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Abstract. We introduce a new concept for multivalued maps, also called multivalued nonlinear
F -contraction, and give a fixed point result. Our result is a proper generalization of some
recent fixed point theorems including the famous theorem of Klim and Wardowski [D. Klim,
D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math.
Anal. Appl., 334(1):132–139, 2007].
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1 Introduction and preliminaries

Let (X, d) be a metric space. P (X) denotes the family of all nonempty subsets of X ,
C(X) denotes the family of all nonempty, closed subsets ofX,CB(X) denotes the family
of all nonempty, closed, and bounded subsets of X, and K(X) denotes the family of all
nonempty compact subsets of X . It is clear that, K(X) ⊆ CB(X) ⊆ C(X) ⊆ P (X).
For A,B ∈ C(X), let

H(A,B) = max
{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}
,

where d(x,B) = inf{d(x, y): y ∈ B}. ThenH is called generalized Pompeiu–Hausdorff
distance on C(X). It is well known that H is a metric on CB(X), which is called
Pompeiu–Hausdorff metric induced by d. We can find detailed information about the
Pompeiu–Hausdorff metric in [1, 5, 9]. Let T : X → CB(X) be a map, then T is called
multivalued contraction (see [14]) if for all x, y ∈ X , there exists L ∈ [0, 1) such that

H(Tx, Ty) 6 Ld(x, y).
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In 1969, Nadler [14] proved that every multivalued contraction on complete metric space
has a fixed point.

Nadler’s fixed point theorem has been extended in many directions [4, 6, 7, 10, 13, 16,
17]. The following generalization of it is given by Feng and Liu [8].

Theorem 1. (See [8].) Let (X, d) be a complete metric space and T :X → C(X).
Assume that the following conditions hold:

(i) the map x→ d(x, Tx) is lower semi-continuous;
(ii) there exist b, c ∈ (0, 1) with b < c such that for any x ∈ X , there is y ∈ Ixb

satisfying

d(y, Ty) 6 cd(x, y),

where

Ixb =
{
y ∈ Tx: bd(x, y) 6 d(x, Tx)

}
.

Then T has a fixed point.

Recently, another interesting result have been obtained by Klim and Wardowski [11].
They proved the following theorem.

Theorem 2. (See [11].) Let (X, d) be a complete metric space and T :X → C(X).
Assume that the following conditions hold:

(i) the map x→ d(x, Tx) is lower semi-continuous;
(ii) there exists b ∈ (0, 1) and a function ϕ : [0,∞)→ [0, b) satisfying

lim sup
t→s+

ϕ(t) < b for s > 0

and for any x ∈ X , there is y ∈ Ixb satisfying

d(y, Ty) 6 ϕ
(
d(x, y)

)
d(x, y).

Then T has a fixed point.

In this paper, we introduce a new class of multivalued maps and give a fixed point
result, which extend and generalize many fixed point theorems including Theorems 1
and 2. Our results are based on F -contraction which is a new approach to contraction
mapping. The concept of F -contraction for single valued maps on complete metric space
was introduced by Wardowski [18]. First, we recall this new concept and some related
results.

Let F : (0,∞)→ R be a function. For the sake of completeness, we will consider the
following conditions:

(F1) F is strictly increasing, i.e., for all α, β ∈ (0,∞) such that α < β, F (α) <
F (β).

(F2) For each sequence {αn} of positive numbers,

lim
n→∞

αn = 0 if and only if lim
n→∞

F (αn) = −∞.

http://www.mii.lt/NA



Fixed points of multivalued nonlinear F -contractions 203

(F3) There exists k ∈ (0, 1) such that limα→0+ α
kF (α) = 0.

(F4) F (inf A) = inf F (A) for all A ⊂ (0,∞) with inf A > 0.

We represent the set of all functions F satisfying (F1)–(F3) and (F1)–(F4) by F and
F∗, respectively. It is clear that F∗ ⊂ F and some examples of the functions belonging
to F∗ are F1(α) = lnα, F2(α) = α+ lnα, F3(α) = −1/

√
α and F4(α) = ln(α2 + α).

If we define F5(α) = lnα for α 6 1 and F5(α) = 2α for α > 1, then F5 ∈ F \ F∗.

Remark 1. If F satisfies (F1), then it satisfies (F4) if and only if it is right continuous.

Definition 1. (See [18].) Let (X, d) be a metric space and T : X → X be a mapping.
Then T is an F -contraction if F ∈ F and there exists τ > 0 such that for all x, y ∈ X ,

d(Tx, Ty) > 0 =⇒ τ + F
(
d(Tx, Ty)

)
6 F

(
d(x, y)

)
. (1)

If we take F (α) = lnα in Definition 1, inequality (1) turns into

d(Tx, Ty) 6 e−τd(x, y) for all x, y ∈ X, Tx 6= Ty. (2)

It is clear that for x, y ∈ X such that Tx = Ty, the inequality d(Tx, Ty) 6 e−τd(x, y)
also holds. Thus, T is an ordinary contraction with contractive constant e−τ . Therefore,
every ordinary contraction is also an F -contraction with F (α) = lnα, but the converse
may not be true as shown in Example 2.5 of [18]. If we choose F (α) = α + lnα,
inequality (1) turns into

d(Tx, Ty)

d(x, y)
ed(Tx,Ty)−d(x,y) 6 e−τ for all x, y ∈ X, Tx 6= Ty. (3)

In addition, Wardowski showed that every F -contraction T is a contractive mapping, i.e.,

d(Tx, Ty) < d(x, y) for all x, y ∈ X, Tx 6= Ty.

Thus, everyF -contraction is a continuous map. Also, Wardowski concluded that ifF1, F2 ∈
F with F1(α) 6 F2(α) for all α > 0 and G = F2 − F1 is nondecreasing, then every
F1-contraction T is an F2-contraction. He noted that for the mappings F1(α) = lnα and
F2(α) = α+lnα, F1 < F2 and the mapping F2−F1 is strictly increasing. Hence, every
Banach contraction satisfies the contractive condition (3). On the other hand, Example
2.5 in [18] shows that the mapping T is not F1-contraction (Banach contraction), but still
is an F2-contraction. Thus, the following theorem is a proper generalization of Banach
contraction principle.

Theorem 3. (See [18].) Let (X, d) be a complete metric space and T :X → X be an
F -contraction. Then T has a unique fixed point in X .

By combining the ideas of Wardowski’s and Nadler’s, Altun et al. [3] introduced the
concept of multivalued F -contractions and obtained some fixed point results for these
type mappings on complete metric space.
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Definition 2. (See [3].) Let (X, d) be a metric space and T : X → CB(X) be a mapping.
Then T is a multivalued F -contraction if F ∈ F and there exists τ > 0 such that for all
x, y ∈ X ,

H(Tx, Ty) > 0 =⇒ τ + F
(
H(Tx, Ty)

)
6 F

(
d(x, y)

)
.

By considering F (α) = lnα, every multivalued contraction in the sense of Nadler is
also a multivalued F -contraction.

Theorem 4. (See [3].) Let (X, d) be a complete metric space and T :X → K(X) be
a multivalued F -contraction, then T has a fixed point in X .

At this point, one can ask if CB(X) can be used instead of K(X) in Theorem 4. As
shown in Example 1 of [2], the answer is negative. But, by adding condition (F4) on F ,
we can we take CB(X) instead of K(X).

Theorem 5. (See [3].) Let (X, d) be a complete metric space and T :X → CB(X) be
a multivalued F -contraction. Suppose F ∈ F∗, then T has a fixed point in X .

On the other hand, Olgun et al. [15] proved the following theorems. Theorem 7 is
a generalization of famous Mizoguchi–Takahashi’s fixed point theorem for multivalued
contraction maps. These results are nonlinear cases of Theorems 4 and 5, respectively.

Theorem 6. (See [15].) Let (X, d) be a complete metric space and T :X → K(X). If
there exists F ∈ F and τ : (0,∞)→ (0,∞) such that

lim inf
t→s+

τ(t) > 0 for all s > 0

and for all x, y ∈ X ,

H(Tx, Ty) > 0 =⇒ τ
(
d(x, y)

)
+ F

(
H(Tx, Ty)

)
6 F

(
d(x, y)

)
,

then T has a fixed point in X .

Theorem 7. (See [15].) Let (X, d) be a complete metric space and T :X → CB(X). If
there exists F ∈ F∗ and τ : (0,∞)→ (0,∞) such that

lim inf
t→s+

τ(t) > 0 for all s > 0

and for all x, y ∈ X ,

H(Tx, Ty) > 0 =⇒ τ
(
d(x, y)

)
+ F

(
H(Tx, Ty)

)
6 F

(
d(x, y)

)
,

then T has a fixed point in X .

2 Main results

Let T :X → P (X) be a multivalued map, F ∈F and σ>0. For x∈X with d(x, Tx) > 0,
define a set F xσ ⊆ X as

F xσ =
{
y ∈ Tx: F

(
d(x, y)

)
6 F

(
d(x, Tx)

)
+ σ

}
.
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We need to consider the following cases.

Case 1. If T :X → K(X), then for all σ > 0 and x ∈ X with d(x, Tx) > 0, we
have F xσ 6= ∅. Indeed, since Tx is compact, for every x ∈ X , we have y ∈ Tx such
that d(x, y) = d(x, Tx). Therefore, for every x ∈ X with d(x, Tx) > 0, we have
F (d(x, y)) = F (d(x, Tx)). Thus, y ∈ F xσ for all σ > 0.

Case 2. If T :X → C(X), then F xσ may be empty for some x ∈ X and σ > 0. For
example, let F (α) = lnα for α 6 1 and F (α) = 2α for α > 1 and let X = {0} ∪ (1, 2)
with the usual metric. Define T :X → C(X) by T0 = (1, 2) and Tx = {0} for x ∈
(1, 2). Then for x = 0, we have (note that d(0, T0) = 1 > 0)

F 0
1 =

{
y ∈ T0: F

(
d(0, y)

)
6 F

(
d(0, T0)

)
+ 1
}

=
{
y ∈ (1, 2): F (y) 6 F (1) + 1

}
=
{
y ∈ (1, 2): 2y 6 1

}
= ∅.

Case 3. If T :X → C(X) (even if T : X → P (X)) and F ∈ F∗, then for all σ > 0 and
x ∈ X with d(x, Tx) > 0, we have F xσ 6= ∅. Indeed, by (F4), we have

F xσ =
{
y ∈ Tx: F

(
d(x, y)

)
6 F

(
d(x, Tx)

)
+ σ

}
=
{
y ∈ Tx: F

(
d(x, y)

)
6 F

(
inf
{
d(x, y): y ∈ Tx

})
+ σ

}
=
{
y ∈ Tx: F

(
d(x, y)

)
6 inf

{
F
(
d(x, y)

)
: y ∈ Tx

}
+ σ

}
6= ∅.

Mınak et al. [12] proved the following fixed point theorems. Note that Theorem 1 is
a special case of Theorem 9.

Theorem 8. Let (X, d) be a complete metric space, T :X → K(X) and F ∈ F . If there
exists τ > 0 such that for any x ∈ X with d(x, Tx) > 0, there exists y ∈ F xσ satisfying

τ + F
(
d(y, Ty)

)
6 F

(
d(x, y)

)
,

where

F xσ =
{
y ∈ Tx: F

(
d(x, y)

)
6 F

(
d(x, Tx)

)
+ σ

}
,

then T has a fixed point in X provided σ < τ and x → d(x, Tx) is lower semi-
continuous.

Theorem 9. Let (X, d) be a complete metric space, T :X → C(X) and F ∈ F∗. If there
exists τ > 0 such that for any x ∈ X with d(x, Tx) > 0, there exists y ∈ F xσ satisfying

τ + F
(
d(y, Ty)

)
6 F

(
d(x, y)

)
,

then T has a fixed point in X provided σ < τ and x → d(x, Tx) is lower semi-
continuous.

By considering the above facts, we give the following theorems, which are nonlinear
form of Theorems 8 and 9. Note that Theorem 10 is a proper generalization of Theorem 2.
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Theorem 10. Let (X, d) be a complete metric space, T :X → C(X) and F ∈ F∗.
Assume that the following conditions hold:

(i) the map x→ d(x, Tx) is lower semi-continuous;
(ii) there exist σ > 0 and a function τ : (0,∞)→ (σ,∞) such that

lim inf
t→s+

τ(t) > σ for all s > 0

and for any x ∈ X with d(x, Tx) > 0, there exists y ∈ F xσ satisfying

τ
(
d(x, y)

)
+ F

(
d(y, Ty)

)
6 F

(
d(x, y)

)
.

Then T has a fixed point.

Proof. Suppose that T has no fixed point. Then for all x ∈ X , we have d(x, Tx) > 0.
Since Tx ∈ C(X) for every x ∈ X , the set F xσ is nonempty for any σ > 0. Let x0 ∈ X
be any initial point, then there exists x1 ∈ F x0

σ such that

τ
(
d(x0, x1)

)
+ F

(
d(x1, Tx1

))
6 F

(
d(x0, x1)

)
and for x1 ∈ X , there exists x2 ∈ F x1

σ satisfying

τ
(
d(x1, x2)

)
+ F

(
d(x2, Tx2)

)
6 F

(
d(x1, x2)

)
.

Continuing this process, we get an iterative sequence {xn}, where xn+1 ∈ F xn
σ and

τ
(
d(xn, xn+1)

)
+ F

(
d(xn+1, Txn+1)

)
6 F

(
d(xn, xn+1)

)
. (4)

We will verify that {xn} is a Cauchy sequence. Since xn+1 ∈ F xn
σ , we have

F
(
d(xn, xn+1)

)
6 F

(
d(xn, Txn)

)
+ σ. (5)

From (4) and (5) we have

F
(
d(xn+1, Txn+1)

)
6 F

(
d(xn, Txn)

)
+ σ − τ

(
d(xn, xn+1)

)
(6)

and
F
(
d(xn+1, xn+2)

)
6 F

(
d(xn, xn+1)

)
+ σ − τ

(
d(xn, xn+1)

)
. (7)

Let an = d(xn, xn+1) for n ∈ N, then an > 0 and from (7) {an} is decreasing.
Therefore, there exists δ > 0 such that limn→∞ an = δ. Now let δ > 0. Using (7),
the following holds:

F (an+1) 6 F (an) + σ − τ(an)
6 F (an−1) + 2σ − τ(an)− τ(an−1)
...
6 F (a0) + nσ − τ(an)− τ(an−1)− · · · − τ(a0). (8)
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Let τ(apn) = min{τ(a0), τ(a1), . . . , τ(an)} for all n ∈ N. From (8) we get

F (an) 6 F (a0) + n
(
σ − τ(apn)

)
. (9)

In a similar way, from (6) we can obtain

F
(
d(xn+1, Txn+1)

)
6 F

(
d(x0, Tx0)

)
+ n

(
σ − τ(apn)

)
. (10)

Now consider the sequence {τ(apn)}. We distinguish two cases.

Case 1. For each n ∈ N, there is m > n such that τ(apn) > τ(apm). Then we obtain
a subsequence {apnk

} of {apn} with τ(apnk
) > τ(apnk+1

) for all k. Since apnk
→ δ+,

we deduce that
lim inf
k→∞

τ(apnk
) > σ.

Hence, F (ank
) 6 F (a0)+nk(σ− τ(apnk

)) for all k. Consequently, limk→∞ F (ank
) =

−∞, and by (F2), limk→∞ apnk
= 0, which contradicts that limn→∞ an > 0.

Case 2. There is n0∈N such that τ(apn0
)=τ(apm) for all m>n0. Then F (am)6F (a0)

+m(σ−τ(apn0
)) for allm > n0. Hence, limm→∞ F (am) = −∞, so limm→∞ am = 0,

which contradicts that limm→∞ am > 0. Thus, limn→∞ an = 0. From (F3) there exists
k ∈ (0, 1) such that

lim
n→∞

aknF (an) = 0.

By (9), the following holds for all n ∈ N:

aknF (an)− aknF (a0) 6 aknn
(
σ − τ(apn)

)
6 0. (11)

Letting n→∞ in (11), we obtain that

lim
n→∞

nakn = 0. (12)

From (12) there exits n0 ∈ N such that nakn 6 1 for all n > n0. So, for all n > n0, we
have

an 6
1

n1/k
. (13)

In order to show that {xn} is a Cauchy sequence, consider m,n ∈ N such that m > n >
n1. Using the triangular inequality for the metric and from (13) we have

d(xn, xm) 6 d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

=

m−1∑
i=n

d(xi, xi+1) 6
∞∑
i=n

d(xi, xi+1) 6
∞∑
i=n

1

i1/k
.

By the convergence of the series
∑∞
i=1(i

−1/k), passing to limit n,m → ∞, we get
d(xn, xm) → 0. This yields that {xn} is a Cauchy sequence in (X, d). Since (X, d) is

Nonlinear Anal. Model. Control, 21(2):201–210
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a complete metric space, the sequence {xn} converges to some point z ∈ X , that is,
limn→∞ xn = z. On the other hand, from (10) and (F2) we have

lim
n→∞

d(xn, Txn) = 0.

Since x→ d(x, Tx) is lower semi-continuous, then

0 6 d(z, Tz) 6 lim inf
n→∞

d(xn, Txn) = 0.

This is a contradiction. Hence, T has a fixed point.

In the following example, we show that there are some multivalued maps such that
our result can be applied, but Theorem 2 can not.

Example 1. Let X = {xn = n(n+ 1)/2, n ∈ N} and d(x, y) = |x− y|. Then (X, d) is
a complete metric space. Define a mapping T : X → C(X) as

Tx =

{
{x1}, x = x1,

{x1, xn−1}, x = xn.

Then, since τd is discrete topology, the map x→ d(x, Tx) is continuous. Now we claim
that condition (ii) of Theorem 2.1 of [11] is not satisfied. Indeed, let x = xn for n > 1,
then Tx = {x1, xn−1}. In this case, for all b ∈ (0, 1), there exists n0(b) ∈ N such that
for all n > n0(b), Ixn

b = {xn−1}. Thus, for n > n0(b), we have

d(y, Ty) = n− 1, d(x, y) = n.

Therefore, since d(y, Ty)/d(x, y) = (n− 1)/n, we can not find a function ϕ : [0,∞)→
[0, b) satisfying

d(y, Ty) 6 ϕ
(
d(x, y)

)
d(x, y).

Now we show that condition (ii) of Theorem 10 is satisfied with F (α) = α + lnα,
σ = 1/2 and τ(t) = 1/t + 1/2. Note that if d(x, Tx) > 0, then x = xn for n > 1. In
this case, d(xn, Txn) = n. Therefore, for y = xn−1 ∈ Txn, we have y ∈ F xn

1/2 and

τ
(
d(x, y)

)
+ F

(
d(y, Ty)

)
= τ(n) + F (n− 1)

=
1

n
+

1

2
+ n− 1 + ln(n− 1)

6 n+ lnn = F (n) = F
(
d(x, Tx)

)
.

Remark 2. If we take K(X) instead of C(X) in Theorem 10, we can remove condi-
tion (F4) on F . Further, by taking into account Case 1, we can take σ > 0. Therefore, the
proof of the following theorem is obvious.

Theorem 11. Let (X, d) be a complete metric space and T :X → K(X). Assume that
the following conditions hold:
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(i) the map x→ d(x, Tx) is lower semi-continuous;
(ii) there exists σ > 0, F ∈ F and a function τ : (0,∞)→ (σ,∞) such that

lim inf
t→s+

τ(t) > σ for all s > 0

and for any x ∈ X with d(x, Tx) > 0, there exists y ∈ F xσ satisfying

τ
(
d(x, y)

)
+ F

(
d(y, Ty)

)
6 F

(
d(x, y)

)
.

Then T has a fixed point.
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