
Pak.j.stat.oper.res.  Vol.XII  No.4 2016  pp579-588 

Restricted Estimator in Two Seemingly Unrelated Regression Model 

Funda Erdugan 
Department of Statistics, Faculty of Arts and Sciences,  

Kırıkkale University, Turkey 

ferdugan@gmail.com 
 

Fikri AKDENİZ 

Department of Mathematics and Computer Science 

Faculty of Arts and Sciences 

Çağ University, 33800 Mersin, Turkey. 

fikriakdeniz@gmail.com 

Abstract 

This article is concerned with the estimation problem of multicollinearity in two seemingly unrelated 

regression (SUR) equations with linear restrictions. We propose a restricted feasible SUR estimates of the 

regression coefficients of this model and compare with feasible generalized least squares (FGLS) estimator 

and the estimator proposed by Revankar (1974) in the matrix mean square error sense. The ideas in the 

article are evaluated using Monte Carlo simulation. 
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1.   Introduction 

The seemingly unrelated regression model, introduced by Zellner (1962) improves the 

estimation efficiency by combining several equations into a single equation. The SUR 

model has simulated a countless theoretical and empirical results in many fields, such as 

econometrics, industry, biological sciences and etc. Zellner (1963), Revankar (1974), 

Kariya (1981), Srivastava and Giles (1987), Liu (2002), Wang and Veraverbeke (2008), 

Ma and Ye (2010) and Wang et all (2011) discussed an efficient estimation procedure for 

a system of two SUR equations.  

 

Consider a system of two SUR equations 

i i i iy X    , 1,2i    

where iy  is a 1T   vector of observations on the dependent variable in the ith equation, 

iX  is a iT n  matrix of explanatory variables in the ith equation with rank in , i  is a 

1in   vector of unknown parameters in the ith equation, i  is an 1T   vector of 

unobservable disturbances with 

  0iE    and  ,i j ijCov I       , 1,2i j   

where  ij   is 2 2  an unknown positive definite matrix with 0ij  , I  denotes a 

unit matrix. The SUR model can be expressed in the compact form as 
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The disturbances   has mean vector 0  and dispersion matrix I , where   represents 

the kronecker product. 

 

Generalized least squares (GLS) estimator of   

    
1

1 1ˆ
GLS X I X X I y


 

    . 

 

ˆ
GLS  is the best linear unbiased estimator (BLUE) of   in the SUR model. This estimate 

is not a feasible estimator of   because in general   is not known. Replacing the 

unknown   by its unrestricted estimate S , yields the two-stage Aitken estimator of   

    
1

1
1 1

2

ˆ
ˆ

ˆ

FGLS

FGLS

FGLS

X S I X X S I y






 

 
     

 
 

.     (1.2) 

 

The elements 
ijs  of S

 
are based on the residuals î  obtained by regressing iy  on all the 

regressors in the system and are given by  

1 1
ˆ ˆ

ij i j i Z js y P y
T T
      , 1,2i j   

where  
1

ZP I Z Z Z Z


   ,  1 2,Z X X . 

 

Zellner (1963) assumed that the regressors in the two equations are orthogonal (as 

1 2 0X X  ) and then proved that the two-stage Aitken estimator is superior to the ordinary 

least squares estimator (OLS). The two-stage Aitken estimate 
1ˆ
FGLS  of 1  is given as 

   
1 11 12

1 1 1 1 1 1 1 2

22

ˆ
FGLS

s
X X X y X X X y

s


 
          (1.3) 

by Zellner (1963). 

 

Revankar (1974) assumed that the regressors in the second equation are a proper subset 

of the regressors in the first equation i.e.,  

 1 2 1,X X L          (1.4) 

where 1L  is a   1 2T n n   matrix of T  observations on  1 2n n  explanatory variables 

deleted from the second equation and examined in the context of a two equations system 

some finite sample properties of   estimator. 
1ˆ
FGLS  is given as 
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2

1 11 12
1 1 1 1 1 1 1 2

22

FGLS X

s
X X X y X X X I P y

s


 
      ,     

2

1

2 2 2 2XP X X X X


   (1.5) 

by Revankar (1974). This estimator is also the special case of the two-stage covariance 

improved estimator proposed by Wang (1989) when there are only two linear equations 

in the system of seemingly unrelated regression (Ma and Ye, 2010). 

 

In practical regression analysis, researchers often encounter the problem of 

multicollinearity. In case of multicollinearity we know that when the correlation matrix 

has one or more small eigenvalues, the estimates of the regression coefficients can be 

large in absolute value. The least squares estimator performs poorly in the presence of 

multicollinearity. One of the methods to overcome the multicollinearity problem is to 

consider parameter estimation in addition to the sample information such as under some 

exact or stochastic restrictions on the unknown parameters (Rao et al., 2008). Alkhamisi 

(2010) proposed two SUR type estimators based on combining the SUR ridge regression 

and the restricted least squares methods.  

 

The object of the present paper is to consider the problem of multicollinearity and its 

statistical consequences for two seemingly unrelated regression (SUR) model when 

additional linear restrictions are assumed to hold. In Section 2, the restricted feasible GLS 

estimator is introduced under condition (1.4), and covariance matrix of an estimator is 

obtained in this section. In Section 3, we give a Monte Carlo experiment to compare the 

estimators. The conclusions of the paper are presented in Section 4. 

2.   Proposing Estimator 

The availability of prior information in the form of exact linear restrictions is utilized in 

the estimation of the parameters of a linear regression model. If we have prior 

information for each equation, we predict to be useful in SUR model estimation problem. 

Let us assume that the prior information is such that it can be written in the form of linear 

equalities 

1 1

2 2

1

2c

c C

C








          (2.1)

 

with ic  an is  vector and iC  a i is n  matrix. Denote  1 2c c c


  ,  1 2C diag C C  

and 
1 1 1 1

2 2 2 2

c C

c C

 


 

   
    

   
. Then (2.1) can be represented as 

c C          (2.2) 

where C is a known s n  matrix with i

i

s s , i

i

n n  for 1,2i   and c is a known s-

dimensional vector. In this article we suggest minimizing the sum of squared residuals of 

model (1.1) subject to (2.2). Therefore, the restricted regression is transformed into an 

optimization problem: 
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1

arg min y X I y X


 


    

c C . 

For this optimization problem, we can apply the Lagrange multiplier method. Firstly, a 

Lagrangian function is introduced as follows 

         
1

, 2L y X I y X C c     
        

where   is an s-dimensional vector of Lagrange multipliers. Differentiating function 

 ,L    with respect to β and λ, respectively, gives the normal equations 

 
   

1 1,1
0

2

L
X I y X I X C

 
 



 
        


   (2.3) 

 
 

,1
0

2

L
C c

 





  


.       (2.4) 

 

From Equations (2.3) and (2.4) we can easily obtain 

        
1

1 1
1 1ˆ ˆ ˆ

R GLS GLSX I X C C X I X C c C  


 
          

 
 (2.5) 

where ˆ
R  is the restricted estimator. When   is unknown, we use the consistent 

estimator of  , S  to obtain the feasible estimator of ˆ
R : 

        
1

1 1
1 1ˆ ˆ ˆ

FR FGLS FGLSX S I X C C X S I X C c C  


 
          

 
 (2.6) 

 

Thus, the restricted feasible SUR estimator of   is given by 

   

 

   

 

2

2

1 112
1 1 1 1 1 1 1 2

22

1

2 2 2 2

1 1 1 2 1 1 1 2

2 1 2 2 2 1 2 2

1 112
1 1 1 1 1 1 1 1 1 1 2

22

1

2 2 2 2 2 2

ˆ
X

FR

X

s
X X X y X X X P y

s

X X X y

C KC P C LC T C KC S C LC U

C MC P C NC T C MC S C NC U

s
c C X X X y C X X X P y

s

c C X X X y
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(2)

ˆ

ˆ
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         (2.7) 

where 

   
2

1 1

1 1 1 1 1 1

22

1
XK X X I X P X X X

s

     
 

, 

 
   

2
1 1

1 1 1 2 2 22

12 1

r
L X X X X X X

s r

 
  


 

 
    

2
1 1

2 2 2 1 1 12

12 1

r
M X X X X X X

s r

 
  


, 

 
 

1

2 22

11

1

1
N X X

s r





, 

     

    

2

1 112
1 1 1 2 1 1 1 1 1 1 1 1 1 1 2

22

1

1 1 1 2 2 2 2 2 2 2

X

s
a C KC P C LC T c C X X X y C X X X P y

s

C KC S C LC U c C X X X y

 



 
         

 

     

 and 

     

    

2

1 112
2 1 2 2 1 1 1 1 1 1 1 1 1 1 2

22

1

2 1 2 2 2 2 2 2 2 2

X

s
b C MC P C NC T c C X X X y C X X X P y

s

C MC S C NC U c C X X X y

 



 
         

 

     

. 

 

 1
ˆ

FR
  is simplified as 

     

   

  

   

2

1

1 1 1 1 2 1 1 1 1 11

112
1 1 1 1 2 1 1 1 1 2

22

1

1 1 2 1 2 2 2 2 2 2

1 1 1 2 2 1 1 1 2 1

ˆ
FR

X

I C KC PC C LC TC X X X y

s
I C KC PC C LC TC X X X P y

s

C KC SC C LC UC X X X y

C KC S C LC U c C KC P C LC T c








       

       

    

      

 

or 

       

     

2

1 112
1 1 1 1 1 1 1 1 1 21

22

1

2 2 2 2 2 1 1 1 2 2 1 1 1 2 1

ˆ
XFR

s
I D X X X y I D X X X P y

s

D X X X y C KC S C LC U c C KC P C LC T c


 



      

         

 

       

     

2

1 112
1 1 1 1 1 1 1 1 1 1 1 2 2 2

22

1

2 2 2 2 2 1 1 1 2 2 1 1 1 2 1

X

s
I D I D X X X I D X X X P D

s

D X X X C KC S C LC U c C KC P C LC T c

   



 



         

         

 (2.8) 

 

where 1 1 1 1 1 2 1D C KC PC C LC TC    , 2 1 1 2 1 2 2D C KC SC C LC UC   , 

       
1

1 1 1 1

1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 1 1 1P C KC C KC C LC C NC C MC C KC C LC C MC C KC


              
 

   
1

1 1

1 1 1 2 2 2 2 1 1 1 1 2S C KC C LC C NC C MC C KC C LC
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1

1 1

2 2 2 1 1 1 1 2 2 1 1 1T C NC C MC C KC C LC C MC C KC


         
 

 

 
1

1

2 2 2 1 1 1 1 2U C NC C MC C KC C LC


     
 

. Clearly under the 0  , 
 1

ˆ
FR

  estimator is 1̂  

estimator. 

We investigate the efficiency of the restricted feasible SUR estimator of 1 , as compared 

to the unrestricted estimator in Revankar (1974). The expected value of (2.8) is equal to 

        1 1 2 2 1 1 1 2 2 1 1 1 2 11
ˆ

FR
E I D D C KC S C LC U c C KC P C LC T c             . (2.9) 

 

This means that 
 1

ˆ
FR

  is biased estimator of 1 . Thus, the covariance matrix for (2.8) is 

given by 

              
9

1 1 1 1 1
1

ˆ ˆ ˆ ˆ ˆ
iFR FR FR FR FR

i

Cov E E E Q    



       (2.10) 

where 

    1 1 1 1 1Q E I D I D     , 

     
2

112
2 1 1 2 1 1 1 1

22

X

s
Q E I D P X X X I D

s
 

      
 

, 

    1

3 1 1 2 2 2 2 2Q E I D X X X D 
     , 

    
2

112
4 1 1 1 1 2 1 1

22

X

s
Q E I D X X X P I D

s
 

       
 

, 

      
2 2

2
1 112

5 1 1 1 1 2 2 1 1 1 12

22

X X

s
Q E I D X X X P P X X X I D

s
 

        
 

, 

    
2

1 112
6 1 1 1 1 2 2 2 2 2 2

22

X

s
Q E I D X X X P X X X D

s
 

  
     

 
, 

    1

7 2 2 2 2 2 1 1Q E D X X X I D 
      , 

     
2

1 112
8 2 2 2 2 2 2 1 1 1 1

22

X

s
Q E D X X X P X X X I D

s
 

       
 

 

and 

    1 1

9 2 2 2 2 2 2 2 2 2 2Q E D X X X X X X D 
      . 

 

Following Zellner (1963), Revankar (1974) and Liu (2002), 12

22

s

s
 obeys a Pearson Type 

VII or Student “t” distribution with  

12 12

22 22

s
E
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and 
2

2
212 11 11

22 22 22 1

1

2

s
E

s T n

  


 

   
    

    

 

where  1 1n rank X . Using these results we can find that 

  1 11 1 1Q I D I D           (a) 

     
2

2
112

2 1 1 1 1 1

22

XQ I D P X X X I D




          (b) 

   
1

3 12 1 2 2 2 2Q I D X X X D
          (c) 

    
2

2
112

4 1 1 1 1 1

22

XQ I D X X X P I D




           (d) 

      
2

2
1 12

5 11 1 1 1 1 1 1 1 1

1

1

2
XQ I D X X X P X X X I D

T n


 

         
  

 (e) 

    
2

1 1

6 12 1 1 1 1 2 2 2 2XQ I D X X X P X X X D
           (f) 

   
1

7 21 2 2 2 2 1Q D X X X I D
           (g) 

     
2

1 1

8 12 2 2 2 2 1 1 1 1XQ D X X X P X X X I D
           (h) 

and 

 
1

9 22 2 2 2 2Q D X X D
  .        (i) 

 

From (2.10) and (a)-(i), we get  
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22 22 1

1 1 1

1 1 12 2 2 2 2 2 21 2 2 2 1 22 2 2 2 2

ˆ

1

2

FR

X X X

Cov I D

I P X X X X X X P X X X P X X X
T n

I D I D X X X D D X X X I D D X X D



  
  

 

  

   

  

 

  
           

   

              
   

 

         

     

2 2

2
1 1 12 2

11 1 1 1 1 1 1 1 1 1 1 1

1

1 1

12 1 2 2 2 2 22 2 2 2 2

1
2

2

2

X XI D I P X X X X X X P X X X I D
T n

I D X X X D D X X D


  

 

  

 

             
   

    

or 
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11 1 1

2 2

11 1 1

1

1 1

12 1 2 2 2 2 22 2 2 2 2

1
1

2
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I D I A I A I D
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T n
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    (2.11) 

where  
2

1

1 1 1XA P X X X


  



Funda Erdugan, Fikri Akdeniz 

Pak.j.stat.oper.res.  Vol.XII  No.4 2016  pp579-588 586 

 

We now compare the 
 1

ˆ
FR

  estimator with 
1ˆ
FGLS  estimator and 

1

FGLS  estimator by the 

matrix mean square (MSE) criterion. The nonnegativeness of mse among these estimators 

cannot be easily seen. In order to observe the performance of these estimators, we will 

prepare a simulation study next section. 

3.   The Simulation Study 

In this section the performance of the proposed restricted feasible SUR estimator of   is 

examined via Monte Carlo simulations. This simulation study is partly based on 

Alkhamisi (2010). In all simulations, the explanatory variable 1X  is generated from 

 XMVN ,04  with   1Xdiag  and   XXdiagoff  . Three different sets of 

correlations namely 0.8X  , 0.9 and 0.99 are considered. We consider that 2X  is 

subset of 1X . The random errors are generated from  eMVN ,03  with parameters 

  1ediag  and   eediagoff   and correlation coefficients 0.35e   and 0.8.   

parameter vectors are chosen arbitrarily such as suitable dimensional 1 vector. 

Observations on the dependent variable are determined with the following equation, 

 
1

in

ti tij ij ti

j

y x e


  , Tt ,,1 ; 1,2i   

where 11tix . To study the effect of small and large sample on the properties of estimators 

of β we considered samples of sizes 15 and 100 for small and large samples respectively. 

The restriction matrices are given in Table 1.  

Table 1:   Linear restrictions for each equations 

1C     2C    

7 0 3 0 0 4 0 

0 4 0 0 2 0 0 

3 0 0 1 1 0 3 

 

For each choice of X , e  and T the experiment is replicated 1000 times and then the 

MSEs for the estimators are calculated as follows 

      


 



  i

i

iMSE
1000

11000

1
 

where 
i
  denotes the estimated parameter in the i-th simulation.  

 

MATLAB R2009 is used for the simulation. From the simulation results shown in Table 

2, we can see that FGLS estimator performs the worst among all estimators in terms of 

scalar MSE. The performance of RF estimator outperforms other estimators in terms of 

scalar MSE except for high correlation among the explanatory variables and among the 
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equations. The increase in the correlation among the explanatory variables leads to an 

increase in the scalar MSEs for all the estimators. We observed that as the correlation 

among equations increases, the scalar MSEs of the estimators increases. 

Table 2:   Estimated scalar MSE of the FGLS, Revankar and RF estimators   

T  X  e  FGLS Revankar RF 

15 0.8 0.35 0,060677 0,015991 0,009497 

  
0.8 0,216745 0,016083 0,012344 

 
0.9 0.35 0,229289 0,015995 0,009849 

  
0.8 1,472677 0,016131 0,014788 

 
0.99 0.35 7,949551 0,016026 0,011265 

    0.8 2,962609 0,016424 0,027583 

100 0.8 0.35 0,028764 0,016004 0,009313 

  
0.8 0,180810 0,016264 0,015973 

 
0.9 0.35 0,064938 0,016006 0,009215 

  
0.8 4,398776 0,016321 0,014290 

 
0.99 0.35 1,204430 0,016113 0,009671 

  
0.8 5,389418 0,018659 0,024309 

4.   Conclusion remarks 

In this article, we proposed a restricted feasible SUR estimator for the vector of 

parameters in two seemingly unrelated regression models when additional linear 

restrictions on the parameter vector are assumed to hold. The restricted feasible estimator 

of the   parameter vector is then compared with the FGLS estimator and the estimator 

proposed by Revankar (1974) in terms of MSE criterion. The investigation has been done 

by means of Monte Carlo simulations. The results have shown that our proposed 

estimator produce smaller MSEs. 
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