
© 2016 Biçer et al., published by De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

Open Math. 2016; 14: 934–945

Open Mathematics Open Access

Research Article

Cenker Biçer, Levent Özbek, and Hasan Erbay*

Performance and stochastic stability
of the adaptive fading extended Kalman
filter with the matrix forgetting factor
DOI 10.1515/math-2016-0083

Received August 24, 2016; accepted October 17, 2016.

Abstract: In this paper, the stability of the adaptive fading extended Kalman filter with the matrix forgetting factor
when applied to the state estimation problem with noise terms in the non–linear discrete–time stochastic systems
has been analysed. The analysis is conducted in a similar manner to the standard extended Kalman filter’s stability
analysis based on stochastic framework. The theoretical results show that under certain conditions on the initial
estimation error and the noise terms, the estimation error remains bounded and the state estimation is stable.
The importance of the theoretical results and the contribution to estimation performance of the adaptation method
are demonstrated interactively with the standard extended Kalman filter in the simulation part.
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1 Introduction

The Kalman filter (KF) and the standard extended Kalman filter (EKF) are two most popular methods used for the
state estimation in linear and non-linear systems, respectively. They have maintained their popularity from their
discovery to present day since they can be easily applied to the estimation problem in many diverse areas including
natural and physical sciences, military and economics. The KF yields the optimum state estimation when the system
dynamics is fully known and the system noise processes is Gaussian white noise [1–5]. On the other hand, both the
KF and the EKF might give biased estimates and diverge when the initial estimates are not sufficiently good or the
arbitrary noise matrices have not been chosen appropriately or any changes occur in the system dynamics [6, 7].
To overcome these problems, sevaral adaptive filtering techniques [8–18] are proposed. Among them is the adaptive
fading extended Kalman filter with the matrix forgetting factor (AFEKF) [8]. The AFEKF is based on scalling the
error covariance of the prediction with the diagonal matrix forgetting factor. The calculation of the diagonal entries
are described in [8, 19]. The AFEKF compensates the effects of poor initial information or any changes in system
parameters.

As the EKF, any adaptive EKF can be used for state estimation in non–linear systems. However, it is crutial to
decide which filter to use because the filter estimates are desired to be close to the true values during the filtering
processes, in other words, the estimation error should be the smallest and the estimates should be stable. To address
the importance of this issue the stability and convergence analysis of the discrete–time EKF are studied [7, 8, 20–24].
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Hence, the stability analysis as well as the determination of the stability conditions of the AFEKF are very
important. The convergence and stability properties of the AFEKF, without noise terms, can be found in [8] where it
is shown that the AFEKF is exponentially stable for deterministic non–linear systems, namely, the estimation error
is bounded.

With this study, we extend the results of the article [8] by eliminating the restriction on the noise terms.
Then, using the direct method of Lyapunov, it has been proved that under certain conditions the AFEKF is still
an exponential observer i.e., the dynamics of the estimation error is exponentially stable. It is an important result as
the real–life systems are usually not noise free.

Troughout the manuscript, k� � � k denotes the Euclidean norm of a real vector or the spectral norm of a real
matrix.

The rest of the manuscript is structured as follows. We review the state estimation problem for non–linear
stochastic discrete–time systems and present some auxiliary results from the stochastic stability theory in Section 2.
In Section 3, the AFEKF is introduced and its boundedness of the error is proved. The numerical simulation is given
in Section 4. The conclusions are discussed in Section 5.

2 Review: state estimation and stochastic boundedness

This section overviews some definitions and fundamental results on the stochastic theory. Recall that a non–linear
discrete time stochastic system is given by the equations:

xnC1 D f .xn; un/CGnwn; (1)

yn D h .xn/CDn�n; (2)

where n 2 N0 is the discrete time point, xn 2 Rq is the state vector, un 2 Rq is the input vector and yn 2 Rm

is the output vector. Moreover, vn 2 Rk ; wn 2 Rl are uncorrelated zero-mean white noise process with identity
covarience and Dn 2 Rm�k ; Gn 2 Rq�l are time varying matrices. The functions f and h are assumed to be of
class C 1 i.e. continuously differentiable functions.

The state estimator for the system is

OxnC1 D f . Oxn; un/CKn .yn � h . Oxn// (3)

where Kn 2 Rq�m changes in time, is called the observer gain. Oxn represents the estimated states.
We define

An D
@f

@x
. Oxn; un/ ; (4)

Cn D
@h

@x
. Oxn/ : (5)

We also define the estimate error vector as
�n D xn � Oxn: (6)

By subtracting (3) from (1) and taking equations ( 2), (4)-(5) into account we get

�nC1 D .An �KnCn/ �n C rn C sn; (7)

where
rn D 'n .xn; Oxn; un/ �Kn�n .xn; Oxn/ ; (8)

sn D Gnwn �KnDn�n: (9)
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To analyze the error dynamics given in the equation (7) we recall the following lemma on the boundedness of
stochastic processes.

Lemma 2.1. Let Vn .�n/ be a stochastic process and �; N�; � > 0 and 0 < ˛ < 1 be real numbers such that the
inequalities

� k�nk
2
� Vn .�n/ � N� k�nk

2 (10)

and
E fVnC1 .�nC1/j �ng � Vn .�n/ � � � ˛Vn .�n/ (11)

are carried out by every solutions of the equation (7). Then the stochastic process is exponentially bounded in mean
square, that is,

E
n
k�nk

2
o
�
N�

�
E
n
k�0k

2
o
.1 � ˛/n C

�

�

n�1X
iD1

.1 � ˛/i (12)

for every n 2 N0. Moreover, the stochastic process is bounded with probability one.

Proof. See [25].

3 Error bounds for the AFEKF

Definition 3.1. A discrete- time adaptive fading extended Kalman filter with the matrix forgetting factor is given by
the following coupled difference equations

OxnC1 D f . Oxn; un/CKn .yn � h . Oxn// (13)

and Riccati difference equation:

PnC1 D AnƒnPnƒ
T
n A

T
n CƒnQnƒ

T
n �Kn

�
CnƒnPnƒ

T
n C

T
n CRn

�
KTn ; (14)

where Kn is the Kalman gain given by

Kn D AnƒnPnƒ
T
n C

T
n

�
CnƒnPnƒ

T
n C

T
n CRn

��1
: (15)

Moreover, ƒn D diag.�1; �2; � � � ; �q/ is a time varying q � q dimensional diagonal matrix forgetting factor with
�i � 1 i D 1; 2; � � � ; q; (see [8, 19] for the computation of ƒn). Furthermore, Qn and Rn are positive define,
symmetric matrices with dimensions q � q andm�m, respectively, and the covariances matrices for the currupting
noise terms in (1)-(2).

Theorem 3.2. Consider a nonlinear stochastic system given by (1)-(2) and an extended Kalman filter as stated in
Definition 3.1. Let the following assumptions hold.

1. There are real numbers Na; Nc; p; Np > 0 and �; N� � 1 such that the following bounds hold for every n 2 N0

kAnk � Na; (16a)

kCnk � Nc; (16b)

pI � Pn � NpI; (16c)

qI � Qn; (16d)

rI � Rn; (16e)
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�I � ƒn � N�I; (16f)

where q and r are the smallest eigenvalues of the matrices Qn and Rn, respectively. Moreover, � and N� are the
smallest and the largest diagonal entries of ƒn, respectively.

2. An is nonsingular matrix for every n 2 N0
3. There are positive real numbers "' ; "�; �' ; �� > 0 such that the nonlinear functions '; � in (8) are bounded

via
k'.x; Ox; u/k � �' kx � Oxk

2 ; (17)

k�.x; Ox/k � �� kx � Oxk
2 : (18)

Then the estimation error �n given by (6) is exponentially bounded in mean square and bounded with probability
one, provided that the initial estimation error satisfies

k�0k � � (19)

and the covariance matrices of the noise terms are bounded via

Gnƒnƒ
T
nG

T
n � ıI; (20)

DnD
T
n � ıI (21)

for some ı; � > 0:

To prove Theorem 3.2 we need the following auxiliary results .

Lemma 3.3. Under the conditions of Theorem 3.2 there is a real number 0 < ˛ < 1 such that

1 � ˛ D
1

�2

0BBB@1C �2q

N�2 Np

�
NaC Na N�2 Np Nc

1

r

�2
1CCCA

and

…n D
�
ƒnPnƒ

T
n

��1
satisfies the inequality

.An �KnCn/
T …nC1 .An �KnCn/ � .1 � ˛/…n (22)

for n � 0 with the Kalman gain Kn given in (15).

Proof. The proof mimics Lemma 3.1 in [25]. Substituting (15) in (14) and rearranging the resulting equation yields

PnC1 D .An �KnCn/ƒnPnƒ
T
n .An �KnCn/

T
CƒnQnƒ

T
n CKnCnƒnPnƒ

T
n .An �KnCn/

T : (23)

Multiplying the factor .An �KnCn/ƒnPnƒTn by A�1n from left and using Equation (15) yields

A�1n
�
An �KnCn

�
ƒnPnƒ

T
n D ƒnPnƒ

T
n �ƒnPnƒ

T
n C

T
n

�
CnƒnPnƒ

T
n C

T
CRn

��1
CnƒnPnƒ

T
n : (24)

Note that the right side of the equation (24) is a symmetric matrix. Thus, applying matrix inversion lemma in [26]
we obtain

A�1n .An �KnCn/ƒnPnƒ
T
n D

�
ƒnPnƒ

T
n C CnR

�1
n CTn

��1
� 0: (25)

Furthermore,

A�1n KnCn D ƒnPnƒ
T
n C

T
n

�
CnƒnPnƒ

T
n C

T
n CRn

��1
Cn � 0: (26)
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Due to above equations (25) and (26) along with ƒnPnƒTn D
�
ƒnPnƒ

T
n

�T
we obtain

KnCnƒnPnƒ
T
n .An �KnCn/

T
D An

h
A�1n KnCn

i h
A�1n .An �KnCn/ƒnPnƒ

T
n

iT
ATn � 0: (27)

From the equations (23) and (26) we have

PnC1 � .An �KnCn/ƒnPnƒ
T
n .An �KnCn/

T
CƒnQnƒ

T
n : (28)

The inequality (25) implies that .An �KnCn/�1 exists, so we obtain

PnC1 � .An �KnCn/
h
ƒnPnƒ

T
n C

�
AnKnCn

��1
CƒnQnƒ

T
n

�
.An �KnCn/

T
��1 i

.An �KnCn/
T : (29)

From (15) and (16a)-(16f) we have

kKnk � kAnk kƒnk kPnk
ƒTn  CTn  �CnƒnPnƒTn CT CRn��1 � Na N�2 Np Nc 1r : (30)

Substituting the inequalities (16a)-(16f) into (29) we obtain

PnC1 � .An �KnCn/

"
ƒnPnƒ

T
n C

�2q�
NaC Na N�2 Np Nc

1

r

�2 I
#
.An �KnCn/

T : (31)

Multiplying both sides of (31) from left and right with ƒnC1 and ƒT
nC1

, respectively, and using the inequalty (16f)
gives

ƒnC1PnC1ƒ
T
nC1 � �

2 .An �KnCn/

�
ƒnPnƒ

T
n C

�2q�
NaC Na N�2 Np Nc

1

r

�2 I��An �KnCn�T : (32)

Taking the inverse of both sides of (32) and multiplying from left and right with .An �KnCn/T and .An �KnCn/
we have, �

An �KnCn

�T
…nC1 .An �KnCn/ �

1

�2

�
1C

�2q

N�2 Np

�
NaC Na N�2 Np Nc

1

r

�2 ��1…n: (33)

Then the result follows.
.1 � ˛/ D

1

�2
1�

1C
�2q

N�2 Np

�
NaC Na N�2 Np Nc

1

r

�2�
: (34)

Lemma 3.4. Let the conditions of Theorem 3.2 be fulfilled, let …n D
�
ƒnPnƒ

T
n

��1
and Kn; rn given in (15),(8).

Then there are positive real numbers "0; �nonl such that

rTn …n

h
2 .An �KnCn/ .xn � Oxn/C rn

i
� �nonl kxn � Oxnk

3 (35)

holds for kxn � Oxnk � "0:

Proof. From (15), (16a)-(16f) and CnƒnPnƒ0nC
0
n > 0 we have

kKnk � Na N�
2
Np Nc
1

r
(36)

and using in (8) gives

krnk � k' .xn; Oxn; un/k C Na N�
2
Np Nc
1

r
k� .xn; Oxn/k : (37)
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By choosing "0 D min ."' ; "�/ and using (17), (18) we obtain

krnk � �' kxn � Oxnk
2
C Na N�2 Np Nc

1

r
�� k.xn; Oxn/k

2 : (38)

Since kxn � Oxnk
2
� "0n, we have

krnk � �' kxn � Oxnk
2 : (39)

Define

�0 D �' C

�
Na N�2 Np Nc

1

r

�
��: (40)

Then, for kxn � Oxnk
2
� "0, from (38) by taking …n D

�
ƒnPnƒ

T
n

��1
and using (16a)-( 16f) we obtain

rTn …n

h
2
�
An �KnCn

��
xn � Oxn

�
C rn

i
� �0 kxn � Oxnk

2 1

�2p

�
2

�
NaC Na N�2 Np Nc2

1

r

��
� kxn � Oxnk C �

0"0 kxn � Oxnk : (41)

Rearranging (41) gives

rTn …n

�
2
�
An �KnCn

�
.xn � Oxn/C rn

�
� �0

1

�2p

�
2
�
NaC Na N�2 Np Nc2

1

r

�
C �0"0

�
kxn � Oxnk

3 (42)

D �nonl kxn � Oxnk
3 (43)

where

�nonl D �
0 1

�2p

�
2

�
NaC Na N�2 Np Nc2

1

r

�
C �0"0

�
:

Lemma 3.5. Let the conditions of Theorem 3.2 be fulfilled, let …n D
�
ƒnPnƒ

T
n

��1
and Kn; sn given in (15), (9).

Then there is a positive real number �noise independent of ı such that

E
n
sTn …nC1sn

o
� �noiseı (44)

holds.

Proof. Using the equation (9) and after matrix distribution we obtain

sTn …nC1sn D

��
Gnwn �KnDnvn

�T
…nC1

�
Gnwn �KnDnvn

��
(45)

D

�
.Gnwn/

T …nC1 .Gnwn/ � .Gnwn/
T …nC1 .KnDnvn/

� .KnDnvn/
T …nC1 .Gnwn/C .KnDnvn/

T …nC1 .KnDnvn/

�
: (46)

Recall that the vectors wn and vn are uncorrelated, the terms containing both vanish so we have

sTn …nC1sn D f.Gnwn/
T …nC1 .Gnwn/C .KnDnvn/

T …nC1 .KnDnvn/g: (47)

By the group equations (16) and the inequality CnƒnPnƒTn C
T
n > 0 we have

kKnk < Na N�
2
Np Nc
1

r
: (48)

This inequality yields

sTn …nC1sn �
1

�2p
wTn G

T
n Gnwn C

Na2 Np2 Nc2 N�2

pr2
vTn D

T
n Dnvn: (49)
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Taking the trace of the above inequality we get

sTn …nC1sn �
1

�2p
tr
�
wTn G

T
n Gnwn

�
C
Na2 Np2 Nc2 N�2

pr2
tr
�
vTn D

T
n Dnvn

�
: (50)

Since tr .��/ D tr .��/, using (50) we obtain

sTn …nC1sn �
1

�2p
tr
�
Gnwnw

T
n G

T
n

�
C
Na2 Np2 Nc2 N�2

pr2
tr
�
Dnvnv

T
n D

T
n

�
; (51)

whereDn andGn are deterministic matrices. Remember that wn and vn are vector valued white noise process, thus,

E
n
vnv

T
n

o
D I (52)

and
E
n
wnw

T
n

o
D I (53)

hold. Thus we have

E
n
sTn …nC1sn

o
�

1

�2 tr
�
GnƒnƒTnG

T
n

�
p
C
Na2 Np2 Nc2 N�2

pr2
tr
�
Dnvnv

T
n D

T
n

�
: (54)

From the equations (20) and (21) we have

tr
�
Gnƒnƒ

T
nG

T
n

�
� ı tr .I / D qı (55)

and
tr
�
DnD

T
n

�
� ı tr .I / D mı; (56)

where q and m are the number of rows Gn and Dn, respectively. Defining

�noise D
q

�2p
C
Na2 Nc2 Np2 N�2m

pr2
(57)

yields
E
n
sTn …nC1sn

o
� �noiseı: (58)

This completes the proof.

We are now ready to prove the main result stated in Theorem 3.2 of the paper.

Proof of Theorem 3.2. There exists a function depending on error estimate

Vn .�n/ D �
T
n …n�n (59)

with …n D
�
ƒnPnƒ

T
n

��1
since Pn is positive definite. From the inequalities (16c)-(16f) we have

1

Np N�2
k�nk

2
� Vn .�n/ �

1

p�2
k�nk

2 ; (60)

which is similar to (10) with v D 1

Np N�2
and Nv D 1

p�
2 . We need an upper bound on E fVnC1 .�nC1/ j�ng as stated

in (11) to meet the requirements of Lemma 2.1. From (7) we obtain

Vn .�nC1/ D Œ.An �KnCn/ �n C rn C sn�
T …nC1 Œ.An �KnCn/ �n C rn C sn� : (61)

Using Lemma 3.3 we obtain

Vn .�nC1/ � .1 � ˛/ Vn .�n/C r
T
n …nC1

�
2
�
An �KnCn

�
�n

C rn
�
C 2sTn …nC1

��
An �KnCn

�
�n C rn

�
C sTn …nC1sn: (62)
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Taking the conditional expectation E fVnC1 .�nC1/ j�ng and considering the white noise property it can be seen
that the term E

˚
sTn …nC1 ..An �KnCn/ �n C rn/ j�n

	
vanishes since neither …nC1 nor An; Kn; Cn; rn; sn; �n

depend on vn or wn. The remaining terms are estimated by Lemma 3.4 and Lemma 3.5 as

E fVnC1 .�nC1/ j�ng � Vn .�n/ � �˛Vn .�n/C �nonl k�nk
3
C �noiseı (63)

for k�nk � "0. We define

" D min
�
"0;

˛

2 Np N�2�noise

�
: (64)

Then from (59), (60) under condition k�nk � " we obtain

�nonl k�nk k�nk
2
�

˛

2 Np N�2
k�nk

2
�
˛

2
Vn .�n/ : (65)

Substituting into (63) yields

E
˚
VnC1 .�nC1/ j�n

	
� Vn .�n/ � �˛Vn .�n/C �nonl k�nk

3„ ƒ‚ …
�˛2Vn.�n/

C �noiseı � �
˛

2
Vn .�n/C �noiseı (66)

for k�nk � ". Therefore we are able to apply Lemma 2.1 with k�0k � ", v D 1

Np N�2
, Nv D 1

p�
2 and � D �noiseı.

However, with some Q" � " for Q" � k�nk � " we have to guarantee the inequality

E fVnC1 .�nC1/ j�ng � Vn .�n/ � �
˛

2
Vn .�n/C �noiseı � 0: (67)

Choosing with the aid of (64)

ı D
˛ Q"2

2 Np N�2�noise
(68)

with some Q" � " we have for k�nk � Q"

�noise �
˛

2 Np N�2
k�nk

2
�
˛

2
Vn .�n/ ; (69)

which says that (67) holds. In result we conclude that the estimation error remains bounded if the initial error and
noise terms are bounded as stated in (19)-(21).

4 Simulation study

In the previous section it is shown that the estimation error of the discrete–time AFEKF is bounded under two
conditions: (1) sufficiently small initial estimation error (2) sufficiently small noise assumptions. Here, we run
simulations to illustrate numerically the significance of these assumptions and to show the numerical behaviour
of the theory we obtained. For this purpose we consider the Lotka-Volterra (prey-predator) model in which the
population growth of two interactive species is described. The model consists of a pair of non–linear differential
equations

dx1 .t/

dt
D ax1 .t/ � bx1 .t/ x2 .t/ ; (70)

dx2 .t/

dt
D �mx2 .t/ � rx1 .t/ x2 .t/ ; (71)

where x1 .t/ is the number of the first species (prey) in time t , x2 .t/ is the number of the second species (predator)
in time t , a is the reproduction rate of preys, m is the death rate of predators and parameters b and r describe the
interaction of the two species.

The state–space notation with perturbed gaussian white noise for the differential system is

xtC1 D

"
x1;tC1

x2;tC1

#
D

"
1C

�
a � bx2;t

�
�t 0

0 1C
�
�mC rx1;t

�
�t

#"
x1;t

x2;t

#
CGnwt ;
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yt D
h
0 1
i
xt CDtvt ; (72)

where yt is the measurements in time t , �t is integration time interval subdivider. Also, wt ; vt are uncorrelated
system and measurement noise terms with a mean of zero and Q;R covariance matrices, respectively [27].

We compare the EKF and the AFEKF with the initial estimates and the noise terms given in Table 1 over 250
replicated samples. The exact values of the parameters used in the simulations are given in Table 2.

Table 1. The initial state estimates and noise terms used in the simulation

Stability conditions are met Stability conditions are violated

Initial state � Ox0 Œ5 2�0 Œ3 3�0

Process noise �Gt 0:1� I2 0:000001� I2

Measurement noise �Dt 0:1 0:5

Unknown parameters
a D 0:2 b D 0:06 a D 0:2 b D 0:16

m D 0:1 r D 0:01 m D 0:12 r D 0:01

Table 2. True values of the unknown parameters in Simulation

Parameter name Exact value

a 0:2

b 0:06

m 0:10

r

(
0:01 if t < 50

0:03 if t � 50

The simulations results are displayed in Figures 1-5. Figure 1 describes the estimation error during the simulation
process. It is obvious that if the conditions in (18) to (20) are satisfied, then the estimation error remains bounded
for both the EKF and the AFEKF. In Figure 2, the sum of the squared estimation errors are shown. The estimation
error in the AFEKF at time t is smaller than that of the EKF, thus, the AFEKF converges to true value faster than
the EKF. On the other hand, when the conditions defined by (18) to (20) are violated, the state estimates of the EKF
diverge from true states as seen in Figure 3. Hence, the estimation error of the EKF grows without bound. However,
under the same conditions, the AFEKF’s state estimates by using forgetting factors in Figure 4 converge to the true
state values and the estimation errors remain bounded. Finally, Figure 5 demonstrates the performance improvement
in the sum of the squared estimation errors when the stability conditions are violated.

5 Conclusion

In this study, we have analyzed the error behavior of the AFEKF when it is applied to the general estimation problems
for non–linear stochastic discrete–time systems. The results show that the estimation error remains bounded in the
mean square sense under certain conditions. This includes small initial estimation error, small disturbing noise terms,
positive definite and bounded Ricatti difference equations. We have presented some numerical simulations to prove
the importance of the stability conditions as well as to evaluate the performance of the AFEKF compared to the
standart the EKF. The simulations presented state that small initial estimation error results in bounded estimation
error in both the EKF and the AFEKF. However, when the initial estimation error is not small enough, the estimation
error in the EKF is much bigger than the AFEKF which shows that the forgetting factors prevent from the filtering
estimation to diverge.
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Fig. 1. Estimation error for State 1 and State 2 (Stability conditions are met)

Fig. 2. Sum of the squared estimation errors (Stability conditions are met)

Fig. 3. State 1 and State 2 estimations (Stability conditions are violated)
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Fig. 4. Forgetting factors

Fig. 5. Sum of the squared estimation errors (Stability conditions are violated)
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