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The aim of this paper is to give a recursive formula for non-ruin (survival) probability when
the claim occurrences are nonhomogeneous in the compound binomial risk model. We
give recursive formulas for non-ruin (survival) probability and for distribution of the total
number of claims under the condition that the claim occurrences are nonhomogeneous.
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1. Introduction

The compound binomial riskmodel, which is of special importance in actuarial studies, was first presented by Gerber [1].
Afterwards, the model was investigated by Shiu [2], Willmot [3] and Dickson [4]. Some further extensions and properties of
the model have been studied by Cheng et al. [5], Yuen and Guo [6], Cossette et al. [7,8], Egido Dos Reis [9], and Liu and Zhao
[10], Zhang et al. [11] and Eryilmaz [12].

The compound binomial risk model is a discrete time version of the classical risk model. The corresponding surplus
process of an insurance company can be defined as

Ut = u + ct −

t
i=1

Yi, t = 0, 1, . . . , (1.1)

where U0 = u is an initial capital, c is the periodic premium income and Yi is the eventual claim amount in period i. Let
Xi (i ≥ 1) be a sequence of independent random variables which represents successive individual claim amounts. Let Ii be
a binary random variable representing the claim occurrences. That is,

Ii =


1, if a claim occurs in period i
0, otherwise. (1.2)
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Eq. (1.1) can also be written as

Ut = u + t −

Nt
i=1

Xi, t = 0, 1, . . . (1.3)

where Nt is the number of claims arrived up to time t and c = 1.
If the random variables I1, I2, . . . are independent with P(Ij = 1) = p and P(Ij = 0) = 1 − p, then the interclaim times

W1,W2, . . . are independent and

P

Wj = t


= P (I1 = 0, . . . , It−1 = 0, It = 1)

= pqt−1, t = 1, 2, . . . , j ≥ 1. (1.4)

Let T be a random variable which represents the random time to ruin. That is,

T = inf{Ut ≤ 0, t = 1, 2 . . .}. (1.5)

In this case

ψ(u) = P(T < ∞|U0 = u)

denotes the probability of ruin where u is the initial reserve. The finite time ruin probability is denoted by

ψ(u, n) = P(T ≤ n|U0 = u) (1.6)

and finite time non-ruin (survival) probability, as a complement of (1.6), denoted by

φ(u, n) = 1 − ψ(u, n)
= P(T > n|U0 = u)
= P(Ut > 0, t = 1, 2, . . . , n). (1.7)

The above mentioned compound binomial risk model has been widely studied when the binary variables I1, I2, . . . are
independent and identical. That is, the claim occurrences in each period are independent and have the same probability of p.
In this study, we consider the casewhen the claim occurrences are independent but nonidentical with P(Ii = 1) = pi, i ≥ 1.
In the latter case, the random variable Nt no longer has a binomial distribution.

The remaining part of the paper is organized as follows. In Section 2, we introduce the distribution of time to ruin
with nonhomogeneous claim occurrences probability. In Section 3, we present distribution of total number of claims with
nonhomogeneous claim occurrences. Finally, in Section 4, we give numerical examples to demonstrate the application of
our model.

2. Distribution of time to ruin

Let f (x) = P (Xi = x) be the probability mass function of individual claim amount for i ≥ 1.

Theorem 2.1. Let’ P(Ii = 1) = pi and P(Ii = 0) = qi for i ≥ 1 where I1, I2, . . . r.v.’s are independent. Then

Pu (T > n) = φ(1,n) (u)

=


1, n = 0
n

t=1

pt
t−1
i=1

qi
u+t−1
x=1

f (x) Pu+t−x(T (t+1,n) > n − t)+


1 −

n
t=1

pt
t−1
i=1

qi


, n > 0 (2.1)

where T (t+1,n) represents ruin time after the t-th period. That is T (t+1,n) appears as a function of (It+1, It+2, . . .).

Proof. Under the model assumption, the probability function ofW1, waiting time until the first claim, can be written as

P (W1 = t) = P(I1 = 0, . . . , It−1 = 0, It = 1)
= q1 . . . qt−1pt

= pt
t−1
i=1

qi.
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By conditioning onW1, probability of ruin after n period is

Pu (T > n) =

∞
t=1

Pu(T > n|W1 = t)P (W1 = t)

=

n
t=1

Pu(T > n|W1 = t)P (W1 = t)+

∞
t=n+1

Pu(T > n|W1 = t)P (W1 = t)

=

n
t=1

Pu (T > n|W1 = t) pt
t−1
i=1

qi +
∞

t=n+1

P (W1 = t) . (2.2)

Clearly,
∞

t=n+1

P (W1 = t) = 1 −

n
t=1

P (W1 = t)

= 1 −

n
t=1

pt
t−1
i=1

qi.

Then,

Pu (T > n|W1 = t) =

∞
x=1

Pu+t−x

u + t − X > 0, X = x, T (t+1,n) > n − t


=

u+t−1
x=1

f (x) Pu+t−x(T (t+1,n) > n − t). (2.3)

Using (2.3) in (2.2) one obtains, it can be reached to

Pu (T > n) =

∞
t=1

Pu (T > n|W1 = t) P (W1 = t)

=

n
t=1

pt
t−1
i=1

qi
u+t−1
x=1

f (x) Pu+t−x(T (t+1,n) > n − t)+


1 −

n
t=1

pt
t−1
i=1

qi


. (2.4)

Thus, the proof is completed. �

Corollary 2.1. Let P(Ii = 1) = p and P(Ii = 0) = 1 − p for i ≥ 1 in Theorem 2.1. Then

Pu(T > n) =


1 if n = 0
n

t=1

pqt−1
u+t−1
x=1

f (x)Pu+t−x(T > n − t)+ (1 − p)n if n > 0.

which is the result in [1].

Below, we compute P(T > n) using Theorem 2.1 for n = 1, 2, 3.
• For n = 1

Pu (T > 1) = P(X1 ≤ u)p1 + q1. (2.5)
• For n = 2

Pu (T > 2) = q1q2 + q1p2P (X1 ≤ u + 1)+ p1q2P (X1 ≤ u)+ p1p2
u

x=1

f (x)P (X2 ≤ u + 1 − x) . (2.6)

• For n = 3

Pu (T > 3) = q1q2q3 + q1q2p3P (X1 ≤ u + 2)+ q1p2q3P (X1 ≤ u + 1)+ p1q2q3P (X1 ≤ u + 2)

+ q1p2p3
u+1
x=1

P (X2 ≤ u + 2 − x) f (x)+ p1q2p3
u

x=1

P (X2 ≤ u + 2 − x) f (x)

+ p1p2q3
u

x=1

P (X2 ≤ u + 1 − x) f (x)+ p1p2p3
u

x=1

u+1−x
y=1

P (X3 ≤ u + 2 − x − y) f (x)f (y). (2.7)
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To verify the above results, in the following we also compute Pu(T > n) for n = 1, 2, 3 considering all possible cases in
terms of claim occurrences.

• For n = 1

Pu (T > 1) = P(I1 = 1, X1 ≤ u)+ P(I1 = 0)
= P (X1 ≤ u) p1 + q1 (2.8)

• For n = 2

Pu (T > 2) = P (I1 = 0, I2 = 0)+ P (I1 = 0, I2 = 1, X1 ≤ u + 1)

+ P (I1 = 1, I2 = 0, X1 ≤ u)+ P (I1 = 1, I2 = 1, X1 ≤ u, X1 + X2 ≤ u + 1)

= q1q2 + q1p2P (X1 ≤ u + 1)+ p1q2P (X1 ≤ u)+ p1p2P (X1 ≤ u, X1 + X2 ≤ u + 1)

= q1q2 + q1p2P (X1 ≤ u + 1)+ p1q2P (X1 ≤ u)+ p1p2
u

x=1

f (x)P (X2 ≤ u + 1 − x) . (2.9)

• For n = 3

Pu (T > 3) = P (I1 = 0, I2 = 0, I3 = 0)+ P (I1 = 0, I2 = 0, I3 = 1, X1 ≤ u + 2)

+ P (I1 = 0, I2 = 1, I3 = 0, X1 ≤ u + 1)+ P (I1 = 1, I2 = 0, I3 = 0, X1 ≤ u)

+ P (I1 = 0, I2 = 1, I3 = 1, X1 ≤ u + 1, X1 + X2 ≤ u + 2)

+ P (I1 = 1, I2 = 0, I3 = 1, X1 ≤ u, X1 + X2 ≤ u + 2)

+ P (I1 = 1, I2 = 1, I3 = 0, X1 ≤ u, X1 + X2 ≤ u + 1)

+ P (I1 = 1, I2 = 1, I3 = 1, X1 ≤ u, X1 + X2 ≤ u + 1, X1 + X2 + X3 ≤ u + 2)

= q1q2q3 + q1q2p3P (X1 ≤ u + 2)+ q1p2q3P (X1 ≤ u + 1)+ p1q2q3P (X1 ≤ u + 2)

+ q1p2p3
u+1
x=1

P (X2 ≤ u + 2 − x) f (x)+ p1q2p3
u

x=1

P (X2 ≤ u + 2 − x) f (x)

+ p1p2q3
u

x=1

P (X2 ≤ u + 1 − x) f (x)+ p1p2p3
u

x=1

u+1−x
y=1

P (X3 ≤ u + 2 − x − y) f (x)f (y). (2.10)

3. Total number of claims

Let P(Ii = 1) = pi and P(Ii = 0) = 1 − pi = qi for i ≥ 1. The pmf of Nn =
n

i=1 Ii can be computed recursively from the
following equation. The proof of (3.1) is easy when k = 0 and k = n. The equation for 1 ≤ k ≤ n − 1 can be obtained by
first conditioning on In and using independence of I1, I2, . . . , In.

P (Nn = k) =



pnP (Nn−1 = k − 1)+ qnP (Nn−1 = k) , 1 ≤ k ≤ n − 1
n

i=1

qi, k = 0

n
i=1

pi, k = n.

(3.1)

The following theorem gives a recursive formula for the conditional distribution of Nn given T > n when the claim occur-
rences are identical.

Theorem 3.1. For u = 1, 2, . . . and k = 0, 1, 2, . . . , n

Pu(Nn = k|T > n) =
β (u; n, k)
φ(u, n)
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where

β (u; n, k) =


1, n = 0 and k = 0

qn, n ≥ k and k = 0
n

t=1

pqt−1
u+t−1
x=1

f (x)β (u + t − x; n − t, k − 1) , n ≥ k and k > 0

(3.2)

[12].

In the following, we extend Theorem 3.1 to the case when the claim occurrences are nonidentical.

Theorem 3.2. For u = 1, 2, . . . and k = 0, 1, 2, . . . , n

Pu(Nn = k|T > n) =
β(1,n) (u; k)
φ(1,n)(u)

where

β(1,n) (u; k) =



1, n = 0, k = 0
n

i=1

qi, n ≥ k, k = 0

n
t=1

pt
t−1
i=1

qi
u+t−1
x=1

f (x) β(t+1,n−t) (u + t − x; k − 1) , n ≥ k, k > 0.

(3.3)

Proof. For n = 0 and k = 0, the proof is clear. P(I1 = 0, . . . , In = 0) =
n

i=1 qi can be obtained for n ≥ k and k = 0 by
using Eq. (3.1). LetW1 denote the waiting time for the first claim. Then, for n ≥ k and k > 0

Pu (Nn = k, T > n|W 1 = t)

=

∞
t=1

∞
x=1


Pu+t−xu + t − X > 0, X = x,N (t+1,n)

n−t = k − 1, T (t+1,n) > n − t

P (W1 = t)

=

n
t=1

u+t−1
x=1

f (x)

Pu+t−xN

(t+1,n)
n−t = k − 1, T (t+1,n) > n − t


P (W1 = t) .

Thus the proof is completed. �

Expansion of Eq. (3.3) for some selected values as follows:

• For n = 1 and k = 0

β(1,1) (u, 0) = q1.

• For n = 1 and k = 1

β(1,1) (u, 1) = p1
u

x=1

f (x)β(2,0) (u + 1 − x; k)

= p1
u

x=1

f (x).

• For n = 2 and k = 0

β(1,2) (u, 0) = q1q2.

• For n = 2 and k = 1

β(1,2) (u, 1) = p1
u

x=1

f (x)β(2,1) (u + 1 − x; 0)+ q1p2
u+1
x=1

f (x)β(3,0) (u + 2 − x; 0)

= p1
u

x=1

f (x) [q2] + q1p2
u+1
x=1

f (x). (3.4)
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• For n = 2 and k = 2

β(1,2) (u, 1) = p1
u

x=1

f (x)β(2,1) (u + 1 − x; 1)+ q1p2
u+1
x=1

f (x)β(3,0) (u + 2 − x; 1)

= p1
u

x=1

f (x)


p2

u+1−x
y=1

f (y)


+ q1p2

u+1
x=1

f (x). (3.5)

• For n = 3 and k = 0

β(1,3) (u, 0) = q1q2q3.

• For n = 3 and k = 1

β(1,3) (u, 1) = p1
u

x=1

f (x)β(2,2) (u + 1 − x; 0)+ q1p2
u+1
x=1

f (x)β(3,1) (u + 2 − x; 0)

+ q1q2p3
u+2
x=1

f (x)β(4,0) (u + 3 − x; 0)

= p1
u

x=1

f (x) [q2q3] + q1p2
u+1
x=1

f (x) [q3] + +q1q2p3
u+2
x=1

f (x).

• For n = 3 and k = 2

β(1,3) (u, 2) = p1
u

x=1

f (x)β(2,2) (u + 1 − x; 1)+ q1p2
u+1
x=1

f (x)β(3,1) (u + 2 − x; 1)

+ q1q2p3
u+2
x=1

f (x)β(4,0) (u + 3 − x; 1)

= p1
u

x=1

f (x)


p2q3

u+1−x
y=1

f (y)+ q2p3
u+2−x
y=1

f (y)


+ q1p2

u+1
x=1

f (x)


p3

u+2−x
y=1

f (y)


+ q1q2p3

u+2
x=1

f (x).

• For n = 3 and k = 3

β(1,3) (u, 3) = p1
u

x=1

f (x)β(2,2)u + 1 − x; 2 + q1p2
u+1
x=1

f (x)β(3,1) (u + 2 − x; 2)

+ q1q2p3
u+2
x=1

f (x)β(4,0) (u + 3 − x; 2)

= p1
u

x=1

f (x)


p2p3

u+1−x
y=1

f (y)
u+2−x−y

z=1

f (z)+ q2p3
u+2−x
y=1

f (y)


+ q1q2p3

u+2
x=1

f (x) (3.6)

where β(3,1) (u + 2 − x; 2) = 0.

4. Numerical results

In this section we present numerical results when the claim size distribution is geometric with the following cdf and pdf

F(x) = 1 − αx, x = 1, 2, . . . (4.1)

f (x) = (1 − α)αx−1, x = 1, 2, . . . (4.2)

It is clear that

E(X) =
1

1 − α
, 0 < α < 1. (4.3)

Assume that an insurance company is faced nonhomogeneous claim occurrence probabilities in each period (e.g. month)
in a year. Four different cases are considered with different values of α and u in a finite time model for monitoring the
characteristics of non-ruin probabilities in finite time. So, it is given in Tables 2 and 3where P(Ii = 1) = pi for i = 1, . . . , 12.
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Table 1
Claim occurrence probabilities.

Case1 (C1) Case2 (C2)

pi = 0.01 ∗ i, i = 1, . . . , 12 pi = 0.01 ∗ (12 − i + 1), i = 1, . . . , 12

Case3 (C3) Case4 (C4)

pi =


0.1, i = 1, . . . , 6
0.2, i = 7, . . . , 12 pi =


0.2, i = 1, . . . , 6
0.1, i = 7, . . . , 12

For instance, it can be seen from Table 1 that probability of claim occurrences in a year is increasing from 0.01 to 0.12 in
each month for Case 1, 0.2 for first six months and 0.1 for second six months for Case 4. So it is clear that by all these cases
non-identical probabilities in periods are provided.

4.1. Non-ruin probabilities in finite time

In this section, non-ruin probabilities in finite time (φ(1,n) (u)) are calculated for nonhomogeneous claim occurrences in
different periods based on four generated scenarios which are given in Table 1.

Table 2
φ(1,n) (u) survival probabilities in finite time.

n Cases
C1 C2 C3 C4 C1 C2 C3 C4

u = 2, α = 1/5 u = 2, α = 2/5

1 0.9996 0.9952 0.9960 0.9920 0.9984 0.9808 0.9840 0.9680
2 0.9994 0.9936 0.9946 0.9882 0.9971 0.9721 0.9763 0.9501
3 0.9994 0.9930 0.9941 0.9863 0.9963 0.9679 0.9723 0.9393
4 0.9993 0.9928 0.9940 0.9854 0.9957 0.9659 0.9702 0.9324
5 0.9993 0.9928 0.9939 0.9849 0.9954 0.9649 0.9689 0.9279
6 0.9993 0.9928 0.9938 0.9847 0.9952 0.9644 0.9682 0.9248
7 0.9993 0.9928 0.9938 0.9846 0.9951 0.9642 0.9674 0.9237
8 0.9993 0.9928 0.9938 0.9846 0.9950 0.9641 0.9666 0.9231
9 0.9993 0.9928 0.9938 0.9846 0.9950 0.9640 0.9661 0.9227

10 0.9993 0.9928 0.9938 0.9846 0.9949 0.9640 0.9657 0.9225
11 0.9993 0.9928 0.9938 0.9846 0.9949 0.9640 0.9653 0.9224
12 0.9993 0.9928 0.9938 0.9846 0.9949 0.9640 0.9651 0.9223

Table 3
φ(1,n) (u) survival probabilities in finite time.

n Cases
C1 C2 C3 C4 C1 C2 C3 C4

u = 4, α = 3/5 u = 8, α = 4/5

1 0.9987 0.9844 0.9870 0.9741 0.9983 0.9799 0.9966 0.9664
2 0.9971 0.9742 0.9780 0.9533 0.9956 0.9633 0.9929 0.9342
3 0.9956 0.9674 0.9715 0.9368 0.9923 0.9500 0.9891 0.9040
4 0.9943 0.9630 0.9667 0.9234 0.9886 0.9393 0.9856 0.8758
5 0.9932 0.9601 0.9632 0.9124 0.9846 0.9310 0.9823 0.8496
6 0.9923 0.9583 0.9605 0.9033 0.9805 0.9247 0.9793 0.8254
7 0.9915 0.9572 0.9564 0.8995 0.9763 0.9199 0.9780 0.8141
8 0.9908 0.9565 0.9525 0.8968 0.9719 0.9165 0.9770 0.8044
9 0.9902 0.9562 0.9490 0.8948 0.9674 0.9141 0.9762 0.7959

10 0.9897 0.9560 0.9457 0.8932 0.9627 0.9126 0.9756 0.7884
11 0.9891 0.9559 0.9429 0.8920 0.9579 0.9118 0.9751 0.7818
12 0.9887 0.9559 0.9403 0.8911 0.9529 0.9114 0.9747 0.7758

Fig. 1 shows the graph of non-ruin probabilities in finite time with different values of parameters in selected cases. So,
by Fig. 1, it can be seen the effects of the different probabilities and initial reserve to the non-ruin (survival) probability.

Fig. 2 shows the survival probabilities in finite time for a selected domain of u and α simultaneously.
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Fig. 1. Non-ruin probabilities in finite time for: (a) u = 2 and α = 1/5, (b) u = 2 and α = 2/5 (c) u = 4 and α = 3/5, (d) u = 8 and α = 4/5.

Fig. 2. Survival probabilities in Cases: (a) Case 1, (b) Case 2 (c) Case 3, (d) Case 4.
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4.2. Conditional expected value of total claim numbers

Let F(x) and f (x) be defined as in (4.1) and (4.2) respectively. In this case, the conditional expected value of Nn given
T > nwith respect to different values of α is presented in Table 4.

Table 4
Conditional expected values of Nn .

u Cases α = 1/5 α = 3/5 α = 4/5

2 Case 1 0.7777 0.7463 0.6191
Case 2 0.7708 0.6642 0.4925
Case 3 1.7912 1.6399 1.2836
Case 4 1.7855 1.5294 1.1404

4 Case 1 0.7773 0.7670 0.6674
Case 2 0.7796 0.7320 0.5756
Case 3 1.8067 1.7110 1.4019
Case 4 1.7990 1.6581 1.3028

8 Case 1 0.7761 0.7730 0.7198
Case 2 0.7788 0.7712 0.6767
Case 3 1.7941 1.7687 1.5525
Case 4 1.7937 1.7594 1.4956

5. Conclusion

This study presents the classical discrete time risk model when the claim occurrences in each period are independent
but nonidentically distributed (non-homogeneous case), provides a recursive formula for the survival (non-ruin) probability
and represents the conditional distribution of total number of claims in the non-homogeneous case. By expanding, all these
provided results and recursive formula can be used by the related branches of an insurance company.
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