (2.8)

q
r(r−1)

2 ∇r
qf (x0)

[r]q !
[n]rq =

f (r−1) (ξ)

r!
.

Thus it is observed that rth q-forward differences of xm, m > r, are zero. From
(2.7), we have

Bn,q(1, x) = 1. (2.9)

For f (x) = x we have ∇0
qf (0) = f (0) = 0 and ∇1

qf (0) = f
(

1
[n]q

)
−f (0) = 1

[n]q

and it follows from (2.7)

Bn,q(t, x) = x (2.10)
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For f (x) = x2 we have ∇0
qf(0) = f(0) = 0 and ∇1

qf (0) = f
(

1
[n]q

)
−f (0) = 1

[n]2q

and ∇2
qf (0) = qf

(
[2]q
q[n]q

)
− (1 + q) f

(
1

[n]q

)
− f (0)

Bn,q(t
2, x) =

[n+ 1]q
[n]q

(
1

q
[2]q − 1

)
x2 +

x

[n]q

=
q[n]q + 1

[n]q

(
1

q
(1 + q)− 1

)
x2 +

x

[n]q

= x2 +
1

q[n]q
x2 +

x

[n]q

= x2 +
x

[n]q

(
1 +

1

q
x

)
. (2.11)

�

The following proposition is the another application of q-derivatives, which
enables us to give the estimation of moments:

�
��������� 1� If we define

U q
n,m(x) := Bn,q(t

m, x) =

∞∑
k=0

Pq
n,k (x)

(
[k]q

qk−1[n]q

)m

,

then U q
n,0(x) = 1, U q

n,1(x) = x and there holds the following recurrence relation:

[n]qU
q
n,m+1(qx) = qx(1 + x)DqU

q
n,m(x) + qx[n]qU

q
n,m(qx), m > 1.

P r o o f. Obviously
∞∑
k=0

Pq
n,k (x) = 1, thus by this identity and (2.1), the values

of U q
n,0(x) and U q

n,1(x) easily follows. From Lemma 2, it is obvious that

x(1 + qn+kx)DqP
q
n,k (x) =

(
[k]q − qk[n]qx

)
Pq

n,k (x), which implies that

x (1 + x)DqP
q
n,k (x) =

(
[k]q

qk−1 [n]q
− qx

)
[n]q
q

Pq
n,k (qx) .

Thus using this identity, we have

qx(1 + x)DqU
q
n,m(x) =

∞∑
k=0

qx(1 + x)DqP
q
n,k (x)

(
[k]q

qk−1[n]q

)m

= [n]q

∞∑
k=0

(
[k]q

qk−1[n]q
− qx

)
Pq

n,k (qx)

(
[k]q

qk−1[n]q

)m

.

= [n]qU
q
n,m+1(qx)− qx[n]qU

q
n,m(qx).

This completes the proof of recurrence relation. �
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3. Approximation properties

We set

E2 (R+) :=
{
f ∈ C (R+) : lim

x→∞
f(x)
1+x2 exist

}
and

B2 (R+) :=
{
f : |f (x)| ≤ Bf

(
1 + x2

)}
where Bf is a constant depending on f , endowed with the norm ‖f‖2 :=

sup
x≥0

|f(x)|
1+x2 . As a consequence of Lemma 3, the operators (2.1) map E2 (R+)

into E2 (R+). Since for a fixed value of q with q > 0,

lim
n→∞ [n]q =

1

1− q
,

Bn,q(t
2, x) does not converge to x2 as n → ∞. According to well known

Bohman-Korovkin theorem, relations (2.9), (2.10) and (2.11) don’t guarantee
that lim

n→∞Bn,qnf = f uniformly on compact subset of R+ for every f ∈ E2 (R+).

To ensure this type convergence properties of (2.1) we replace q = qn as a se-
quence such that qn → 1 as n → ∞ for qn > 0 and so that [n]qn → ∞ as n → ∞.
Also, Bn,qnf are linear and positive operators for qn > 0. In this situation, we
can apply Bohman-Korovkin theorem to Bn,qn . That is:

����
�	 2� Let (qn) be a sequence of real numbers such that qn > 0 and
lim

n→∞ qn = 1. Then for every f ∈ E2 (R+)

lim
n→∞Bn,qnf = f

uniformly on compact subset of R+.

����
�	 3� Let q = qn satisfies qn > 0 and let qn → 1 as n → ∞. For every
f ∈ B2 (R+)

lim
n→∞ sup

x≥0

|Bn,qn (f ;x)− f (x)|
(1 + x2)

3 = 0. (3.1)

P r o o f. Since f is continuous, it is also uniformly continuous, on any closed
interval, there exist a number δ > 0, depending on ε and f , for |t− x| < δ we
have

|f (t)− f (x)| < ε.

Since f ∈ B2 (R+), we can write for |t− x| ≥ δ

|f (t)− f (x)| < Af (δ)
{
(t− x)

2
+
(
1 + x2

) |t− x|},
where Af (δ) is a positive constant depending on f and δ.
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On combining above results, we obtain

|f (t)− f (x)| < ε+Af (δ)
{
(t− x)

2
+
(
1 + x2

) |t− x|},
where t, x ∈ R+. Thus, we have

|Bn,qn (f ;x)− f (x)|
<ε+ Af (δ)

{
Bn,qn

(
(t− x)2 ;x

)
+
(
1 + x2

)
Bn,qn (|t− x| ;x)

}
and from Lemma 3

sup
x≥0

|Bn,qn (f ;x)− f (x)|
1 + x2

< ε+Af (δ)

{
1

[n]qn

(
1 +

1

qn

)
+

√
1

[n]qn

(
1 +

1

qn

) }
,

and this completes the proof. �
Remark 1� Using the similar method given in [1, p. 301], we have

|Bn,qn (f ;x)− f (x)| ≤ Mω2

(
f ;

√
x

[n]q

(
1 +

1

q
x

) )
,

where ω2 (f ; δ) is classical second modulus of smoothness of f and f is bounded
uniformly continuous function on R+. Thus we say that the rate of convergence
of Bn,qn (f) to f in any closed subinterval of R+ is 1√

[n]qn
, which is at lest as

fast as 1√
n
which is the rate of convergence of classical Baskakov operators.

4. Shape preserving properties

���������� 2� ([24], [18], [19]) Let f be continuous and non-negative function
such that f (0) = 0. A function f is called star-shaped in [0, a], a is a positive
real number, if

f (αx) ≤ αf (x)

for each α, α ∈ [0, 1] and x ∈ (0, a].

From the definition of q-derivative (1.2), the following lemma is obvious.

��		
 4� The function f is star-shaped if and only if xDq (f) (x) ≥ f (x) for
each q ∈ (0, 1) and x ∈ [0, a].

����
�	 4� If f is star-shaped, then Bn,q (f) is star-shape.

P r o o f. From Theorem 1, we can write

Dq (Bn,q(f, x))− Bn,q(f, x)

x

= [n]q

∞∑
k=0

qk 
1
q f

(
[k]q

qk−1[n]q

)[
n+ k
k

]
q

q
k(k−1)

2 xk (−x, q)
−1
n+k+1
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−
∞∑
k=1

f

(
[k]q

qk−1[n]q

)[
n+ k − 1

k

]
q

q
k(k−1)

2 xk−1 (−x, q)−1
n+k

= [n]

∞∑
k=0

[
n+ k
k

]
q

q
k(k−1)

2 qkxk (−x, q)
−1
n+k+1(

f

(
[k + 1]q
qk[n]q

)
− f

(
[k]q

qk−1[n]q

)
− 1

[k + 1]q
f

(
[k + 1]q
qk[n]q

))
.

Since

1− 1

[k + 1]q
=

q[k]q
[k + 1]q

we have

Dq (Bn,q(f, x))− Bn,q(f, x)

x

= [n]

∞∑
k=0

qkPq
n+1,k

(
q[k]q

[k + 1]q
f

(
[k + 1]q
qk[n]q

)
− f

(
[k]q

qk−1[n]q

))
. (4.1)

Since f is star-shaped, we have

q[k]q
[k + 1]q

f

(
[k + 1]q
qk[n]q

)
≥ f

(
[k]q

qk−1[n]q

)
.

From this inequality and (4.1), we have desired result. �

Now we give a certain monotonicity property of the q-Baskakov operators
defined by (2.1). Similar results for classical Baskakov operators was given in [8].

����
�	 5� Suppose f (x) is defined on (0,∞) and f (x) ≥ 0 for x ∈ (0,∞).

If f(x)
x is decreasing for all x ∈ (0,∞), then Dq

(
Bn,q(f ;x)

x

)
≤ 0 for x ∈ (0,∞)

and for all q ∈ (0,∞).

P r o o f. From (2.1) we get

Bn,q (f ;x)

x

=
∞∑
k=1

f

(
[k]q

qk−1[n]q

)[
n+ k − 1

k

]
q

q
k(k−1)

2 xk−1 (−x, q)
−1
n+k +

f (0)

x
(−x, q)

−1
n .

If we take q-derivative of above equality and using Lemma 2, then we have

Dq

(
Bn,q (f ;x)

x

)

=

∞∑
k=2

f

(
[k]q

qk−1[n]q

)[
n+ k − 1

k

]
q

q
k(k−1)

2 [k − 1]qx
k−2 (−x, q)

−1
n+k
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−
∞∑
k=1

f

(
[k]q

qk−1[n]q

)[
n+ k − 1

k

]
q

q
k(k−1)

2 [n+ k]qq
k−1xk−1 (−x, q)−1

n+k+1

+ Dq

(
f (0)

x
(−x, q)

−1
n

)
.

Also using (1.3) and (1.4), we get

Dq

(
f (0)

x
(−x, q)

−1
n

)
= −f (0)

qx2
(−x, q)

−1
n − [n]q

f (0)

x
(−x, q)

−1
n+1

Therefore

Dq

(
Bn,q (f ;x)

x

)

=

∞∑
k=1

f

(
[k + 1]q
qk[n]q

)[
n+ k
k + 1

]
q

q
k(k−1)

2 qk[k]qx
k−1 (−x, q)

−1
n+k+1

−
∞∑
k=1

f

(
[k]q

qk−1[n]q

)[
n+ k − 1

k

]
q

q
k(k−1)

2 [n+ k]qq
k−1xk−1 (−x, q)

−1
n+k+1

−f (0)

qx2
(−x, q)

−1
n − [n]q

f (0)

x
(−x, q)

−1
n+1 .

Using the identities [
n+ k
k + 1

]
q

=

[
n+ k
k

]
q

[n]q
[k + 1]q[

n+ k − 1
k

]
q

[n+ k]q =

[
n+ k
k

]
q

[n]q

we have

Dq

(
Bn,q (f ;x)

x

)
=

∞∑
k=1

[
n+ k
k

]
q

q
k(k−1)

2 xk−1 (−x, q)
−1
n+k+1(

f

(
[k + 1]q
qk[n]q

)
qk [n]q
[k + 1]q

− f

(
[k]q

qk−1[n]q

)
qk−1 [n]q

[k]q

)
[k]q

− f (0)

qx2
(−x, q)

−1
n − [n]q

f (0)

x
(−x, q)

−1
n+1 .

Since f (x) ≥ 0 and f(x)
x is non-increasing for x ∈ (0,∞),

Dq

(
Bn,q (f ;x)

x

)
≤ 0

for all q ∈ (0,∞) and x ∈ (0,∞). �
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5. Monotonicity property

Now we give the following relation between two consecutive terms of the
sequence Bn,q (f). Note that similar result for classical Baskakov operators was
given in [20].

����
�	 6� If f ∈ C (R+), then the following formula is valid

Bn+1,q (f, x)−Bn,q (f, x)

= − qn

[n]q [n+ 1]q

∞∑
k=0

q
k(k+1)

2 −2kxk+1 (−x, q)
−1
n+k+1

[
n+ k
k

]
q

× [n+ k + 1]q
[n+ 1]q

f

[
[k]q

qk−1[n+ 1]q
,

[k + 1]q
qk[n+ 1]q

,
[k + 1]q
qk[n]q

]

P r o o f. Using the equality

1 = 1 + qn+kx− qn+kx,

from (2.1) we can write

Bn+1,q(f ;x)

=
∞∑
k=0

f

(
[k]q

qk−1[n+ 1]q
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n+ k
k

]
q

q
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2 xk (−x, q)−1
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=

∞∑
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qk−1[n+ 1]q

)[
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]
q

q
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2 xk (−x, q)
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−
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f

(
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n+ k
k

]
q

q
k(k−1)

2 qn+kxk+1 (−x, q)
−1
n+k+1

= f (0) (−x, q)
−1
n +

∞∑
k=1

f

(
[k]q

qk−1[n+ 1]q
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k
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q

q
k(k−1)

2 xk (−x, q)
−1
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−
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k=0

f

(
[k]q

qk−1[n+ 1]q
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n+ k
k

]
q

q
k(k−1)

2 qn+kxk+1 (−x, q)
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Thus, we have

Bn+1,q(f ;x)

= f (0) (−x, q)
−1
n +
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(
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q
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−
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Since

Bn,q(f ;x)

= f (0) (−x, q)−1
n +

∞∑
k=1

f

(
[k]q

qk−1[n]q

)[
n+ k − 1

k

]
q

q
k(k−1)

2 xk (−x, q)−1
n+k

= f (0) (−x, q)
−1
n +

∞∑
k=0

f

(
[k + 1]q
qk[n]q

)[
n+ k
k + 1

]
q

q
k(k−1)

2 qkxk+1 (−x, q)
−1
n+k+1 ,

we have

Bn+1,q (f, x)−Bn,q (f, x)

=

∞∑
k=0

q
k(k−1)

2 qkxk+1 (−x, q)
−1
n+k+1

(
f

(
[k + 1]q

qk[n+ 1]q

)[
n+ k + 1
k + 1

]
q

−qnf

(
[k]q

qk−1[n+ 1]q

)[
n+ k
k

]
q

− f

(
[k + 1]q
qk[n]q

)[
n+ k
k + 1

]
q

)

Using the equalities[
n+ k + 1
k + 1

]
q

=
[n+ k + 1]q
[k + 1]q

[
n+ k
k

]
q

and [
n+ k
k + 1

]
q

=
[n]q

[k + 1]q

[
n+ k
k

]
q

,

we can write

Bn+1,q (f, x)−Bn,q (f, x)

= −
∞∑
k=0

q
k(k+1)

2 xk+1 (−x, q)
−1
n+k+1

[
n+ k
k

]
q(

qnf

(
[k]q

qk−1[n+1]q

)
− [n+k+1]q

[k+1]q
f

(
[k+1]q

qk[n+1]q

)
+

[n]q
[k+1]q

f

(
[k+1]q
qk[n]q

))
.

Using the inequalities

[k + 1]q
qk [n]q

− [k]q
qk−1 [n+ 1]q

=
[n+ k + 1]q

qk [n]q [n+ 1]q
,

[k + 1]q
qk [n+ 1]q

− [k]q
qk−1 [n+ 1]q

=
1

qk [n+ 1]q
and

[k + 1]q
qk [n]q

− [k + 1]q
qk [n+ 1]q

=
qn [k + 1]q

qk [n+ 1]q [n]q
,
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we can easily seen that

f

[
[k]q

qk−1[n+ 1]q
,

[k + 1]q
qk[n+ 1]q

,
[k + 1]q
qk[n]q

]

=
q2k [n]q [n+ 1]

2
q

qn [n+ k + 1]q

(
qnf

(
[k]q

qk−1[n+ 1]q

)

− [n+ k + 1]q
[k + 1]q

f

(
[k + 1]q

qk[n+ 1]q

)
+

[n]q
[k + 1]q

f

(
[k + 1]q
qk[n]q

))
.

This proves the theorem. �

We know that a function f is convex if and only if all second order divided
differences of f are nonnegative. Using this property and Theorem 6, we have
following result:

��
���

� 3� If f (x) is a convex function defined on R
+, then the q-Baskakov

operator Bn,q (f, x) defined by (2.1) is strictly monotonically non-decreasing in
n, unless f is the linear function (in which case Bn,q (f, x) = Bn+1,q (f, x) for
all n).

REFERENCES

[1] ALTOMARE, F.—CAMPITI, M.: Korovkin-type Approximation Theory and Applica-
tions (H. Bauer, J. L. Kazdan, E. Zehnder, eds.). de Gruyter Stud. Math. 17, de Gruyter,
Berlin-New York, 1994.

[2] ALTOMARE, F.—MANGINO, E. M.: On a generalization of Baskakov operator, Rev.
Roumaine Math. Pures Appl. 44, (1999) 683–705.

[3] ANDREWS, G. E.—ASKEY, R.—ROY, R.: Special Functions, Cambridge Univ. Press,
Cambrdge, 1999.

[4] ARAL, A.: A generalization of Szász Mirakyan operators based on q-integers, Math.
Comput. Modelling 47 (2008), 1052–1062.

[5] ARAL, A.—GUPTA, V.: q-derivative and applications to the q-Szász Mirakyan Opera-
tors, Calcolo 43 (2006), 151–170.

[6] ARAL, A.—GUPTA, V.: On q-Baskakov type operators, Demonstratio Math. 42 (2009).
[7] BASKAKOV, V. A.: An example of sequence of linear positive operators in the space of

continuous functions, Dokl. Akad. Nauk. SSSR 113 (1957), 259–251.
[8] CAO, F.—DING, C.—XU, Z.: On multivariate Baskakov operator, J. Math. Anal. Appl.

307 (2005), 274–291.
[9] ERNST, T.: The history of q-calculus and a new method, U.U.D.M Report 2000, 16,

Department of Mathematics, Upsala University, 2000.
[10] FINTA, Z.—GUPTA, V.: Approximation by q Durrmeyer operators, J. Appl. Math.

Comput. 29 (2009), 401–415.
[11] GUPTA, V.—ARAL, A.: Generalized Baskakov-Beta operators, Rocky Mauntain J.

Math. 39 (2009), 1–13.
[12] GUPTA, V.: A note on modifed Baskakov operators, Approx. Theory Appl. (N.S.) 10

(1994), 74–78.

633



ALI ARAL — VIJAY GUPTA

[13] GUPTA, V.—HEPING, W.: The rate of convergence of q-Durrmeyer operators for 0 <
q < 1, Math. Methods Appl. Sci. 31 (2008), 1946–1955.

[14] HEPING, W.: Korovkin-type theorem and application, J. Approx. Theory 132 (2005),
258–264.

[15] HEPING, W.—FANJUN, M.: The rate of convergence of q-Bernstein polynomials for
0 < q < 1, J. Approx. Theory 136 (2005), 151–158.

[16] II’INSKII, A.—OSTROVSKA, S.: Convergence of generalized Bernstein polynomials,
J. Approx. Theory 116 (2002), 100–112.
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