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Using of fractional factorial design (rk−p) in data
envelopment analysis to selection of outputs and

inputs
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Abstract

Data envelopment analysis (DEA) is a linear programming based tech-
nique for measuring the relative performance of organisational units
where the presence of multiple inputs and outputs makes comparisons
difficult. We used, Morita and Avkiran propose after it has been de-
veloped an input-output selection method that uses fractional factorial
design, which is a statistical approach to find an optimal combination.
Energy efficiency and greenhouse gas emissions are closely linked in the
last two decades. We demonstrate the proposed method using data that
increase energy efficiency and heating gas emissions in the European
Union (EU) countries.
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1. Introduction
Data envelopment analysis (DEA), introduced by Charnes, Cooper and Rhodes (CCR)

[1], is a mathematical programming method for measuring the relative efficiency of
decision-making units (DMUs) with multiple inputs and outputs. Most models DEA has
the best performance and efficiency to determine the degree of expertise and decision-
making units (DMUs). Differentiating efficient DMUs is an interesting research area.
The original DEA method evaluates each DMU against a set of efficient DMUs and can-
not identify which efficient DMU is a better option with respect to the inefficient DMU.
This is because all efficient DMUs have an efficiency score of one. Authors have proposed
methods for ranking the best performers, for instance using super-efficiency DEA model.

In this paper, in order to rank DMUs, we use the evaluation contexts that are obtained
by partitioning the set of DMUs into several levels of efficiency, and rank all DMUs with
two criteria: the high and low performers. The influence of all DMUs, both efficient and
inefficient, in ranking is this method’s preference.

1.1. Data Envelopment Analysis. Consider n decision making units (DMUj, j =
1, . . . , n) in which each DMU consumes input levels xij(i = 1, ...,m) to produce output
levels yrj(j = 1, ..., s). Suppose that xj = (x1j , ..., xmj)

T and yj = (y1j , ..., ysj)
T are

the vectors of inputs and outputs values respectively, the relative efficiency score of the
DMUO, O ∈ {1, ..., n} is obtained from the following model which is called input-oriented
CCR envelopment model [7, 8, 9]

θ∗O = min θ(1.1)

s.t.
∑
j

λjxij ≤ θxio, i = 1, ...,m

∑
j

λjyijxij ≥ yro, r = 1, ..., s

λj ≥ 0, j = 1, ..., n

This model is an input oriented constant returns to scale (CRS) model. The efficiency
of DMUo is determined from efficiency score θ∗O and its slack values. If and only if θ∗O = 1
there is no slack, DMUo is said to be efficient. If and only if θ∗O = 1 there are non-zero
slacks, DMUo is inefficient and we can called it a weak-efficient. The weak-efficient DMUs
and efficient DMUs comprise the efficient frontier [6].

Morita and Haba in a previous study, select the output of the of preference between
the two groups based on public information and previous experience has nothing to do
with data where they are exploiting the experience of planning two-level orthogonal and
optimal variables can be found statistically. On the other hand, Ediridsinghe and Zhang
proposed DEA generalized approach to determine the input and output by maximizing
the correlation coefficient between the DEA and the result of external performance indi-
cator. Morita and Avkiran propose an input output selection method that uses diagonal
layout experiments and demonstrate the proposed method using financial statement data
from NIKKEI 500 index. They utilize a two-step heuristic algorithm that combines ran-
dom sampling and local search to find an optimal combination of inputs and outputs [5,
4].

In this paper, we show the method of selection of inputs and outputs based on an
analysis using the Mahalanobis distance of difference between the two group of data. We
use 3-level orthogonal layout experiment to find a suitable combination of inputs and
outputs, where trials are independent of each other.
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2. 3k−p Fractional Factorial Designs and Selecting Input and Out-
put Variables:
The whole point of looking at this structure is because sometimes we want to only

conduct a fractional factorial. We sometimes can’t afford 27 runs. Often we can only
afford a fraction of the design. So, let’s construct a 33−1 design which is a 1/3 fraction of
a 33 design. In this case, N = 33−1 = 32 = 9, the total number of runs. This is a small,
compact design [2].

We again start out with a 33 design which has 27 treatment combinations and assign
them to 3 blocks. What we want to do in this part, going beyond the 32 design, is to
describe the ANOVA for this 33 design. Then we also want to look at the connection
between confounding in blocks and 3k−p fractional factorials, See Appendix 1.

2.1. 3-level Full Factorial Designs and Other Factorials. The 3-level design is
written as a 3k factorial design. It means that k factors are considered, each at 3-levels.
These are (usually) referred to as low, intermediate and high levels. These levels are
numerically expressed as 0, 1 and 2. One could have considered the digits −1, 0 and +1,
but this may be confusing with respect to the 2-level designs since 0 is reserved for center
points. Therefore, we will use the 0, 1, 2 scheme. The reason that the 3-level designs were
proposed is to model possible curvature in the response function and to handle the case of
nominal factors at 3-levels. A third level for a continuous factor facilitates investigation
of a quadratic relationship between the response and each of the factors [2].

Unfortunately, the 3-level design is prohibitive in terms of the number of runs, and
thus in terms of cost and effort. For example a 2-level design with center points is much
less expensive while it still is a very good (and simple) way to establish the presence or
absence of curvature. Table 1 shows us the difference between full factorial designs and
other factorials.

Table 1. 3-level designs

Factors 3 4 5 6 7
Full 27 81 243 729 2187
1/3 9 27 81 243 729
1/9 3 9 27 81 243
1/27 NA NA 9 27 81

3. Mahalanobis Distance
In statistics, Mahalanobis distance (MD) is a distance measure introduced by P.C.

Mahalanobis in 1936. It is based on correlations between variables by which different
patterns can be identified and analyzed. It gauges similarity of an unknown sample set
to a known one. It differs from Euclidean distance in that it takes into account the
correlations of the data set and is scale-invariant. In other words, it is a multivariate
effect size [3].

Formally, the MD of a multivariate vector x = (x1, x2, ..., xN )T from a group of values
with mean vector µ = (µ1, µ2, ..., µN )T and covariance matrix Σ is defined as [4, 12]:

(3.1) DM (x) =

√
(x− µ)T Σ−1 (x− µ)

Equation (3.1) is rewritten for the sample following as
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∧
DM (x) =

√(
x−

_
x
)T
S−1

(
x−

_
x
)

where the mean vector and covariance matrix of the sample are given as
_
x and S respec-

tively.
MD is widely used in cluster analysis and classification techniques. It is closely related

to Hotelling’s T-square distribution used for multivariate statistical testing and Fisher’s
Linear Discriminant Analysis that is used for supervised classification [12].

In order to use the MD to classify a test point as belonging to one of N classes, one
first estimates the covariance matrix of each class, usually based on samples known to
belong to each class. Then, given a test sample, one computes the MD to each class, and
classifies the test point as belonging to that class for which the MD is minimal [3].

MD and leverage are often used to detect outliers, especially in the development of
linear regression models. A point that has a greater the MD from the rest of the sample
population of points is said to have higher leverage since it has a greater influence on the
slope or coefficients of the regression equation. MD is also used to determine multivariate
outliers. Regression techniques can be used to determine if a specific case within a sample
population is an outlier via the combination of two or more variable scores. A point can
be a multivariate outlier even if it is not a univariate outlier on any variable [7, 8].

3.1. MD Threshold Selection. The MD threshold is another important element of
prognostics analysis. An MD threshold value which is either too large or too small leads
to false negatives or false positives, respectively. In this study, we consider the distance of
one-dimensional variables, where MD coincides with the Welch statistics [5]. The Welch
statistics is given as

(3.2)
∧
d =

_
xh −

_
xl√

S2
h

nh
+

S2
l

nl

where
_
xh, S

2
h and nh are the sample mean, sample variance and sample size of high group,

respectively. Also
_
xl, S2

l and nl are the sample mean, sample variance and sample size
of low group, respectively.

For example, in run No. 5, x1, x11, x12 variables are selected as an input, variables
x2, x3, x4, x5, x6, x7 are selected as an output; and variables x8, x9, x10 are not selected
as an input or an output. Based on the fractional factorial design in Appendix 1, we
calculate the efficiency scores and MD between the two groups using selected inputs and
outputs. Where ”1” means that the variable is selected as an input, “2” means that the
variable is selected as an output, and “3” means that the variable is not selected.

The ANOVA table for the fractional factorial design appears in Table 2. The sum of
squares and the degrees of freedom are given as

(3.3) ST =

27∑
i=1

(
∧
di −

Z
d

)2

, dfT = 26

(3.4) Si = 3

[
Z
d
2

(xi = 1) +
Z
d
2

(xi = 2) +
Z
d
2

(xi = 3)

]
− 27

Z
d
2

, dfi = 2, i = 1, ..., 12

(3.5) SE = ST − (S1 + S2 + ...+ S12)
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Table 2. ANOVA table for fractional factorial design of 312−9

Variables SS Df MS F Statistics
X1 S1 2 V1 = S1/2 V1/VE

X2 S2 2 V2 = S2/2 V2/VE

X3 S3 2 V3 = S3/2 V3/VE

X4 S4 2 V4 = S4/2 V4/VE

X5 S5 2 V5 = S5/2 V5/VE

...
...

...
...

X12 S12 2 V12 = S12/2 V12/VE

Error SE 2 VE = SE/2

Total ST 26

where
Z
d (xi = 1) is the mean of the Mahalanobis distances observed when (xi = 1). The

null hypothesis that the candidate has no effect as an input or output is tested by using
the F statistics

(3.6) F =
Si/dfi
SE/dfE

and hypotesis tests is as following:
H0: The variable candidate has no effect on output and input.
H1: The variable candidate has effect on output and input.

This results in the optimal combination of input and output variables. The following
is a summary procedure for the selection of variables.
Step 1. Choose a list of data envelope (DEA), which contains the input and output

variables are possible.
Step 2. The use of external standards to distinguish between the performance of the two

groups. For example, the high and low performance.
Step 3. To create a table perpendicular to try to set the input and output variables that

are not determined.
Step 4. Calculate MD between the two groups using Welch statistics.
Step 5. Determine the optimal mix of input and output variables based on the results

Analysis of variance.
Step 6. Determine the optimal variables are statistically significant either input or out-

put using sum of MD.
Step 7. We use DEA model (1) with the data that have been selected from the output

and input.

4. A Case Study Using Greenhouse Gas Emissions Intensity of
Energy Consumption Data
We used the greenhouse gas intensity of energy consumption that is the ratio between

energy-related greenhouse gas emissions (carbon dioxide, methane and nitrous oxide) and
gross inland energy consumption for EU countries.

There are key factors leading to greenhouse emissions: Electricity production, Trans-
portation, Industry, Commercial and Residential, Agriculture and Land Use and Forestry
[10, 11].

The table in the Appendix 2 shows a part of the data set all variables have large
rangs. In Step 1 the following twelve variables are collected to evaluate the managerial
performance, that is, the standard deviation is greater than the mean.
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A. Total emissions.
B. Total net emissions.
C. Energy.
D. Energy industries.
E. Manufacturing industries and construction.
F. Transport.
G. Road transportation.
H. Other sectors.
I. Industrial processes.
J. Solvent and other product use.
K. Agriculture.
L. Waste.

In Step 2, we construct two groups, high-performers and low-performers, the table in the
Appendix 3 shows the mean and standard deviation for each variable. When we select
the variables to capture the difference between high-performers and low-performers, we
choose a variable with a large difference between these two groups. MD between the 15
high cuntery and 15 low cuntery for each variable is also shown in the Appendix 3, where
we find that (A),(B),(C),(E), (I) and (L) have a large d and may be intuitively selected
as inputs or outputs.

In Step 3, we assign 12 factors into a 3-level orthogonal layout, where at least 27 runs
are required. That is, we utilize the fractional factorial design 312−9. Table 3 shows
the selected variable combinations for efficiency score calculation. The MD for each
experiment is calculated in Step 4, which is also shown in the last column of Table 3.

Table 3. Selected inputs and outputs and MD

Runs A B C D E F G H I J K L Selected Input Selected Output Not Selected
∧
d

1 1 1 1 1 1 1 1 1 1 1 1 1 A,B,C,D,E,F,G,H,I,J,K,L None None 2.44
2 1 1 1 1 2 2 2 2 2 2 2 2 A,B,C,D E,F,G,H,I,J,K,L None 1.19
3 1 1 1 1 3 3 3 3 3 3 3 3 A,B,C,D None E,F,G,H,I,J,K,L 1.4
4 1 2 2 2 1 1 1 2 2 2 3 3 A,E,F,G B,C,D,H,I,J K,L 0
5 1 2 2 2 2 2 2 3 3 3 1 1 A,K,L B,C,D,E,F,G H,I,J -0.13
6 1 2 2 2 3 3 3 1 1 1 2 2 A,H,I,J B,C,D,K,L E,F,G -0.35
7 1 3 3 3 1 1 1 3 3 3 2 2 A,E,F,G K,L B,C,D,H,I,J 1.18
8 1 3 3 3 2 2 2 1 1 1 3 3 A,H,I,J E,F,G B,C,D,K,L 0.55
9 1 3 3 3 3 3 3 2 2 2 1 1 A,K,L H,I,J B,C,D,E,F,G 0.98
10 2 1 2 3 1 2 3 1 2 3 1 2 B,E,H,K A,C,F,I,L D,G,J -0.26
11 2 1 2 3 2 3 1 2 3 1 2 3 B,G,J A,C,E,H,K D,F,I,L -0.15
12 2 1 2 3 3 1 2 3 1 2 3 1 B,F,I,L A,C,G,J D,E,H,K -0.46
13 2 2 3 1 1 2 3 2 3 1 3 1 D,E,J,L A,B,F,H C,G,I,K -1.11
14 2 2 3 1 2 3 1 3 1 2 1 2 D,G,I,K A,B,E,J,L C,F,H -0.87
15 2 2 3 1 3 1 2 1 2 3 2 3 D,F,H A,B,G,I,K C,E,J,L -0.7
16 2 3 1 2 1 2 3 3 1 2 2 3 C,E,I A,D,F,J,K B,G,H,L 0.03
17 2 3 1 2 2 3 1 1 2 3 3 1 C,G,H,L A,D,E,I B,F,J,K -0.24
18 2 3 1 2 3 1 2 2 3 1 1 2 C,F,J,K A,D,G,H,L B,E,I -0.21
19 3 1 3 2 1 3 2 1 3 2 1 3 B,E,H,K D,G,J A,C,F,I,L 0.59
20 3 1 3 2 2 1 3 2 1 3 2 1 B,F,I,L D,E,H,K A,C,G,J 0.55
21 3 1 3 2 3 2 1 3 2 1 3 2 B,G,J D,F,I,L A,C,E,H,K 0.67
22 3 2 1 3 1 3 2 2 1 3 3 2 C,E,I B,G,H,L A,D,F,J,K 0.02
23 3 2 1 3 2 1 3 3 2 1 1 3 C,F,J,K B,E,I A,D,G,H,L -0.28
24 3 2 1 3 3 2 1 1 3 2 2 1 C,G,H,L B,F,J,K A,D,E,I -0.05
25 3 3 2 1 1 3 2 3 2 1 2 1 D,E,J,L C,G,I,K A,B,F,H -0.8
26 3 3 2 1 2 1 3 1 3 2 3 2 D,F,H C,E,J,L A,B,G,I,K -0.08
27 3 3 2 1 3 2 1 2 1 3 1 3 D,G,I,K C,F,H A,B,E,J,L -0.65

Table 4 shows the analysis of variance for the data in Table 3, where we have pooled
the negligible variables into the residual (Step 5). The level of significance is shown as
the p value, where we find four variables (A,B,C, F, H and K) significant at the 5% level
and their p values are very low, we leave them in the analysis for illustrative purposes.
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Table 4. Table of ANOVA

Variables Sum of Squares Degrees of Freedom Mean Squares F Statistics p value
A 4.32 2 2.16 11.37** 0.0837
B 3.78 2 1.39 7.32** 0.1265
C 1.58 2 0.79 4.16** 0.2109
F 1.90 2 0.95 5.00** 0.1790
H 1.20 2 0.60 3.16** 0.2662
K 1.40 2 0.70 3.68** 0.2340

Error 2.68 14 0.19
Total 16.86 26

Step 6, the final step in our procedure, generates Table 5 which shows the sum of MD
for each variable at each level in Table 3. For example, when variable A is selected as an

input, the sum of MD is 7.26, and when variable A is selected as an output,
∧
d is −3.97,

it should be selected as an input. Maxima are indicated in bold font in Table 5. Thus
we select four input (A) Total emissions, (B) Total net emissions, (C) Energy and (F)
Transport and two outputs, namely, (H) Other sectors and (K) Agriculture.

Step 7, we run the DEA model (1) using this inputs and outputs combination.

Table 5. The sum of MD

Variables Selected as Input Selected as Output
A 7.26 -3.97
B 5.97 -3.47
C 4.30 -2.88
F 2.44 0.24
H 1.90 2.62
K 1.61 1.90

Note, we got 80% of the major factors leading to emissions of greenhouse gases That
was previously displayed.

5. Conclusion
It is possible to attempt more than fractional factorial design at level 3 for example

Latin square design or partial design. The MD and ANOVA was used to distinguish
between the two groups after selecting the input and output from ANOVA results note it
was investigating maximum MD between the two groups we demonstrate the effectiveness
of this new approach using a case study with any DEA can set inputs and outputs and
measuring the efficiency of performance that can effectively distinguish between groups
of high and low performance.

Situation as you know it can not always be perfect, but is close to ideal combination
that have been obtained are a limited number of 27 trials experience It can experimen-
tation on a larger number of factors and a larger number of experiments.
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Appendix 1. Fractional factorial design for 312−9 twelve factors at
three levels (27 Runs)

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 Selected Input Selected Output Not selected D

1 1 1 1 1 1 1 1 1 1 1 1 1 x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 None None D1

2 1 1 1 1 2 2 2 2 2 2 2 2 x1, x2, x3, x4 x5, x6, x7, x8, x9, x10, x11, x12 None D2

3 1 1 1 1 3 3 3 3 3 3 3 3 x1, x2, x3, x4 None x5, x6, x7, x8, x9, x10, x11, x12 D3

4 1 2 2 2 1 1 1 2 2 2 3 3 x1, x5, x6, x7 x2, x3, x4, x8, x9, x10 x11, x12 D4

5 1 2 2 2 2 2 2 3 3 3 1 1 x1, x11, x12 x2, x3, x4, x5, x6, x7 x8, x9, x10 D5

6 1 2 2 2 3 3 3 1 1 1 2 2 x1, x8, x9, x10 x2, x3, x4, x11, x12 x5, x6, x7 D6

7 1 3 3 3 1 1 1 3 3 3 2 2 x1, x5, x6, x7 x11, x12 x2, x3, x4, x8, x9, x10 D7

8 1 3 3 3 2 2 2 1 1 1 3 3 x1, x8, x9, x10 x5, x6, x7 x2, x3, x4, x11, x12 D8

9 1 3 3 3 3 3 3 2 2 2 1 1 x1, x11, x12 x8, x9, x10 x2, x3, x4, x5, x6, x7 D9

10 2 1 2 3 1 2 3 1 2 3 1 2 x2, x5, x8, x11 x1, x3, x6, x9, x12 x4, x7, x10 D10

11 2 1 2 3 2 3 1 2 3 1 2 3 x2, x7, x10 x1, x3, x5, x8, x11 x4, x6, x9, x12 D11

12 2 1 2 3 3 1 2 3 1 2 3 1 x2, x6, x9, x12 x1, x3, x7, x10 x4, x5, x8, x11 D12

13 2 2 3 1 1 2 3 2 3 1 3 1 x4, x5, x10, x12 x1, x2, x6, x8 x3, x7, x8, x11 D13

14 2 2 3 1 2 3 1 3 1 2 1 2 x4, x7, x9, x11 x1, x2, x5, x10, x12 x3, x6, x8 D14

15 2 2 3 1 3 1 2 1 2 3 2 3 x4, x6, x8 x1, x2, x7, x9, x11 x3, x5, x10, x12 D15

16 2 3 1 2 1 2 3 3 1 2 2 3 x3, x5, x9 x1, x4, x6, x10, x11 x2, x7, x8, x12 D16

17 2 3 1 2 2 3 1 1 2 3 3 1 x3, x7, x8, x12 x1, x4, x5, x9 x2, x6, x10, x11 D17

18 2 3 1 2 3 1 2 2 3 1 1 2 x3, x6, x10, x11 x1, x4, x7, x8, x12 x2, x5, x9 D18

19 3 1 3 2 1 3 2 1 3 2 1 3 x2, x5, x8, x11 x4, x7, x10 x1, x3, x6, x9, x12 D19

20 3 1 3 2 2 1 3 2 1 3 2 1 x2, x6, x9, x12 x4, x5, x8, x11 x1, x3, x7, x10 D20

21 3 1 3 2 3 2 1 3 2 1 3 2 x2, x7, x10 x4, x6, x9, x12 x1, x3, x5, x8, x11 D21

22 3 2 1 3 1 3 2 2 1 3 3 2 x3, x5, x9 x2, x7, x8, x12 x1, x4, x6, x10, x11 D22

23 3 2 1 3 2 1 3 3 2 1 1 3 x3, x6, x10, x11 x2, x5, x9 x1, x4, x7, x8, x12 D23

24 3 2 1 3 3 2 1 1 3 2 2 1 x3, x7, x8, x12 x2, x6, x10, x11 x1, x4, x5, x9 D24

25 3 3 2 1 1 3 2 3 2 1 2 1 x4, x5, x10, x12 x3, x7, x9, x11 x1, x2, x6, x8 D25

26 3 3 2 1 2 1 3 1 3 2 3 2 x4, x6, x8 x3, x5, x10, x12 x1, x2, x7, x9, x11 D26

27 3 3 2 1 3 2 1 2 1 3 1 3 x4, x7, x9, x11 x3, x6, x8 x1, x2, x5, x10, x12 D27
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Appendix 2. 30 Curenty Data Extract
Country A B C D E F G H I J K L

1 Belgium 132459 131417 707608 26434 23708 24257 23459 32606 13460 214 10042 1135
2 Bulgaria 61427 52796 46438 31464 3798 7949 7508 2013 3852 46 6406 4686
3 Czech Republic 139158 133639 115205 56251 23807 17448 16979 12340 12061 503 7777 3612
4 Denmark 61065 58895 48789 23915 4453 13248 12241 6600 1685 76 9520 995
5 Germany 936544 953827 782313 354506 115007 154730 146844 145928 72569 1944 67479 12239
6 Estonia 20517 16759 18185 14644 510 2260 2078 646 498 18 1344 478
7 Ireland 61314 60284 40510 13328 4549 11606 11061 10996 1934 72 17910 889
8 Greece 118287 115645 93213 52522 6764 22996 19184 9839 10542 316 9282 4934
9 Spain 355898 326944 269835 72418 63434 91423 83872 39252 2817 2938 40014 15094
10 France 522373 490148 370022 61564 68440 132154 125273 103199 37509 1224 93876 19741
11 Italy 501318 444787 415727 133255 61375 118849 110018 90453 31963 1658 33741 18229
12 Cyprus 10838 10673 7505 3880 716 2313 2313 580 807 1 670 1857
13 Latvia 12077 −5070 8401 2261 1087 3222 2963 1729 639 42 2330 666
14 Lithuania 20810 9095 12848 5446 1120 4565 4125 1431 2249 93 4458 1161
15 Luxembourg 12075 11780 10647 1271 1401 6288 6273 1643 660 14 690 64
16 Hungary 67679 64307 49070 16668 3903 11870 11598 14270 6386 269 8267 3687
17 Malta 3035 2973 2657 1893 46 577 529 140 100 1 78 199
18 Netherlands 210053 213054 177819 66613 27326 34988 34242 45820 10432 170 16624 5008
19 Austria 84594 80983 64328 14293 15618 22452 21890 11401 10680 327 7453 1806
20 Poland 400865 357985 327117 173536 30969 48766 47151 61954 29769 779 34624 8576
21 Portugal 70599 60719 49654 14586 9487 18936 18255 5242 5756 228 7515 7446
22 Romania 121355 95545 86038 33353 18577 15133 14129 10192 12732 125 16777 5683
23 Slovenia 19522 11031 15980 6219 1900 5272 5228 2228 971 30 1963 577
24 Slovakia 45982 39893 32008 9507 9316 6654 6547 4545 8522 164 3065 2222
25 Finland 74553 52474 60649 30547 9905 13570 12001 5083 5766 73 5882 2186
26 Sweden 66232 32177 49359 13091 10122 20744 19122 4239 6841 311 7873 1848
27 United Kingdom 590247 586493 501113 192184 67546 118455 111735 108315 26731 1 45908 16495
28 Iceland 4542 5276 1866 5 213 900 844 556 1810 6 646 214
29 Norway 53896 20951 40726 14899 3612 15142 10097 3592 7479 170 4273 1248
30 Switzerland 54247 53367 44017 4190 5985 16422 16092 17050 3689 215 5688 612

Range 933509 958897 780447 354501 114961 154153 146315 145788 72469 2937 93798 19677
Mean 161119 149628.2 128321.6 48148.1 19823.13 32106.3 30121.7 25252.6 11870.3 400.93 15739.17 4786.03
Standard Deviation 220938 219088.3 181771.5 75728.93 27823.22 43507.51 41002.2 23603.62 15541.64 678.39 21641.52 5786.77

Appendix 3. High and Low Curenty Data Extract
Country A B C D E F G H I J K L

1 Belgium 132459 131417 107608 26434 23708 24257 23459 32602 13460 214 10042 1135
2 Czech Republic 139158 133639 115205 56251 23807 17448 16979 12340 12061 503 7777 3612
3 Germany 936544 953827 782313 354506 115007 154730 146844 145928 72569 1944 67479 12239
4 Greece 118287 115645 93213 52222 6764 22996 19184 9839 10542 316 9282 4934
5 Spain 355898 326944 269835 72418 63434 91423 83872 39252 28017 2938 40014 15094
6 France 522373 490148 370022 61564 68440 132154 125273 103199 37509 1224 93876 19741
7 Italy 501318 444787 415727 133255 61375 118849 110018 94153 31963 1658 33741 18229
8 Hungary 67679 64307 49070 16668 3903 11870 11598 14270 6386 269 8267 3687
9 Netherlands 210053 213054 177819 66613 27326 34988 34242 45820 10432 170 16624 5008
10 Austria 84594 80983 64328 14293 15618 22452 21890 11401 10680 327 7453 1806
11 Poland 400865 357985 327117 173536 30969 48766 47151 61954 29769 779 34624 8576
12 Portugal 70599 60719 49654 14586 9487 18936 18255 5242 5756 228 7515 7446
13 Romania 121355 95545 86038 33353 18577 15133 14129 10192 12732 125 16777 5683
14 Finland 74556 52474 60649 30547 9905 13570 12001 5083 5766 73 5882 2186
15 United Kingdom 590247 586493 501113 192184 67546 118455 111735 108315 26731 0 45908 16495

High 15 Range 868865 901353 733243 340213 111104 142860 135246 140845 66813 2938 87994 18606
Mean 288399 273864.5 231314.1 86562 36391.07 56401.8 53108.67 46639.33 20958.2 717.87 27017.4 8391.4
Standard Deviation 256553.6 256629 213030.7 92924.08 31703.96 51160.87 48155 45665.55 17771.85 854.18 26026.4 6336.72

1 Bulgaria 61427 52796 46438 31464 3798 7949 7508 2013 3852 46 6406 4686
2 Denmark 61065 58895 48789 23915 4453 13248 12241 6600 1685 76 9520 995
3 Estonia 20517 16759 18185 14644 510 2260 2078 646 498 18 1344 472
4 Ireland 61314 60284 40510 13328 4549 11606 11061 10996 1934 72 17910 889
5 Cyprus 10838 10673 7505 3880 716 2313 2313 580 807 0 670 1857
6 Latvia 12077 −5070 8401 2261 1087 3222 2963 1729 639 42 2330 666
7 Lithuania 20810 9095 12848 5446 1120 4565 4125 1431 2249 93 4458 1161
8 Luxembourg 12075 11780 10647 1271 1401 6288 6273 1643 660 14 690 64
9 Malta 3035 2973 2657 1893 46 577 529 140 100 1 78 199
10 Slovenia 19522 11031 15980 6219 1900 5272 5228 2228 971 30 1963 577
11 Slovakia 45982 39893 32008 9507 9316 6654 6547 4545 8522 164 3065 2222
12 Swedeen 66232 32177 49359 13091 10122 20744 19122 4239 6841 311 7873 1848
13 Iceland 4542 5276 1866 5 213 900 844 556 1810 6 646 214
14 Norway 53896 20951 40726 14899 3612 15142 10097 3592 7479 170 4273 1248
15 Switzerland 54247 53367 44017 4190 5985 16422 16092 17050 3689 215 5688 612

Low 15 Range 63197 65354 47493 31459 10076 20167 18593 16910 8422 311 17832 4622
Mean 33838.6 25392 25329.07 9734.2 3255.2 7810.8 7134.73 3865.87 2782.4 83.87 4460.93 1180.67
Standard Deviation 24066.08 22253.43 18152, 81 8974.83 3195.32 6221.92 5590.46 4631.91 2742.38 91.88 4692.22 1164.93




