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Abstract. In this study, we give some fixed point results for multivalued mappings using α-admissi-
bility and θ-contractivity of multivalued mappings on complete metric spaces. Our results are proper
generalizations of some fixed point results related to multivalued contraction. We also provide an
example showing this fact. Finally, we obtain some ordered fixed point results for multivalued
mappings as corollary.
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1 Introduction and preliminaries

Fixed point theory is one of the most rapidly growing research areas in nonlinear func-
tional analysis and a very powerful tool of the current mathematical applications. Except
for a great number of extensions of Banach’s contraction mapping principle for single
valued mappings, it was also naturally extended to multivalued mappings by Nadler [25]
in 1969, which is also sometimes referred to as Nadler’s multivalued contraction prin-
ciple. Since then, there has been continuous and intense research activity in multivalued
mapping fixed point theory and by now there are a number of results that extend this result
in many different directions (see [8, 9, 11, 18, 21, 29, 30]).

Recently, Samet et al. [31] introduced the interesting notion called α-admissible self-
mappings of metric spaces. Using this concept, they give a class of mappings known as
α-ψ-contractive mapping including Banach contractions. Also, Jleli and Samet [16] intro-
duced a new type of contraction called θ-contraction, and it was extended to multivalued
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mapping case by Hançer et al. [12]. In this work, considering the concepts of multivalued
θ-contraction and multivalued α-admissible mappings, we present some multivalued fixed
point results on complete metric spaces. Moreover, two examples and some corollaries are
given to illustrate the usability of the obtained results.

In the following lines, we present some notational and terminological conventions,
which will be used throughout this paper.

Let (X, d) be a metric space. We denote by P (X) the family of all nonempty subsets
of X, by CB(X) the family of all nonempty closed and bounded subsets of X and
by K(X) the family of all nonempty compact subsets of X. We define the Pompeiu–
Hausdorff distance with respect to d by

H(A,B) = max
{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}

for every A,B ∈ CB(X), where d(x,B) = inf{d(x, y): y ∈ B}. It is well known that
H is a metric on CB(X). We can find detailed information about the Pompeiu–Hausdorff
metric in [2, 6, 15]. An element x ∈ X is called a fixed point of a multivalued mapping
T : X → P (X) if x ∈ Tx. Let T : X → CB(X). Then T is said to be a multivalued
contraction if there exists L ∈ [0, 1) such that H(Tx, Ty) 6 Ld(x, y) for all x, y ∈ X
(see [25]). In 1969, Nadler [25] proved a fundamental fixed point theorem for multivalued
mappings: Every multivalued contraction mappings on complete metric spaces has a fixed
point.

Let (X, d) be a metric space, T : X → P (X) and α : X×X → [0,∞) be a function.
Then we say that:

1. T is an α-admissible mapping whenever α(x, y) > 1 for each x ∈ X and y ∈ Tx
implies α(y, z) > 1 for all z ∈ Ty.

2. T is an α∗-admissible mapping whenever α(x, y) > 1 for each x ∈ X and
y ∈ Tx implies α∗(Tx, Ty) > 1, where α∗(Tx, Ty) = inf{α(a, b): a ∈ Tx,
b ∈ Ty}.

3. α has property (B) whenever {xn} is a sequence inX such that if α(xn, xn+1) > 1
for all n ∈ N and xn → x, then α(xn, x) > 1 for all n ∈ N.

It is easy to see that α∗-admissible mapping are also α-admissible mapping, but the
converse may not be true as shown in Example 15 of [22].

Let Ψ be the family of nondecreasing functions ψ : [0,∞) → [0,∞) such that∑∞
n=1 ψ

n(t) < ∞ for all t > 0, where ψn is the nth iterate of ψ. It is easily proved
that if ψ ∈ Ψ , then ψ(0) = 0 and ψ(t) < t for all t > 0.

A multivalued mapping T : X → CB(X) is called multivalued α-ψ-contractive
whenever, for all x, y ∈ X ,

α(x, y)H(Tx, Ty) 6 ψ
(
d(x, y)

)
,

and multivalued α∗-ψ-contractive whenever, for all x, y ∈ X ,

α∗(Tx, Ty)H(Tx, Ty) 6 ψ
(
d(x, y)

)
.
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The fixed point results for these type mappings are given as follows (also see [3, 13,
14, 17, 19, 23]):

Theorem 1. (See [24].) Let (X, d) be a complete metric space, T : X → CB(X) be
a multivalued mapping, α : X × X → [0,∞) be a function, and ψ ∈ Ψ be a strictly
increasing mapping. Assume that the following conditions hold:

(i) T is α-admissible and multivalued α-ψ-contractive on X;
(ii) There exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > 1;

(iii) T is continuous or α has property (B).

Then T has a fixed point in X .

Theorem 2. (See [4].) Let (X, d) be a complete metric space, T : X → CB(X) be
a multivalued mapping, α : X × X → [0,∞) be a function, and ψ ∈ Ψ be a strictly
increasing mapping. Assume that the following conditions hold:

(i) T is α∗-admissible and multivalued α∗-ψ-contractive on X;
(ii) There exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > 1;

(iii) T is continuous or α has property (B).

Then T has a fixed point in X.

On the other hand, Jleli and Samet [16] introduced a new type of contractive map-
pings. We called it as θ-contraction and proved a fixed point theorem for mappings of
this type for which the Banach contraction principle and some other known contractive
conditions in the literature can be obtained as special cases. We denote the family of all
functions θ : (0,∞)→ (1,∞) satisfying the following properties by Θ:

(Θ1) θ is nondecreasing;
(Θ2) For each sequence {tn}⊂(0,∞), limn→∞θ(tn)=1 if and only if limn→∞tn=

0+;
(Θ3) There exist r ∈ (0, 1) and l ∈ (0,∞] such that limt→0+(θ(t)− 1)/tr = l.

By considering conditions (Θ1)–(Θ3), Jleli and Samet [16] introduced the concept of
θ-contraction as follows:

Let (X, d) be a metric space. A mapping T : X → X is said to be an θ-contraction if
there exists θ ∈ Θ and k ∈ (0, 1) such that

θ
(
d(Tx, Ty)

)
6
[
θ
(
d(x, y)

)]k
(1)

for all x, y ∈ X with d(Tx, Ty) > 0. If we consider the different type of mapping θ,
then we obtain some classes of contractions known in the literature. For example, let
θ : (0,∞) → (1,∞) be given by θ(t) = e

√
t. It is clear that θ ∈ Θ. Then, for each

T : X → X mapping satisfying (1), we have

d(Tx, Ty) 6 k2d(x, y) (2)
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for all x, y ∈ X with d(Tx, Ty) > 0. It is clear that for x, y ∈ X such that Tx = Ty,
the above inequality also holds. Therefore, T is an ordinary contraction. Similarly, let
θ : (0,∞) → (1,∞) be given by θ(t) = e

√
tet . It is clear that θ ∈ Θ. Then, for each

mapping T : X → X satisfying (1), we have

d(Tx, Ty)

d(x, y)
ed(Tx,Ty)−d(x,y) 6 k2 (3)

for all x, y ∈ X with d(Tx, Ty) > 0.
In addition, we have concluded that every θ-contraction T is a contractive mapping,

i.e., d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y. Thus, every θ-contraction mapping
is continuous. On the other side, example in [16] shows that the mapping T : X → X is
not ordinary contraction, but it is a θ-contraction with θ(t) = e

√
tet . Thus, the following

theorem, which was given as a corollary by Jleli and Samet is a proper generalization of
Banach’s contraction principle.

Theorem 3. (See [16, Cor. 2.1].) Let (X, d) be a complete metric space and T : X → X
be a θ-contraction. Then T has a unique fixed point in X .

Recently, Hançer et al. [12] focused on θ-contraction for multivalued mappings and in-
troduced the concept of multivalued θ-contractions. See also recent paper [32]. Let (X, d)
be a complete metric space and T : X → CB(X). Then T is said to be a multivalued
θ-contraction if there exist θ ∈ Θ and k ∈ (0, 1) such that

θ
(
H(Tx, Ty)

)
6
[
θ
(
d(x, y)

)]k
for all x, y ∈ X with H(Tx, Ty) > 0. It is clear that every multivalued contraction
mappings is also multivalued θ-contraction with θ(t) = e

√
t.

Theorem 4. (See [12].) Let (X, d) be a complete metric space, and T : X → K(X) be
a multivalued θ-contraction. Then T has a fixed point in X .

As shown in [12, Ex. 1], we cannot take CB(X) instead of K(X) in Theorem 4.
Nevertheless, it can be seen CB(X) instead of K(X) by adding the following condition
on θ (see [12]) as follows:

(Θ4) θ(inf A) = inf θ(A) for all A ⊂ (0,∞) with inf A > 0.

Note that if θ satisfies (Θ1), then it satisfies (Θ4) if and only if it is right continuous.
Now, letΘ∗ denote the family of all functions θ : (0,∞)→ (1,∞) satisfying (Θ1)–(Θ4).
The function θ : (0,∞) → (1,∞) defined by θ(t) = e

√
t for t 6 1, and θ(t) = 3 for

t > 1, is belonging to Θ \Θ∗.
Therefore, considering the class Θ∗, we can provide the following theorem, which is

a real generalization of Nadler’s result.

Theorem 5. (See [12].) Let (X, d) be a complete metric space, and T : X → CB(X) be
a multivalued θ-contraction with θ ∈ Θ∗. Then T has a fixed point in X .
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2 Main results

Before we give our main results, we recall some definitions and facts for multivalued
mappings. Let X and Y be two topological spaces. Then a multivalued mapping T :
X → P (Y ) is said to be upper semicontinuous (lower semicontinuous) if the inverse
image of closed sets (open sets) is closed (open). A multivalued mapping is continuous if
it is upper as well as lower semicontinuous.

Lemma 1. (See [15].) Let (X, d) be a metric space, and let T : X → P (X) be an upper
semicontinuous mapping such that Tx is closed for all x ∈ X . If xn → x0, yn → y0 and
yn ∈ Txn, then y0 ∈ Tx0.

Now, we give concept of multivalued (α, θ)-contraction. Let (X, d) be a metric space,
T : X → CB(X) and α : X × X → [0,∞) be a function. We define the set ST,α ⊆
X ×X by

ST,α =
{
(x, y): α(x, y) > 1 and H(Tx, Ty) > 0

}
.

For simplicitly, we denote it further just by S. Note that (x, x) /∈ S. Then we say that
T is a multivalued (α, θ)-contraction if there exist θ ∈ Θ and k ∈ (0, 1) such that

θ
(
H(Tx, Ty)

)
6
[
θ
(
d(x, y)

)]k
(4)

for all (x, y) ∈ S.
Now, we give some fixed point results for mappings of this type on a complete metric

space.

Theorem 6. Let (X, d) be a complete metric space, T : X → K(X) be a multivalued
mapping and α : X ×X → [0,∞) be a function. Assume that the following conditions
hold:

(i) T is an α-admissible and multivalued (α, θ)-contraction with θ ∈ Θ;
(ii) There exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > 1;

(iii) T is upper semicontinuous or α has property (B).

Then T has a fixed point in X .

Proof. Suppose that T has no fixed point. Then d(x, Tx) > 0 for all x ∈ X . Let x0
and x1 be as mentioned in the hypotheses. Then we have H(Tx0, Tx1) > 0. Therefore,
(x0, x1) ∈ S. So, from (4) and considering (Θ1), we obtain that

θ
(
d(x1, Tx1)

)
6 θ
(
H(Tx0, Tx1)

)
6
[
θ
(
d(x0, x1)

)]k
, (5)

where k ∈ (0, 1). Since Tx1 is compact, there exists x2 ∈ Tx1 such that

d(x1, x2) = d(x1, Tx1).

Then from (5) we get

θ
(
d(x1, x2)

)
6 θ
(
H(Tx0, Tx1)

)
6
[
θ
(
d(x0, x1)

)]k
.
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Also, since T is α-admissible, we get α(x1, x2) > 1 for x2 ∈ Tx1. Again, since x2 ∈
Tx1, (x1, x2) ∈ S. So, from (4) we obtain that

θ
(
d(x2, Tx2)

)
6 θ
(
H(Tx1, Tx2)

)
6
[
θ
(
d(x1, x2)

)]k
. (6)

Since Tx2 is compact, there exists x3 ∈ Tx2 such that

d(x2, x3) = d(x2, Tx2).

Then from (6) we have

θ
(
d(x2, x3)

)
6 θ
(
H(Tx1, Tx2)

)
6
[
θ
(
d(x1, x2)

)]k
.

In this way, we can construct a sequence {xn} inX such that xn+1∈Txn, (xn, xn+1)∈S
and

θ
(
d(xn, xn+1)

)
6
[
θ
(
d(xn, xn−1)

)]k
(7)

for all n ∈ N. Denote dn = d(xn, xn+1) for n ∈ N∪{0}. Then dn > 0 for all n ∈ N∪{0},
and using (7), we have

θ
(
dn) 6

[
θ(dn−1)

]k
6
[
θ(dn−2)

]k2
6 · · · 6

[
θ(d0)

]kn
.

Thus, we obtain
1 < θ(dn) 6

[
θ(d0)

]kn
(8)

for all n ∈ N. Letting n→∞ in (8), we obtain

lim
n→∞

θ(dn) = 1. (9)

From (Θ2), limn→∞ dn = 0+, and so, from (Θ3) there exist r ∈ (0, 1) and l ∈ (0,∞]
such that

lim
n→∞

θ(dn)− 1

(dn)r
= l.

Suppose that l <∞. In this case, let D = l/2 > 0. From the definition of the limit, there
exists n0 ∈ N such that, for all n > n0,∣∣∣∣θ(dn)− 1

(dn)r
− l
∣∣∣∣ 6 D.

This implies that, for all n > n0,

θ(dn)− 1

(dn)r
> l −D = D.

Then, for all n > n0,
n(dn)

r 6 An
[
θ(dn)− 1

]
,

where A = 1/D.
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Suppose now that l = ∞. Let D > 0 be an arbitrary positive number. From the
definition of the limit, there exists n0 ∈ N such that, for all n > n0,

θ(dn)− 1

(dn)r
> D.

This implies that, for all n > n0,

n(dn)
r 6 An

[
θ(dn)− 1

]
,

where A = 1/D.
Thus, in all cases, there exist A > 0 and n0 ∈ N such that, for all n > n0,

n(dn)
r 6 An

[
θ(dn)− 1

]
.

Using (8), we obtain, for all n > n0,

n(dn)
r 6 An

[[
θ(d0)

]kn − 1
]
.

Letting n→∞ in the above inequality, we obtain

lim
n→∞

n(dn)
r = 0.

Thus, there exits n1 ∈ N such that n(dn)r 6 1 for all n > n1. So, for all n > n1, we
have

dn 6
1

n1/r
. (10)

In order to show that {xn} is a Cauchy sequence, consider m,n ∈ N such that m > n >
n1. Using the triangular inequality for the metric and from (10), we have

d(xn, xm) 6 d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

= dn + dn+1 + · · ·+ dm−1

=

m−1∑
i=n

di 6
∞∑
i=n

di 6
∞∑
i=n

1

i1/r
.

By the convergence of the series
∑∞
i=1 i

−1/r we get d(xn, xm) → 0 as n → ∞. This
yields that {xn} is a Cauchy sequence in (X, d). Since (X, d) is a complete metric space,
the sequence {xn} converges to some point z ∈ X , that is, limn→∞ xn = z.

If T is upper semicontinuous, then by Lemma 1 we have z ∈ Tz. This contradicts
with the assumption that T has no fixed point.

Now, assume that α has property (B). Then α(xn, z) > 1 for all n ∈ N. Since
limn→∞ xn = z and d(z, Tz) > 0, there exists n0 ∈ N such that d(xn+1, T z) > 0
for all n > n0. Therefore, H(Txn, T z) > 0 for all n > n0. Thus, (xn, z) ∈ S for all
n > n0. Now, from (4) and (Θ1) we have

θ
(
d(xn+1, T z)

)
6 θ
(
H(Txn, T z)

)
6
[
θ
(
d(xn, z)

)]k
,
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and so,
d(xn+1, T z) 6 d(xn, z) (11)

for all n > n0. Letting n→∞ in (11), we obtain d(z, Tz) = 0. That is, we get z ∈ Tz.
This contradicts with the assumption that T has no fixed point.

As a result, this proves that T has a fixed point in X .

Remark 1. As we mentioned earlier, we cannot extend the range of T , i.e., K(X)
cannot be replaced by CB(X) in Theorem 6. Example 1 in [12] shows this fact by taking
α(x, y) = 1. However, we can take CB(X) instead of K(X) by adding condition (Θ4)
on θ.

Theorem 7. Let (X, d) be a complete metric space, T : X → CB(X) be a multivalued
mapping and α : X ×X → [0,∞) be a function. Assume that the following conditions
hold:

(i) T is an α-admissible and multivalued (α, θ)-contraction with θ ∈ Θ∗;
(ii) There exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > 1;

(iii) T is upper semicontinuous or α has property (B). Then T has a fixed point in X .

Proof. We begin proceeding as in the proof of Theorem 6. Considering condition (Θ4),
we can write

θ
(
d(x1, Tx1)

)
= inf
y∈Tx1

θ
(
d(x1, y)

)
.

So, from
θ
(
d(x1, Tx1)

)
6 θ
(
H(Tx0, Tx1)

)
6
[
θ
(
d(x0, x1)

)]k
we have

inf
y∈Tx1

θ
(
d(x1, y)

)
6
[
θ
(
d(x0, x1)

)]k
<
[
θ
(
d(x0, x1)

)](k+1)/2
. (12)

Then from (12) there exists x2 ∈ Tx1 such that

θ
(
d(x1, x2)

)
6
[
θ
(
d(x0, x1)

)](k+1)/2
.

The rest of the proof is analogous to Theorem 6.

Remark 2. If we take α(x, y) = 1 in Theorem 7, we obtain Theorem 5. In addition, if
we take θ(t) = e

√
t, we obtain Nadler’s result.

Now, we give an example showing that T is a multivalued (α, θ)-contraction but not
multivalued θ-contraction. Therefore, Theorem 7 (resp. Theorem 6) can be applied to this
example, but Theorems 1, 2, 4 and 5 cannot.

Example 1. Consider the complete metric space (X, d), where X = {0, 2, 4, . . . } and
d : X ×X → [0,∞) is given by

d(x, y) =

{
0, x = y,

x+ y, x 6= y.

http://www.mii.lt/NA
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Define T : X → CB(X) by

Tx =

{
{x}, x ∈ {0, 2},
{0, 2, . . . , x− 2}, x > 4,

and α : X ×X → [0,∞) by

α(x, y) =

{
0, (x, y) ∈ {(0, 2), (2, 0)},
2, otherwise.

Then it is clear that T is an α-admissible mapping.
Now, we claim that T is a multivalued (α, θ)-contraction with k = e−1 and θ(t) =

e
√
tet . To see this, we have to show that

θ
(
H(Tx, Ty)

)
6
[
θ
(
d(x, y)

)]k
for all (x, y) ∈ S or, equivalently,

H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) 6 e−2 (13)

for all (x, y) ∈ S. Note that

S =
{
(x, y) ∈ X ×X: α(x, y) > 1 and H(Tx, Ty) > 0

}
=
{
(x, y) ∈ X ×X: (x, y) /∈

{
(0, 2), (2, 0)

}
and x 6= y

}
.

Thus, without loss of generality, we may assume x > y for all (x, y) ∈ S in the following
cases:

Case 1. Let y = 0 and x > 4. Then H(Tx, Ty) = x− 2 and d(x, y) = x, and so, we
have

H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) 6

x− 2

x
e−2 6 e−2.

Case 2. Let y = 2 and x = 4. Then H(Tx, Ty) = 2 and d(x, y) = 6, and so, we
have

H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) 6

1

3
e−4 6 e−2.

Case 3. Let y = 2 and x > 4. Then H(Tx, Ty) = x and d(x, y) = x+2, and so, we
have

H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) 6

x

x+ 2
e−2 6 e−2.

Nonlinear Anal. Model. Control, 21(5):673–686
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Case 4. Let x > y > 4. Then H(Tx, Ty) = x− 2 and d(x, y) = x+ y, and so, we
have

H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) =

x− 2

x+ y
e−2−y 6 e−2.

This shows that T is a multivalued (α, θ)-contraction.
For x0 = 2 and x1 ∈ Tx0 = {2}, we have α(x0, x1) = α(2, 2) = 2 > 1.
Finally, since τd is discrete topology, T is upper semicontinuous. Therefore, all con-

ditions of Theorem 7 (resp. Theorem 6) are satisfied. Then T has a fixed point in X .
Note that α has no property (B). Indeed, considering the sequence {xn} = {2, 4,

6, 0, 0, 0, . . . } in X , then α(xn, xn+1) > 1 for all n ∈ N and xn → 0, but α(x1, z) =
α(2, 0) = 0 � 1. Also, since α(2, 4) > 1 but α∗(T2, T4) = 0, then T is not an α∗-
admissible.

On the other hand, since H(T0, T2) = 2 = d(0, 2), then for all θ ∈ Θ and k ∈ (0, 1),
we have

θ
(
H(Tx, Ty)

)
= θ(2) >

[
θ(2)

]k
=
[
θ
(
d(x, y)

)]k
.

That is, T is not multivalued θ-contraction. Therefore, Theorems 4 and 5 cannot be
applied to this example. Also, T is not multivalued contraction.

Finally, since H(T0, T4) = 2, d(0, 4) = 4 and α(0, 4) = 2, then for all ψ ∈ Ψ , we
have

4 = α(0, 4)H(T0, T4) 
 ψ
(
d(0, 4)

)
< d(0, 4) = 4.

Thus, T is not multivalued α-ψ-contractive mapping. Therefore, Theorems 1 and 2 cannot
be applied, too.

Corollary 1. Let (X, d) be a complete metric space, T : X → CB(X) (resp. K(X))
be a multivalued mapping and α : X × X → [0,∞) be a function. Assume that the
following conditions hold:

(i) T be an α∗-admissible;
(ii) There exist θ ∈ Θ∗ (resp. θ ∈ Θ) and k ∈ (0, 1) such that

θ
(
H(Tx, Ty)

)
6
[
θ
(
d(x, y)

)]k
(14)

for all (x, y) ∈ S∗, where

S∗ =
{
(x, y): α∗(Tx, Ty) > 1 and H(Tx, Ty) > 0

}
⊆ X ×X;

(iii) There exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > 1;
(iv) T is upper semicontinuous or α has property (B).

Then T has a fixed point in X .

Proof. Let (x, y) ∈ S. Then, since T is an α∗-admissible mapping, we obtain

α∗(Tx, Ty) > 1,

and so, (x, y) ∈ S∗, that is, S ⊆ S∗. Therefore, from (14) we have

θ
(
H(Tx, Ty)

)
6
[
θ
(
d(x, y)

)]k
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for all (x, y) ∈ S. That is, T is a multivalued (α, θ)-contraction. Also, since T is an
α∗-admissible mapping, then it is α-admissible. Therefore, all conditions of Theorem 7
(resp. Theorem 6) are satisfied. Thus, T has a fixed point in X .

3 Application in partially ordered metric spaces

Recently, there have been so many interesting developments in fixed point theory in metric
spaces endowed with a partial order. The first result in this direction was given by Ran and
Reurings [28] where they extended the Banach contraction principle in partially ordered
sets with some application to a matrix equation, and followed by Nieto et al. [27] without
continuity of a mapping T : X → X . Later, many important and valuable results appeared
in this direction (see [1,5,7,20,26]). In 2004, Feng and Liu [10] defined relations between
two sets. Motivated by these works, in this section, we will construct various fixed point
results on a metric space endowed with a partial order for multivalued mappings. Let
X be a nonempty set. If (X, d) is a metric space and (X,4) is partially ordered, then
(X, d,4) is called a partially ordered metric space. Moreover, a partially ordered metric
space (X, d,4) is regular if for every sequence {xn} such that xn 4 xn+1 for all n ∈ N
and xn → x ∈ X, then xn 4 x for all n ∈ N. Let A and B be two nonempty subsets of
a partially ordered set (X,4). Then the relations betweenA andB are defined as follows:

1. A ≺1 B: if for every a ∈ A, there exists b ∈ B such that a 4 b;
2. A ≺2 B: if for every b ∈ B, there exists a ∈ A such that a 4 b;
3. A ≺ B: if A ≺1 B and A ≺2 B.

≺1 and ≺2 are different relations between A and B. For example, let X = R, A =
[1/2, 1], B = [0, 1], 4 be usual order on X , then A ≺1 B but A ⊀2 B; if A = [0, 1],
B = [0, 1/2], then A ≺2 B while A ⊀1 B. ≺1, ≺2 and ≺ are reflexive and transitive,
but are not antisymmetric. For instance, let X = R, A = [0, 3], B = [0, 1] ∪ [2, 3], 4 be
usual order on X , then A ≺ B and B ≺ A, but A 6= B. Hence, they are not partial orders
(see [10]).

Corollary 2. Let (X, d,4) be a partially ordered complete metric space, T :X→CB(X)
(resp. K(X)) be a multivalued mapping, and α : X×X → [0,∞) be a function. Assume
that the following conditions hold:

(i) There exist x0 ∈ X such that {x0} ≺1 Tx0;
(ii) There exist k ∈ (0, 1) and θ ∈ Θ∗ (resp. θ ∈ Θ) such that

θ
(
H(Tx, Ty)

)
6
[
θ
(
d(x, y)

)]k
for all (x, y) ∈ S4, where

S4 =
{
(x, y): x 4 y and H(Tx, Ty) > 0

}
⊆ X ×X;

(iii) T is upper semicontinuous or X is regular;
(iv) For each x ∈ X and y ∈ Tx with x 4 y, we have y 4 z for all z ∈ Ty.

Then T has a fixed point in X .
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Proof. Define a mapping α : X ×X → [0,∞) by

α(x, y) =

{
1, x 4 y,

0, otherwise.

It is clear that S4 = S. That is, T is multivalued (α, θ)-contraction. Also, since {x0} ≺1

Tx0, then there exists x1 ∈ Tx0 such that x0 4 x1, and so, α(x0, x1) > 1. Now,
let x ∈ X and y ∈ Tx with α(x, y) > 1, then x 4 y, and so, by hypotheses (iv)
we have y 4 z for all z ∈ Ty. Therefore, α(y, z) > 1 for all z ∈ Ty. This shows
that T is α-admissible mapping. Finally, if T is upper semicontinuous or X is regular,
then T is upper semicontinuous or α has property (B). Therefore, from Theorem 7 (resp.
Theorem 6), T has a fixed point in X .

Now, we give an example to illustrate our above result.

Example 2. Consider the complete metric space (X, d), where X = {1/2n−1: n ∈ N}∪
{0} and d(x, y) = |x− y|. Define a relation 4 on X as

x 4 y ⇐⇒ y

x
∈ N or x = y.

It is easy to see that this relation is a partial order. Note that 0 is not comparable to
other elements and 1/2m−1 4 1/2n−1 for all m,n ∈ N with m > n. Define a mapping
T : X → CB(X) as

Tx =

{
{ 1
2n , 1}, x = 1

2n−1 , n > 1,

{x}, x = 0, 1.

Since H(T0, T1) = 1 = d(0, 1), then for all θ ∈ Θ and k ∈ (0, 1), we have

θ
(
H(Tx, Ty)

)
= θ(1) >

[
θ(1)

]k
=
[
θ
(
d(x, y)

)]k
.

Then T is not multivalued θ-contraction. Therefore, Theorems 4 and 5 cannot be applied
to this example. Also, T is not multivalued contraction.

Now, we claim that T satisfies all conditions of Corollary 2 by k = 1/
√
2 and θ(t) =

e
√
t. Note that if (x, y) ∈ S4, then x = 1/2m−1 and y = 1/2n−1 for some m,n ∈ N

with m > n. Thus, we get

H

(
T

1

2m−1
, T

1

2n−1

)
= H

({
1

2m
, 1

}
,

{
1

2n
, 1

})
=

∣∣∣∣ 1

2m
− 1

2n

∣∣∣∣ = 1

2

∣∣∣∣ 1

2m−1
− 1

2n−1

∣∣∣∣
=

1

2
d

(
1

2m−1
,

1

2n−1

)
= k2d

(
1

2m−1
,

1

2n−1

)
,

that is, condition (iii) of Corollary 2 is satisfied.

http://www.mii.lt/NA



On the effect of α-admissibility and θ-contractivity 685

Also, for x0 = 1, we have {x0} = {1} ≺1 {1} = Tx0. Therefore, condition (i) of
Corollary 2 is satisfied.

If x ∈ X \ {0}, we take y = 1 ∈ Tx with x 4 y, we have y 4 z for all z ∈ Ty =
{1}, and if x = 0, we take y = 0 ∈ Tx = {0} with x 4 y, we have y 4 z for all
z ∈ Ty = {0}. Thus, condition (iv) of Corollary 2 is satisfied.

Finally, X is regular. Indeed, for every sequence {xn} such that xn 4 xn+1 for all
n ∈ N and xn → x ∈ X , there exists an n0 ∈ N such that {xn} = {x1, x2, x3, . . . , xn0−1,
x, x, x, . . . } for all n > n0. So, xn 4 x for all n ∈ N.

Hence, all conditions of Corollary 2 are satisfied, and so, T has a fixed point in X .

Remark 3. We can give a similar result using ≺2 instead of ≺1 in Corollary 2.

Acknowledgment. The authors are grateful to the referees because their suggestions
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20. V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in
partially ordered metric spaces, Nonlinear Anal., Theory Methods Appl., 70(12):4341–4349,
2009.

21. N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete
metric spaces, J. Math. Anal. Appl., 141(1):177–188, 1989.

22. G. Mınak, O. Acar, I. Altun, Multivalued pseudo-Picard operators and fixed point results,
J. Funct. Spaces Appl., 2013:827458, 2013.

23. G. Mınak, I. Altun, Some new generalizations of Mizoguchi–Takahashi type fixed point
theorem, J. Inequal. Appl., 2013:493, 2013.

24. B. Mohammadi, S. Rezapour, N. Shahzad, Some results on fixed points of α-ψ-Ćirić
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