
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 19, No. 3, pp. 659-672, June 2015
DOI: 10.11650/tjm.19.2015.4752
This paper is available online at http://journal.taiwanmathsoc.org.tw

ON A NEW CLASS OF MULTIVALUED WEAKLY PICARD OPERATORS
ON COMPLETE METRIC SPACES

Ishak Altun, Murat Olgun and Gülhan Mınak

Abstract. In the present paper, the concept of nonlinear F -contraction for mul-
tivalued mappings in metric spaces is introduced and considering the new proof
technique, which was used for single valued maps by Wardowski [D. Wardowski,
Fixed points of a new type of contractive mappings in complete metric spaces,
Fixed Point Theory Appl. 2012, 2012:94, 6 pp.], we demonstrate that multivalued
nonlinear F -contractions of Ćirić type are weakly Picard operators on complete
metric spaces. Finally, we give a nontrivial example to guarantee that our result is
veritable generalization of recent result of Ćirić [Lj. B. Ćirić, Multi-valued non-
linear contraction mappings, Nonlinear Analysis, 71 (2009), 2716-2723]. Also,
we show that many fixed point results in the literature can not be applied to this
example.

1. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a metric space. P (X) denotes the family of all nonempty subsets of
X, C(X) denotes the family of all nonempty, closed subsets of X, CB(X) denotes
the family of all nonempty, closed and bounded subsets of X and K(X) denotes the
family of all nonempty compact subsets of X. It is clear that K(X) ⊆ CB(X) ⊆
C(X) ⊆ P (X). For A, B ∈ C(X), let

H(A, B) = max

{
sup
x∈A

d(x, B), sup
y∈B

d(y, A)

}
,

where d(x, B) = inf {d(x, y) : y ∈ B}. Then H is called generalized Pompeiu-
Hausdorff distance on C(X). It is well known that H is a metric on CB(X), which
is called Pompeiu-Hausdorff metric induced by d. We can find detailed information
about the Pompeiu-Hausdorff metric in [1, 5, 8]. An element x ∈ X is said to be fixed
point of a multivalued mapping T : X → P (X) if x ∈ Tx.

Following the Banach contraction principle, Nadler [11] first initiated the study of
fixed point theorems for multivalued linear contraction mappings.
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Theorem 1. (Nadler [11]). Let (X, d) be a complete metric space and T : X →
CB(X). Assume that there there exists L ∈ [0, 1) such that

H(Tx, Ty) ≤ Ld(x, y)

for all x, y ∈ X. Then T has a fixed point.

Then many fixed point theorists studied on fixed points of multivalued contractive
maps as follows:

Theorem 2. (Reich [13]). Let (X, d) be a complete metric space and T : X →
K(X). Assume that there exists a map ϕ : (0,∞) → [0, 1) such that

lim sup
t→s+

ϕ(t) < 1, ∀s > 0;

and
H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y).

for all x, y ∈ X with x �= y. Then T has a fixed point.

In [14, 15], Reich asked the question as if the above theorem is also true for the
map T : X → CB(X). The partial affirmative answer was given by Mizoguchi and
Takahashi [10]. They proved the following theorem.

Theorem 3. (Mizoguchi-Takahashi [10]). Let (X, d) be a complete metric space
and T : X → CB(X). Assume that there exists a map ϕ : (0,∞) → [0, 1) such that

lim sup
t→s+

ϕ(t) < 1, ∀s ≥ 0;

and
H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y).

for all x, y ∈ X with x �= y. Then T has a fixed point.

In [16] Suzuki gave a simple proof of Mizoguchi Takahashi fixed point theorem
and also an example to show that it is a real generalization of Nadler’s. On the other
hand, Feng and Liu [7] obtained some interesting fixed point results for multivalued
mappings without using the Pompeiu-Hausdorff metric. They proved the following
theorem.

Theorem 4. (Feng-Liu [7]). Let (X, d) be a complete metric space and T : X →
C(X). Assume that the following conditions hold:

(i) the map x → d(x, Tx) is lower semi-continuous;
(ii) there exist b, c ∈ (0, 1) with c < b such that for any x ∈ X there is y ∈ Tx

satisfying
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bd(x, y) ≤ d(x, Tx)

and
d(y, Ty) ≤ cd(x, y).

Then T has a fixed point.

Then Klim and Wardowski [9] generalized Theorem 4 as follows:

Theorem 5. (Klim-Wardowski [9]). Let (X, d) be a complete metric space and
T : X → C(X). Assume that the following conditions hold:

(i) the map x → d(x, Tx) is lower semi-continuous;
(ii) there exists b ∈ (0, 1) and a function ϕ : [0,∞) → [0, b) satisfying

lim sup
t→s+

ϕ(t) < b, ∀s ≥ 0;

(iii) for any x ∈ X, there is y ∈ Tx satisfying

bd(x, y) ≤ d(x, Tx)

and
d(y, Ty) ≤ ϕ(d(x, y))d(x, y).

Then T has a fixed point.

Considering the same direction, in 2009, Ćirić [6] introduced new multivalued non-
linear contractions and established a few nice fixed point theorems for such mappings,
one of them is as follows:

Theorem 6. Let (X, d) be a complete metric space and T : X → C(X). Assume
that the following conditions hold:

(i) the map x → d(x, Tx) is lower semi-continuous;
(ii) there exists a function ϕ : [0,∞) → [a, 1) , 0 < a < 1, satisfying

lim sup
t→s+

ϕ(t) < 1, ∀s ≥ 0;

(iii) for any x ∈ X, there is y ∈ Tx satisfying√
ϕ(d(x, Tx))d(x, y) ≤ d(x, Tx)

and
d(y, Ty) ≤ ϕ(d(x, Tx))d(x, y).

Then T has a fixed point.
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On the other hand, Berinde and Berinde [4] introduced a general class of multival-
ued contractions and proved the following fixed point theorems:

Theorem 7. (Berinde-Berinde [4], Theorem 3). Let (X, d) be a complete metric
space and T : X → CB(X) be a multivalued almost contraction, that is, there exist
two constants δ ∈ (0, 1) and L ≥ 0 such that

(1.1) H(Tx, Ty) ≤ δd(x, y) + Ld(y, Tx)

for all x, y ∈ X . Then T has a fixed point.

Theorem 8. (Berinde-Berinde [4], Theorem 4). Let (X, d) be a complete metric
space and T : X → CB(X). If there exist a constant L ≥ 0 and a function ϕ :
[0,∞) → [0, 1) satisfying

lim sup
t→s+

ϕ(t) < 1, ∀s ≥ 0,

such that

(1.2) H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y)+ Ld(y, Tx)

for all x, y ∈ X . Then T has a fixed point.

Analyzing the proofs of above all theorems, we can observe that the mentioned maps
on complete metric spaces are weakly Picard operators. We know that, a multivalued
map T on a metric space is weakly Picard operator if there exists a sequence {xn} in
X such that xn+1 ∈ Txn for any initial point x0, converges to a fixed point of T .

In the present paper, by introducing a new and different class of multivalued map-
pings in metric spaces, we give some multivalued weakly Picard operators in complete
metric spaces. Our results are extend and generalize many fixed point theorems includ-
ing Theorem 6 and they are based on a new approach of contraction mapping, which
is called F -contraction. The concept of F -contraction for single valued mappings on
complete metric space was introduced by Wardowski [17]. Now, we recall this new
concept and some related results.

Let F : (0,∞) → R be a function. For the sake of completeness, we will consider
the following conditions:
(F1) F is strictly increasing, i.e., for all α, β∈(0,∞) such that α<β, F (α)<F (β),

(F2) For each sequence {αn} of positive numbers

lim
n→∞αn = 0 if and only if lim

n→∞F (αn) = −∞,

(F3) There exists k ∈ (0, 1) such that limα→0+ αkF (α) = 0,

(F4) F (inf A) = inf F (A) for all A ⊂ (0,∞) with inf A > 0.
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We denote by F and F∗ be the set of all functions F satisfying (F1)-(F3) and (F1)-
(F4), respectively. It is clear that F∗ ⊂ F and some examples of the functions belonging
F∗ are F1(α) = lnα, F2(α) = α + ln α, F3(α) = − 1√

α
and F4(α) = ln

(
α2 + α

)
. If

we define F5(α) = ln α for α ≤ 1 and F5(α) = 2α for α > 1, then F5 ∈ F\F∗. If F
satisfies (F1), then it satisfies (F4) if and only if it is right continuous.

Let (X, d) be a metric space and T : X → X be a mapping. Then, Wardowski
[17] say that T is an F -contraction if F ∈ F and there exists τ > 0 such that

(1.3) τ + F (d(Tx, Ty)) ≤ F (d(x, y))

for all x, y ∈ X with d(Tx, Ty) > 0. Also, Wardowski [17] proved that every F -
contractions on complete metric spaces has a unique fixed point. We can find some
detailed information for F -contractions in [17].

By combining the ideas of Wardowski’s and Nadler’s, Altun et al [2] introduced
the concept of multivalued F -contractions and obtained some fixed point results for
mappings of this type on complete metric space.

Definition 1. ([2]). Let (X, d) be a metric space and T : X → CB(X) be a
mapping. Then we say that T is a multivalued F -contraction if F ∈ F and there exists
τ > 0 such that

τ + F (H(Tx, Ty)) ≤ F (d(x, y))

for all x, y ∈ X with H(Tx, Ty) > 0.

By the considering F (α) = lnα, then every multivalued contraction in the sense
of Nadler is also multivalued F -contraction.

Theorem 9. ([2]). Let (X, d) be a complete metric space and T : X → K(X) be
a multivalued F -contraction, then T has a fixed point in X.

Here, the following question may come to mind: Can we take CB(X) instead
of K(X) in Theorem 9? The answer is negative as shown in Example 1 in [3].
Nevertheless, by adding the condition (F4) on F , we can we take CB(X) instead of
K(X).

Theorem 10. ([2]). Let (X, d) be a complete metric space and T : X → CB(X)
be a multivalued F -contraction with F ∈ F∗, then T has a fixed point in X.

On the other hand Olgun et al [12] proved the following theorems, one of them is
a generalization of famous Mizoguchi-Takahashi fixed point theorem for multivalued
contractive mappings. These results are also nonlinear case of Theorem 9 and Theorem
10, respectively.
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Theorem 11. ([12]). Let (X, d) be a complete metric space and T : X → K(X).
If there exist F ∈ F and τ : (0,∞) → (0,∞) such that

lim inf
t→s+

τ(t) > 0, ∀s ≥ 0,

satisfying
τ(d(x, y)) + F (H(Tx, Ty)) ≤ F (d(x, y))

for all x, y ∈ X with H(Tx, Ty) > 0. Then T has a fixed point in X.

Theorem 12. ([12]). Let (X, d) be a complete metric space and T : X → CB(X).
If there exist F ∈ F∗ and τ : (0,∞) → (0,∞) such that

(1.4) lim inf
t→s+

τ(t) > 0, ∀s ≥ 0,

satisfying
τ(d(x, y)) + F (H(Tx, Ty)) ≤ F (d(x, y))

for all x, y ∈ X with H(Tx, Ty) > 0. Then T has a fixed point in X.

If we examine the proofs of Theorem 9, 10, 11 and 12, we can see that the mentioned
maps on complete metric spaces are weakly Picard operators.

2. MAIN RESULTS

Now, we shall prove a theorem which extends and generalizes Theorem 6.

Theorem 13. Let (X, d) be a complete metric space, T : X → C(X) and F ∈ F∗.
Assume that the following conditions hold:

(i) the map x → d(x, Tx) is lower semi-continuous;
(ii) there exists a function τ : (0,∞) → (0, σ], σ > 0 such that

(2.1) lim inf
t→s+

τ(t) > 0, ∀s ≥ 0;

(iii) for any x ∈ X with d(x, Tx) > 0, there is y ∈ Tx satisfying

(2.2) F (d(x, y)) ≤ F (d(x, Tx)) +
τ(d(x, Tx))

2

and

(2.3) τ(d(x, Tx))+ F (d(y, Ty)) ≤ F (d(x, y)).

Then T is a weakly Picard operator.
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Proof. First, we show that T has fixed point in X . Assume the contrary, then
d(x, Tx) > 0 for all x ∈ X. Therefore, since τ(t) > 0 for all t > 0 and F ∈ F∗, then
for any x ∈ X there exists y ∈ Tx such that (2.2) holds. Let x0 ∈ X be an initial
point. Then by assumptions (2.2) and (2.3) we can choose x1 ∈ Tx0 such that

(2.4) F (d(x0, x1)) ≤ F (d(x0, Tx0)) +
τ(d(x0, Tx0))

2
and

(2.5) τ(d(x0, Tx0)) + F (d(x1, Tx1)) ≤ F (d(x0, x1)).

From (2.4) and (2.5), we get

(2.6)
τ(d(x0, Tx0))

2
+ F (d(x1, Tx1)) ≤ F (d(x0, Tx0)).

Now we choose x2 ∈ Tx1 such that

F (d(x1, x2)) ≤ F (d(x1, Tx1)) +
τ(d(x1, Tx1))

2
and

τ(d(x1, Tx1)) + F (d(x2, Tx2)) ≤ F (d(x1, x2)).
Hence we get

τ(d(x1, Tx1))
2

+ F (d(x2, Tx2)) ≤ F (d(x1, Tx1)).

Continuing this process we can choose a sequence {xn} such that xn+1 ∈ Txn satis-
fying

(2.7) F (d(xn, xn+1)) ≤ F (d(xn, Txn)) +
τ(d(xn, Txn))

2
and

(2.8)
τ(d(xn, Txn))

2
+ F (d(xn+1, Txn+1)) ≤ F (d(xn, Txn))

for all n ≥ 0.

Now, we shall show that d(xn, Txn) → 0 as n → ∞. From (2.8), we conclude
that {d(xn, Txn)} is a strictly decreasing sequence of positive real numbers. Therefore,
there exists δ ≥ 0 such that

lim
n→∞ d(xn, Txn) = δ.

Suppose δ > 0. Then, since F is right continuous, taking the limit infimum on both
sides of (2.8) and having in mind the assumption (2.1), we have

lim inf
d(xn,T xn)→δ+

τ(d(xn, Txn))
2

+ F (δ) ≤ F (δ),
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which is a contradiction. Thus δ = 0, that is,

(2.9) lim
n→∞ d(xn, Txn) = 0.

Now we shall show that {xn} is a Cauchy sequence in X. Let

α = lim inf
d(xn,T xn)→δ+

τ(d(xn, Txn))
2

> 0.

and 0 < q < α. Then there exists n0 ∈ N such that τ (d(xn,T xn))
2 > q for all n ≥ n0.

Thus from (2.8),
q + F (d(xn+1, Txn+1)) ≤ F (d(xn, Txn))

for each n ≥ n0. Hence, by induction, for all n ≥ n0

F (d(xn+1, Txn+1)) ≤ F (d(xn, Txn))− q

...
≤ F (d(xn0 , Txn0))− (n + 1 − n0)q.(2.10)

Since 0 < τ(t) ≤ σ for all t > 0. From (2.7), we get

F (d(xn, xn+1)) ≤ F (d(xn, Txn)) + σ.

Thus, by (2.10), for all n ≥ n0

F (d(xn, xn+1)) ≤ F (d(xn, Txn)) + σ

≤ F (d(xn0 , Txn0)) − (n − n0)q + σ.(2.11)

From (2.11), we get limn→∞ F (d(xn, xn+1)) = −∞. Thus from (F2) we have limn→∞
d(xn, xn+1) = 0. Therefore, from (F3) there exists k ∈ (0, 1) such that

lim
n→∞ [d(xn, xn+1)]

k F (d(xn, xn+1)) = 0.

By (2.11), for all n ≥ n0

(2.12)
[d(xn, xn+1)]

k F (d(xn, xn+1)) − [d(xn, xn+1)]
k F (d(xn0 , Txn0))

≤ − [d(xn, xn+1)]
k [(n − n0)q + σ] ≤ 0.

Letting n → ∞ in (2.12), we obtain that

(2.13) lim
n→∞ [d(xn, xn+1)]

k [(n − n0)q + σ] = 0.
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From (2.13), there exits n1 ∈ N such that [d(xn, xn+1)]
k [(n − n0)q + σ] ≤ 1 for all

n ≥ n1. We can take n1 > n0. So, we have, for all n ≥ n1

(2.14) d(xn, xn+1) ≤ 1

[(n − n0)q + σ]
1
k

.

In order to show that {xn} is a Cauchy sequence consider m, n ∈ N such that m >

n ≥ n1. Using the triangular inequality for the metric and from (2.14), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

=
m−1∑
i=n

d(xi, xi+1) ≤
∞∑

i=n

d(xi, xi+1) ≤
∞∑

i=n

1

[(i− n0)q + σ]1/k

By the convergence of the series
∑

i>n0−σ
q

1

[(i−n0)q+σ]1/k , passing to limit n, m → ∞,

we get d(xn, xm) → 0. This yields that {xn} is a Cauchy sequence in (X, d). Since
(X, d) is a complete metric space, the sequence {xn} converges to some point z ∈ X ,
that is, limn→∞ xn = z. Since x → d(x, Tx) is lower semi-continuous, from (2.9) we
have

0 ≤ d(z, T z) ≤ lim inf
n→∞ d(xn, Txn) = 0.

Hence d(z, T z) = 0, which is a contradiction. Therefore, T has a fixed point in X .
It can be seen that, we can construct a sequence {xn} in X such that xn+1 ∈ Txn

for any initial point x0, converges to a fixed point of T . That is, T is a weakly Picard
operator.

Remark 1. Let A be a compact subset of a metric space (X, d) and x ∈ X , then
there exists a ∈ A such that d(x, a) = d(x, A).

Remark 2. If we take K(X) instead of CB(X) in Theorem 13, we can remove
the condition (F4) on F . Therefore, by taking into account Remark 1 the proof of the
following theorem is obvious.

Theorem 14. Let (X, d) be a complete metric space, T : X → K(X) and F ∈ F .
Assume that the following conditions hold:

(i) the map x → d(x, Tx) is lower semi-continuous;

(ii) there exists a function τ : (0,∞) → (0, σ], σ > 0 such that

lim inf
t→s+

τ(t) > 0, ∀s ≥ 0;
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(iii) for any x ∈ X with d(x, Tx) > 0, there is y ∈ Tx satisfying

F (d(x, y)) ≤ F (d(x, Tx)) +
τ(d(x, Tx))

2

and
τ(d(x, Tx))+ F (d(y, Ty)) ≤ F (d(x, y)).

Then T is a weakly Picard operator.

Taking into account our results, T is a weakly Picard operator in the following
nontrivial example. We also show that Theorems 1, 3, 4, 5, 6, 8, 10, 12 can not be
applied to this example.

Example 1. Let X = { 1
n2 : n ∈ N} ∪ {0} and d(x, y) = |x − y|, then (X, d) is

complete metric space. Let T : X → CB(X) be defined by

Tx =

⎧⎪⎨
⎪⎩

{
0,

1
(n + 1)2

}
, x =

1
n2

{x} , x ∈ {0, 1}
.

It is easy to see that

d(x, Tx) =

⎧⎪⎪⎨
⎪⎪⎩

0, x ∈ {0, 1}
2n + 1

n2 (n + 1)2
, x =

1
n2

, n ≥ 2

and it is lower semi-continuous.
Let τ(t) = ln2 and σ = 4, then the condition (ii) of Theorem 13 is satisfied.
Now we show that the condition (iii) of Theorem 13 is satisfied with

F (α) =

⎧⎪⎨
⎪⎩

lnα√
α

, 0 < α < e2

α − e2 + 2
e , α ≥ e2

.

We can see that F ∈ F∗. Note that supx,y∈X d(x, y) = 1 < e2. If d(x, Tx) > 0, then
x = 1

n2 , n ≥ 2. Then we choose y = 1
(n+1)2

∈ Tx =
{
0, 1

(n+1)2

}
. Therefore, we

have
d(x, y) = d(x, Tx) =

2n + 1
n2(n + 1)2

and
d(y, Ty) =

2n + 3
(n + 1)2(n + 2)2

.
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Since d(x, y) = d(x, Tx), (2.2) is clearly satisfied. To see (2.3), we must show that

ln 2 + F (d(y, Ty)) ≤ F (d(x, y))

or equivalently

(2.15) |y − Ty|
1√

|y−Ty| |x − y|−
1√

|x−y| ≤ 1
2
.

Now, for x = 1
n2 and y = 1

(n+1)2
, we obtain

|y − Ty|
1√

|y−Ty| |x − y|−
1√

|x−y|

=
(

2n + 3
(n + 1)2(n + 2)2

) (n+1)(n+2)√
2n+3

(
2n + 1

n2(n + 1)2

)−n(n+1)√
2n+1

=
(

2n + 3
(n + 1)2(n + 2)2

) (n+1)(n+2)√
2n+3

(
2n + 1

n2(n + 1)2
2n + 3
2n + 3

(n + 1)2(n + 2)2

(n + 1)2(n + 2)2

)−n(n+1)√
2n+1

=
(

2n + 3
(n + 1)2(n + 2)2

) (n+1)(n+2)√
2n+3

−n(n+1)√
2n+1

(
(2n + 3)n2(n + 1)2

(2n + 1)(n + 1)2(n + 2)2

)n(n+1)√
2n+1

.

On the other hand, for all n ≥ 2, since
2n + 3

(n + 1)2(n + 2)2
≤ 1

2
,

(n + 1)(2n + 1)√
2n + 3

− n(n + 1)√
2n + 1

≥ 1

and
(2n + 3)n2(n + 1)2

(2n + 1)(n + 1)2(n + 2)2
< 1,

then we have
|y − Ty|

1√
|y−Ty| |x − y|−

1√
|x−y| ≤ 1

2
.

Therefore (2.15) is satisfied. Thus all conditions of Theorem 13 are satisfied and so T
has a fixed point in X .

Now we show that mentioned fixed point theorems can not be applied to this
example.

Berinde-Berinde, Mizoguchi-Takahashi, Nadler [4, 10, 11].

Suppose that there exist a constant L ≥ 0 and a function ϕ : [0,∞) → [0, 1)
satisfying the assumptions in Theorem 8. Therefore, for x = 1

n2 and y = 1
(n+1)2

, then
d(y, Tx) = 0,

H(Tx, Ty) =
2n + 3

(n + 1)2(n + 2)2
and d(x, y) =

2n + 1
n2(n + 1)2

.
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Thus
H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y)+ Ld(y, Tx)

⇔ 2n + 3
(n + 1)2(n + 2)2

≤ ϕ(
2n + 1

n2(n + 1)2
)

2n + 1
n2(n + 1)2

⇔ (2n + 3)n2

(2n + 1)(n + 2)2
≤ ϕ(

2n + 1
n2(n + 1)2

).

Taking limit supremum as n → ∞, we have

1 ≤ lim sup
n→∞

ϕ(
2n + 1

n2(n + 1)2
) ≤ lim sup

t→0+

ϕ(t) < 1,

which is a contradiction. Therefore Theorem 8 can not be applied to this example. Also,
T is not multivalued almost contraction. Since Theorem 8 is a generalized version of
Mizoguchi-Takahashi and Nadler fixed point theorems, these theorems can not be also
applied to this example.

Klim-Wardowski, Feng-Liu [9, 7].

Suppose that there exist a constant b ∈ (0, 1) and a function ϕ : [0,∞) → [0, 1)
satisfying the assumptions in Theorem 5. Take x = 1

n2 , then Tx = {0, 1
(n+1)2}. If

y = 0, then
bd(x, y) ≤ d(x, Tx) ⇔ b ≤ 2n + 1

(n + 1)2
.

Taking limit n → ∞, we have b = 0, which is a contradiction. If y = 1
(n+1)2

, then

d(y, Ty) ≤ ϕ(d(x, y))d(x, y)

⇔ 2n + 3
(n + 1)2(n + 2)2

≤ ϕ(
2n + 1

n2(n + 1)2
)

2n + 1
n2(n + 1)2

⇔ (2n + 3)n2

(2n + 1)(n + 2)2
≤ ϕ(

2n + 1
n2(n + 1)2

).

Taking limit supremum as n → ∞, we have

1 ≤ limsup
n→∞

ϕ(
2n + 1

n2(n + 1)2
) ≤ lim sup

t→0+

ϕ(t) < b,

which is a contradiction. Therefore Theorem 5 as well as Theorem 4 can not be applied
to this example.

Ćirić [6].

Suppose that there exist a constant a ∈ (0, 1) and a function ϕ : [0,∞) → [a, 1)
satisfying the assumptions in Theorem 6. Take x = 1

n2 , then Tx = {0, 1
(n+1)2}. If
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y = 0, then

√
ϕ(d(x, Tx))d(x, y) ≤ d(x, Tx) ⇔ ϕ(

2n + 1
n2(n + 1)2

) ≤ (2n + 1)2

(n + 1)4
.

Taking limit as n → ∞, we have

0 < a ≤ lim
n→∞ϕ(

2n + 1
n2(n + 1)2

) ≤ 0,

which is a contradiction. If y = 1
(n+1)2

, then

d(y, Ty) ≤ ϕ(d(x, Tx))d(x, y)

⇔ 2n + 3
(n + 1)2(n + 2)2

≤ ϕ(
2n + 1

n2(n + 1)2
)

2n + 1
n2(n + 1)2

⇔ (2n + 3)n2

(2n + 1)(n + 2)2
≤ ϕ(

2n + 1
n2(n + 1)2

).

Taking limit supremum as n → ∞, we have

1 ≤ lim sup
n→∞

ϕ(
2n + 1

n2(n + 1)2
) ≤ lim sup

t→0+

ϕ(t) < 1,

which is a contradiction. Therefore Theorem 6 can not be applied to this example.

Olgun et al, Altun et al. [12, 2].

Since H(T0, T1) = 1 = d(0, 1), then for all F ∈ F∗ and τ : (0,∞) → (0,∞)
satisfying inequality (1.4), we have

τ(d(0, 1))+ F (H(T0, T1)) > F (d(0, 1)).

Therefore Theorem 12 can not be applied to this example. Also, T is not multivalued
F -contraction.
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