On the q analogue of Stancu-Beta operators

Ali Aral, Vijay Gupta*

Kirıkkale University Faculty of Science and Arts, Department of Mathematics, Yahșihan, Kirikkale, Turkey
School of Applied Sciences, Netaji Subhas Institute of Technology, Sector 3 Dwarka, New Delhi 110078, India

A R T I C L E IN F O

Article history:

Received 24 April 2011
Received in revised form 8 July 2011
Accepted 14 July 2011

Keywords:

q-integral
q-gamma function
q-beta function
Weighted approximation

Abstract

In the present work we introduce the q analogue of well known Stancu-Beta operators. We estimate moments and establish direct results in terms of the modulus of continuity. We also present an asymptotic formula.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Stancu [1] introduced Beta operators L_{n} of the second kind in order to approximate the Lebesgue integrable functions on the interval $(0, \infty)$ as

$$
\begin{equation*}
L_{n}(f ; x)=\frac{1}{B(n x, n+1)} \int_{0}^{\infty} \frac{t^{n x-1}}{(1+t)^{n x+n+1}} f(t) \mathrm{d} t \tag{1.1}
\end{equation*}
$$

Abel and Gupta [2] and Gupta et al. [3] estimated the rate of convergence for functions and for functions with derivatives of bounded variation respectively, for the operators (1.1). As the q calculus has been one of the most interesting areas of research in the last decade, this motivated us to introduce the q analogue of the Stancu-Beta operators. First, we mention certain notation for q calculus as follows. For each nonnegative integer k, the q-integer $[k]_{q}$ is defined by

$$
[k]_{q}:= \begin{cases}\left(1-q^{k}\right) /(1-q), & q \neq 1 \\ k, & q=1\end{cases}
$$

The q-factorial $[k]_{q}$! is defined as

$$
[k]_{q}!:= \begin{cases}{[k]_{q}[k-1]_{q} \cdots[1]_{q},} & k \geq 1 \\ 1, & k=0 .\end{cases}
$$

For the integers $n, k, n \geq k \geq 0$, the q-binomial coefficients are defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} .
$$

[^0]0893-9659/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2011.07.009

The q-improper integral is defined as (see [4])

$$
\int_{0}^{\infty / A} f(x) \mathrm{d}_{q} x=(1-q) \sum_{n=-\infty}^{\infty} f\left(\frac{q^{n}}{A}\right) \frac{q^{n}}{A}, \quad A>0
$$

We consider $(a+b)_{q}^{n}=\prod_{j=0}^{n-1}\left(a+q^{j} b\right)$. The q-Beta integral representations are as follows:

$$
B_{q}(t, s)=K(A, t) \int_{0}^{\infty / A} \frac{x^{t-1}}{(1+x)_{q}^{t+s}} \mathrm{~d}_{q} x
$$

where

$$
K(A, t+1)=q^{t} K(A, t)
$$

for $A>0$ (see [5]).
The present work deals with the q analogue of the well known Stancu-Beta operators. Here we estimate moments, the recurrence relation, and some direct results in terms of the modulus of continuity of the q-Stancu-Beta operators.

2. q-Stancu-Beta operators and moments

Definition 1. For $0<q<1$, we propose the q analogue of Stancu-Beta operators as

$$
L_{n}^{q}(f ; x)=\frac{K\left(A,[n]_{q} x\right)}{B_{q}\left([n]_{q} x,[n]_{q}+1\right)} \int_{0}^{\infty / A} \frac{u^{[n]_{q} x-1}}{(1+u)_{q}^{[n]_{q} x+[n]_{q}+1}} f\left(q^{[n]_{q} x} u\right) \mathrm{d}_{q} u
$$

Lemma 1. We have

$$
L_{n}^{q}(1 ; x)=1, \quad L_{n}^{q}(t ; x)=x, \quad L_{n}^{q}\left(t^{2} ; x\right)=\frac{\left([n]_{q} x+1\right) x}{q\left([n]_{q}-1\right)}
$$

Proof. By the definition of q-Stancu-Beta operators, we have

$$
\begin{aligned}
L_{n}^{q}(1 ; x) & =\frac{K\left(A,[n]_{q} x\right)}{B_{q}\left([n]_{q} x,[n]_{q}+1\right)} \int_{0}^{\infty / A} \frac{u^{[n]_{q} x-1}}{(1+u)_{q}^{[n]_{q} x+[n]_{q}+1}} \mathrm{~d}_{q} u \\
& =1
\end{aligned}
$$

Next, we have

$$
\begin{aligned}
L_{n}^{q}(t ; x) & =\frac{K\left(A,[n]_{q} x\right) q^{[n]]_{q} x}}{B_{q}\left([n]_{q} x,[n]_{q}+1\right)} \int_{0}^{\infty / A} \frac{u^{[n]_{q} x}}{(1+u)_{q}^{[]_{q} x+[n]_{q}+1}} \mathrm{~d}_{q} u \\
& =\frac{K\left(A,[n]_{q} x\right) q^{[n]_{q} x}}{B_{q}\left([n]_{q} x,[n]_{q}+1\right)} \frac{B_{q}\left([n]_{q} x+1,[n]_{q}\right)}{K\left(A,[n]_{q} x+1\right)} \\
& =\frac{K\left(A,[n]_{q} x\right) q^{[n]_{q} x}}{B_{q}\left([n]_{q} x,[n]_{q}+1\right)} \frac{\Gamma_{q}\left([n]_{q} x+1\right) \Gamma_{q}\left([n]_{q}\right)}{K\left(A,[n]_{q} x+1\right) \Gamma_{q}\left([n]_{q} x+[n]_{q}+1\right)} \\
& =K\left(A,[n]_{q} x\right) q^{[n]_{q} x} \frac{\Gamma_{q}\left([n]_{q} x+[n]_{q}+1\right)}{\Gamma_{q}\left([n]_{q} x\right) \Gamma_{q}\left([n]_{q}+1\right)} \frac{1}{q^{[n]_{q} x} K\left(A,[n]_{q} x\right)} \frac{\Gamma_{q}\left([n]_{q} x+1\right) \Gamma_{q}\left([n]_{q}\right)}{\Gamma_{q}\left([n]_{q} x+[n]_{q}+1\right)} \\
& =\frac{\Gamma_{q}\left([n]_{q} x+1\right) \Gamma_{q}\left([n]_{q}\right)}{\Gamma_{q}\left([n]_{q} x\right) \Gamma_{q}\left([n]_{q}+1\right)} \\
& =\frac{[n]_{q} x \Gamma_{q}\left([n]_{q} x\right) \Gamma_{q}\left([n]_{q}\right)}{\Gamma_{q}\left([n]_{q} x\right)[n]_{q} \Gamma_{q}\left([n]_{q}\right)}=x .
\end{aligned}
$$

Finally, by using the q-Beta integral, we have

$$
\begin{aligned}
L_{n}^{q}\left(t^{2} ; x\right) & =\frac{K\left(A,[n]_{q} x\right) q^{2[n]_{q} x}}{B_{q}\left([n]_{q} x,[n]_{q}+1\right)} \int_{0}^{\infty / A} \frac{u^{[n]_{q} x+1}}{(1+u)_{q}^{[n]_{q} x+[n]_{q}+1}} \mathrm{~d}_{q} u \\
& =\frac{K\left(A,[n]_{q} x\right) q^{2[n]_{q} x}}{B_{q}\left([n]_{q} x,[n]_{q}+1\right)} \frac{B_{q}\left([n]_{q} x+2,[n]_{q}-1\right)}{K\left(A,[n]_{q} x+2\right)}
\end{aligned}
$$

$$
\begin{aligned}
= & q^{2[n]_{q} x} K\left(A,[n]_{q} x\right) \frac{\Gamma_{q}\left([n]_{q} x+[n]_{q}+1\right)}{\Gamma_{q}\left([n]_{q} x\right) \Gamma_{q}\left([n]_{q}+1\right)} \\
& \times \frac{1}{q^{\left([n]_{q} x+1\right)} q^{[n]_{q} x} K\left(A,[n]_{q} x\right)} \frac{\Gamma_{q}\left([n]_{q} x+2\right) \Gamma_{q}\left([n]_{q}-1\right)}{\Gamma_{q}\left([n]_{q} x+[n]_{q}+1\right)} \\
= & \frac{\Gamma_{q}\left([n]_{q} x+2\right) \Gamma_{q}\left([n]_{q}-1\right)}{\Gamma_{q}\left([n]_{q} x\right) \Gamma_{q}\left([n]_{q}+1\right)} \frac{1}{q} \\
= & \frac{\left([n]_{q} x+1\right)[n]_{q} x \Gamma_{q}\left([n]_{q} x\right) \Gamma_{q}\left([n]_{q}-1\right)}{\Gamma_{q}\left([n]_{q} x\right)[n]_{q}\left([n]_{q}-1\right) \Gamma_{q}\left([n]_{q}-1\right)} \frac{1}{q} \\
= & \frac{\left([n]_{q} x+1\right) x}{q\left([n]_{q}-1\right)} .
\end{aligned}
$$

Remark 1. Suppose that $q \in(0,1)$; then for $x \in[0, \infty)$, we have

$$
\begin{aligned}
& L_{n}^{q}(t-x ; x)=0 \\
& L_{n}^{q}\left((t-x)^{2} ; x\right)=\frac{\left([n]_{q}-q[n]_{q}+q\right) x^{2}+x}{q\left([n]_{q}-1\right)}
\end{aligned}
$$

Remark 2. Suppose that $q \in(0,1)$; then for $x \in[0, \infty)$, and proceeding along the lines of the proof of Lemma 1 , we have the following formula for the m th-order moment:

$$
L_{n}^{q}\left(t^{m} ; x\right)=\frac{\Gamma_{q}\left([n]_{q} x+m\right) \Gamma_{q}\left([n]_{q}-m+1\right)}{\Gamma_{q}\left([n]_{q} x\right) \Gamma_{q}\left([n]_{q}+1\right) q^{m(m-1) / 2}}
$$

3. Direct theorems

We denote by $C_{B}[0, \infty)$ the space of real valued continuous bounded functions f on the interval $[0, \infty)$; the norm $\|$.$\| on$ the space $C_{B}[0, \infty)$ is given by

$$
\|f\|=\sup _{0 \leq x<\infty}|f(x)|
$$

Peetre's K-functional is defined by

$$
K_{2}(f, \delta)=\inf \left[\left\{\|f-g\|+\delta\left\|g^{\prime \prime}\right\|: g \in W^{2}\right\}\right]
$$

where $W^{2}=\left\{g \in C_{B}[0, \infty): g^{\prime}, g^{\prime \prime} \in C_{B}[0, \infty)\right\}$. By [6], there exists a positive constant $C>0$ such that $K_{2}(f, \delta) \leq$ $C \omega_{2}\left(f, \delta^{1 / 2}\right), \delta>0$ where the second-order modulus of smoothness is given by

$$
\omega_{2}(f, \sqrt{\delta})=\sup _{0<h \leq \sqrt{\delta} 0 \leq x<\infty} \sup _{0<h}|f(x+2 h)-2 f(x+h)+f(x)| .
$$

Also for $f \in C_{B}[0, \infty)$ the usual modulus of continuity is given by

$$
\omega(f, \delta)=\sup _{0<h \leq \delta} \sup _{0 \leq x<\infty}|f(x+h)-f(x)| .
$$

Theorem 1. Suppose that $f \in C_{B}[0, \infty)$ and $0<q<1$. Then for all $x \in[0, \infty)$ and $n \in N$, there exists an absolute constant $C>0$ such that

$$
\left|L_{n}^{q}(f ; x)-f(x)\right| \leq C \omega_{2}\left(f, \delta_{n}(x)\right)
$$

where $\delta_{n}^{2}(x)=\frac{\left([n]_{q}-q[n]_{q}+q\right) x^{2}+x}{q\left([n]_{q}-1\right)}$.
Proof. Suppose that $g \in W^{2}$. From Taylor's expansion

$$
g(t)=g(x)+g^{\prime}(x)(t-x)+\int_{x}^{t}(t-u) g^{\prime \prime}(u) \mathrm{d} u, \quad t \in[0, \infty)
$$

and Lemma 1, we get

$$
L_{n}^{q}(g ; x)=g(x)+L_{n}^{q}\left(\int_{x}^{t}(t-u) g^{\prime \prime}(u) \mathrm{d} u, x\right)
$$

Hence

$$
\begin{aligned}
\left|L_{n}^{q}(g ; x)-g(x)\right| & \leq\left|L_{n}^{q}\left(\int_{x}^{t}(t-u) g^{\prime \prime}(u) \mathrm{d} u, x\right)\right| \leq L_{n}^{q}\left(\left|\int_{x}^{t}\right| t-u| | g^{\prime \prime}(u)|\mathrm{d} u|, x\right) \\
& \leq L_{n}^{q}\left((t-x)^{2}, x\right)\left\|g^{\prime \prime}\right\| .
\end{aligned}
$$

Using Remark 1, we obtain

$$
\left|L_{n}^{q}(g ; x)-g(x)\right| \leq \frac{\left([n]_{q}-q[n]_{q}+q\right) x^{2}+x}{q\left([n]_{q}-1\right)}\left\|g^{\prime \prime}\right\|
$$

On the other hand, by the definition of $L_{n}^{q}(f ; x)$, we have

$$
\left|L_{n}^{q}(f ; x)\right| \leq\|f\|
$$

Next,

$$
\begin{aligned}
\left|L_{n}^{q}(f ; x)-f(x)\right| & \leq\left|L_{n}^{q}(f-g ; x)-(f-g)(x)\right|+\left|L_{n}^{q}(g ; x)-g(x)\right| \\
& \leq\|f-g\|+\frac{\left([n]_{q}-q[n]_{q}+q\right) x^{2}+x}{q\left([n]_{q}-1\right)}\left\|g^{\prime \prime}\right\| .
\end{aligned}
$$

Hence taking the infimum on the right hand side over all $g \in W^{2}$, we get

$$
\left|L_{n}^{q}(f ; x)-f(x)\right| \leq C K_{2}\left(f, \delta_{n}^{2}(x)\right)
$$

In view of the property of the K-functional for every $q \in(0,1)$, we get

$$
\left|L_{n}^{q}(f, x)-f(x)\right| \leq C \omega_{2}\left(f, \delta_{n}(x)\right)
$$

This completes the proof of the theorem.
Let $B_{x^{2}}[0, \infty)$ be the set of all functions f defined on $[0, \infty)$ satisfying the condition $|f(x)| \leq M_{f}\left(1+x^{2}\right)$, where M_{f} is a constant depending only on f. We denote by $C_{x^{2}}[0, \infty)$ the subspace of all continuous functions belonging to $B_{x^{2}}[0, \infty)$. Also, let $C_{x^{2}}^{*}[0, \infty)$ be the subspace of all functions $f \in C_{x^{2}}[0, \infty)$ for which $\lim _{x \rightarrow \infty} \frac{f(x)}{1+x^{2}}$ is finite. The norm on $C_{x^{2}}^{*}[0, \infty)$ is $\|f\|_{x^{2}}=\sup _{x \in[0, \infty)} \frac{|f(x)|}{1+x^{2}}$.

Theorem 2. Let $f \in C_{x^{2}}^{*}[0, \infty)$ be such that $f^{\prime}, f^{\prime \prime} \in C_{x^{2}}^{*}[0, \infty)$ and $q=q_{n} \in(0,1)$ such that $q_{n} \rightarrow 1$ as $n \rightarrow \infty$; then the following equality holds:

$$
\lim _{n \rightarrow \infty}[n]_{q_{n}}\left(L_{n}^{q_{n}}(f ; x)-f(x)\right)=\frac{x(1+x)}{2} f^{\prime \prime}(x)
$$

uniformly on $[0, A], A>0$.
Proof. By Taylor's formula we may write

$$
\begin{equation*}
f(t)=f(x)+f^{\prime}(x)(t-x)+\frac{1}{2} f^{\prime \prime}(x)(t-x)^{2}+r(t, x)(t-x)^{2} \tag{3.1}
\end{equation*}
$$

where $r(t, x)$ is the remainder term and $\lim _{t \rightarrow x} r(t, x)=0$. Applying $L_{n}^{q_{n}}(f ; x)$ to (3.1), we obtain

$$
\begin{aligned}
{[n]_{q_{n}}\left(L_{n}^{q_{n}}(f ; x)-f(x)\right)=} & {[n]_{q_{n}} L_{n}^{q_{n}}(t-x ; x) f^{\prime}(x)+[n]_{q_{n}} L_{n}^{q_{n}}\left((t-x)^{2} ; x\right) \frac{f^{\prime \prime}(x)}{2} } \\
& +[n]_{q_{n}} L_{n}^{q_{n}}\left(r(t, x)(t-x)^{2} ; x\right) .
\end{aligned}
$$

By the Cauchy-Schwartz inequality, we have

$$
\begin{equation*}
L_{n}^{q_{n}}\left(r(t, x)(t-x)^{2} ; x\right) \leq \sqrt{L_{n}^{q_{n}}\left(r^{2}(t, x) ; x\right)} \sqrt{L_{n}^{q_{n}}\left((t-x)^{4} ; x\right)} . \tag{3.2}
\end{equation*}
$$

Observe that $r^{2}(x, x)=0$ and $r^{2}(., x) \in C_{x^{2}}^{*}[0, \infty)$. Then it follows from Theorem 1 that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{n}^{q_{n}}\left(r^{2}(t, x) ; x\right)=r^{2}(x, x)=0 \tag{3.3}
\end{equation*}
$$

uniformly with respect to $x \in[0, A]$. Now from (3.2), (3.3) and Remark 2, we get immediately

$$
\lim _{n \rightarrow \infty}[n]_{q_{n}} L_{n}^{q_{n}}\left(r(t, x)(t-x)^{2} ; x\right)=0
$$

Finally using Remark 1 , we get the following:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}[n]_{q_{n}}\left(L_{n}^{q_{n}}(f ; x)-f(x)\right) \\
& \quad=\lim _{n \rightarrow \infty}[n]_{q_{n}}\left(f^{\prime}(x) L_{n}^{q_{n}}((t-x) ; x)+\frac{1}{2} f^{\prime \prime}(x) L_{n}^{q_{n}}\left((t-x)^{2}, x\right)+L_{n}^{q_{n}}\left(r(t, x)(t-x)^{2} ; x\right)\right) \\
& \quad=\frac{x(1+x)}{2} f^{\prime \prime}(x) .
\end{aligned}
$$

4. Weighted approximation

In this section we shall discuss the weighted approximation theorem.
Theorem 3. Suppose that $q=q_{n}$ satisfies $0<q_{n}<1$ and suppose that $q_{n} \rightarrow 1$ as $n \rightarrow \infty$. For each $f \in C_{x^{2}}^{*}[0$, $\infty)$, we have

$$
\lim _{n \rightarrow \infty}\left\|L_{n}^{q_{n}}(f)-f\right\|_{x^{2}}=0
$$

Proof. Using the theorem in [7] we see that it is sufficient to verify the following three conditions:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|L_{n}^{q_{n}}\left(t^{\nu} ; x\right)-x^{\nu}\right\|_{x^{2}}=0, \quad v=0,1,2 \tag{4.1}
\end{equation*}
$$

Since $L_{n}^{q_{n}}(1, x)=1$ and $L_{n}^{q_{n}}(t, x)=x$, the first and second conditions of (4.1) are fulfilled for $v=0$ and $v=1$.
We can write

$$
\left\|L_{n}^{q_{n}}\left(t^{2}, x\right)-x^{2}\right\|_{x^{2}} \leq \sup _{x \in[0, \infty)} \frac{\left|[n]_{q_{n}}-q_{n}[n]_{q_{n}}-q_{n}\right|}{q_{n}\left([n]_{q_{n}}-1\right)} \frac{x^{2}}{1+x^{2}}+\sup _{x \in[0, \infty)} \frac{1}{q_{n}\left([n]_{q_{n}}-1\right)} \frac{x}{1+x^{2}}
$$

which implies that

$$
\lim _{n \rightarrow \infty}\left\|L_{n}^{q_{n}}\left(t^{2}, x\right)-x^{2}\right\|_{x^{2}}=0
$$

Thus the proof is completed.

References

[1] D.D. Stancu, On the beta approximating operators of second kind, Revue d'Analyse Numérique et de Théorie de l'Approximation 24 (1995) $231-239$.
[2] U. Abel, V. Gupta, Rate of convergence of Stancu beta operators for functions of bounded variation, Revue d'Analyse Numérique et de Théorie de l'Approximation 33 (1) (2004) 3-9.
[3] V. Gupta, U. Abel, M. Ivan, Rate of convergence of beta operators of second kind for functions with derivatives of bounded variation, International Journal of Mathematics and Mathematical Sciences 2005 (23) (2005) 3827-3833.
[4] T.H. Koornwinder, q-special functions, a tutorial, in: M. Gerstenhaber, J. Stasheff (Eds.), Deformation Theory and Quantum Groups with Applications to Mathematical Physics, in: Contemp. Math., vol. 134, Amer. Math. Soc., 1992
[5] A. De Sole, V.G. Kac, On integral representations of q-gamma and q-beta functions, Rendiconti di Matematica Accademia Lincei Series (9) 16 (1) (2005) 11-29.
[6] R.A. Devore, G.G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
[7] A.D. Gadzhiev, Theorems of the type of P.P. Korovkin type theorems, Matematicheskie Zametki 20 (5)(1976)781-786. English Translation, Math. Notes 20 (5-6) 1976, 996-998.

[^0]: * Corresponding author at: School of Applied Sciences, Netaji Subhas Institute of Technology, Sector 3 Dwarka, New Delhi 110078, India.

 E-mail addresses: aral@science.ankara.edu.tr (A. Aral), vijaygupta2001@hotmail.com, vijay@nsit.ac.in (V. Gupta).

