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Abstract: In this paper, we give the necessary and sufficient conditions for non-null curves with non-null normals in
4-dimensional Semi-Euclidian space with indeks 2 to be osculating curves. Also we give some examples of non-null
osculating curves in E4

2
.
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1 Introduction

In the Euclidian space E3, it is well known that to each unit speed curve ˛ W I �! E3;whose successive derivatives
˛
0

.s/; ˛
00

.s/ and ˛
000

.s/ are linearly independent vectors, one can associate the moving orthonormal Frenet frame
fT;N;Bg ; consisting of the tangent, the principal normal and the binormal vector field, respectively. The planes
spanned by fT;N g ; fT;Bg and fN;Bg are respectively known as the osculating, rectifying and the normal plane.
The rectifying curve in E3 is defined in [2] as a curve whose position vector (with respect to some chosen origin)
always lies in its rectifying plane. It is shown in [1] that there exists a simple relationship between the rectifying
curves and centrodes, which play some important roles in mechanics and kinematics. Some characterizations of
rectifying curves in Minkowski space-time are given in [6].

It is well-known that the position vector of a curve in E3always lies in its osculating plane B? D Sp fT;N g

if and only if its second curvature k2.s/ is equal to zero for each s ([7]). The same property holds for timelike and
spacelike curves (with non-null principal normal) in Minkowski 3-space. Osculating curves of first kind and second
kind in Euclidian 4-space and Minkowski space time were studied by İlarslan and Nesovic in [4, 5].

In the light of the papers in [4, 5], in this paper we define the first kind and the second kind osculating curves in
4-dimensional semi-Euclidian space with index 2, by means of the orthogonal complements B?

2
and B?

1
of binormal

vector fields B2 and B1; respectively. We restrict our investigation of the first kind and the second kind osculating
curves to timelike curves as well as to spacelike curves whose Frenet frame fT;N;B1; B2g contains only non-null
vector fields. We characterize such osculating curves in terms of their curvature functions and find the necessary and
the sufficient conditions for such curves to be the osculating curve.
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2 Preliminaries

E4
2

is the Euclidean 4-space E4 equipped with indefinite flat metric given by

g D �dx2
1 � dx

2
2 C dx

2
3 C dx

2
4

where .x1; x2; x3; x4/ is a rectangular coordinate system of E4
2

. Recall that an arbitrary vector v 2 E4
2
n f0g can be

spacelike, timelike or null(lightlike), if respectively holds g.v; v/ > 0 or g.v; v/ < 0 or g.v; v/ D 0. In particular the
vector v D 0 is a spacelike. The norm of a vector v is given by jjvjj D

p
jg.v; v/j and two vectors v and w are said

to be orthogonal if g.v;w/ D 0. An arbitrary curve ˛.s/ in E4
2
; can locally be spacelike, timelike or null (lightlike),

if all its velocity vectors ˛0.s/ are respectively spacelike, timelike or null. A spacelike or timelike curve ˛.s/ has
unit speed, if g.˛0.s/; ˛0.s// D ˙1. Recall that the pseudosphere, the pseudohyperbolic space and lightcone are
hyperquadrics in E4

2
, respectively defined by S3

2
.m; r/ D fx 2 E4

2
W g.x � m; x � m/ D r2g;H3

1
D fx 2 E4

2
W

g.x � m; x � m/ D �r2g; C 3.m/ D fx 2 E4
2
W g.x � m; x � m/ D 0g; where r > 0 is the radius and m 2 E4

2
is

the centre (or vertex) of hyperquadric ([8]).
Let fT;N;B1; B2g be the non-null moving Frenet frame along a unit speed non-null curve ˛ in E4

2
, consisting

of the tangent, principal normal, first binormal and second binormal vector field, respectively. If ˛ is a non-null curve
with non-null vector fields, then fT;N;B1; B2g is an orthonormal frame. Accordingly, let us put

g.T; T / D �0; g.N;N / D �1; g.B1; B1/ D �2; g.B2; B2/ D �3; (1)

whereby �0; �1; �2; �3 2 f�1; 1g: Then the Frenet equations read, ([3])26664
T 0

N 0

B 0
1

B 0
2

37775 D
26664

0 k1 0 0

��0�1k1 0 k2 0

0 ��1�2k2 0 �3

0 0 ��2�3k3 0

37775
26664
T

N

B1

B2

37775 ; (2)

where the following conditions are satisfied:

g.T;N / D g.T;B1/ D g.T;B2/ D g.N;B2/ D g.B1; B2/ D 0; (3)

The curve ˛ lies fully in E4
2

if k3.s/ ¤ 0 for each s:
Let ˛ be a non-null curve with non-null normals in E4

2
. We define that ˛ is the first or the second kind osculating

curve in E4
2
; if its position vector with respect to some chosen origin always lies in the orthogonal complement B?

2

or B?
1

, respectively. The orthogonal complements B?
1

and B?
2

are non-degenerate hyperplanes of E4
2
; spanned by

fT;N;B2g and fT;N;B1g; respectively.
Consequently, the position vector of the timelike and the spacelike first kind osculating curve (with non-null

vector fields N and B1/; satisfies the equation

˛.s/ D a.s/T .s/C b.s/N.s/C c.s/B1.s/; (4)

and the position vector of the timelike and the spacelike second kind osculating curve (with non-null vector fields N
and B1/; satisfies the equation

˛.s/ D a.s/N.s/C b.s/B1.s/C c.s/B2.s/; (5)

for some differentiable functions a.s/, b.s/ and c.s/ in arclength function s.

3 Timelike and spacelike first kind osculating curves in E4
2

In this section we show that a non-null curve with non-null normals is the first kind osculating curve if and only if it
lies fully in non-degenerate hyperplane of E4

2
: In relation to that we give the following theorem.
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Theorem 3.1. Let ˛ be a non-null curve in E4
2

with non-null vector fields N and B1: Then ˛ is congruent to the
first kind osculating curve if and only if k3.s/ D 0 for each s.

Proof. First assume that ˛ is the first kind osculating curve in E4
2

. Then its position vector satisfies relation (4).
Differentiating relation (4) with respect to s and using Frenet equations (2), we easily find k3.s/ D 0.

Conversely, assume that the third curvature k3.s/ D 0 for each s. Let us decompose the position vector of ˛
with respect to the orthonormal frame fT;N;B1; B2g by

˛ D �0g.˛; T /T C �1g.˛;N /N C �2g.˛; T /B1 C �3g.˛;B2/B2; (6)

Since k3.s/ D 0, relation (2) implies that B2 is a constant vector and g.˛;B2/ D constant. Substituting this in (6),
we conclude that ˛ is congruent to the first kind osculating curve. This completes the proof of the theorem.

Corollary 3.2. Every non-null curve with non-null vector fieldsN and B1 lying fully in non-degenerate hyperplane
in E4

2
is the first kind osculating curve.

4 Timelike and spacelike second kind osculating curves in E4
2

In this section, we characterize non-null second kind osculating curves in E4
2

with non-null vector fieldsN and B1 in
terms of their curvatures. Let ˛ D ˛.s/ be the unit speed non-null second kind osculating curve in E4

2
with non-null

vector fields N and B1 and non-zero curvatures k1.s/; k2.s/ and k3.s/: By definition, the position vector of the
curve ˛ satisfies the equation (5), for some differentiable functions a.s/, b.s/ and c.s/: Differentiating equation (5)
with respect to s and using the Frenet equations (2), we obtain

T D
�
a
0

� �0�1bk1

�
T C

�
ak1 C b

0
�
N C .bk2 � �2�3ck3/ B1 C c

0

B2 .

It follows that
a
0

� �0�1bk1 D 1 ; ak1 C b
0

D 0 ; bk2 � �2�3ck3 D 0 ; c
0

D 0; (7)

and therefore

a.s/ D �
�2�3c0

k1

�
k3

k2

�
; b.s/ D �2�3c0

�
k3

k2

�
; c.s/ D c0; (8)

where c0 2 R0: In this way functions a.s/, b.s/ and c.s/ are expressed in terms of curvature functions k1.s/; k2.s/

and k3.s/ of the curve ˛: Moreover, by using the first equation in (7) and relation (8), we easily find that the
curvatures k1.s/; k2.s/ and k3.s/ satisfy the equation

�2�3

 
1

k1

�
k3

k2

�0!0
C

�
k3

k2

�
k1 D �

1

c0

; c0 2 R0:

In this way, we obtain the following theorem.

Theorem 4.1. Let ˛.s/ be a unit speed non-null curve with non-null vector fields N , B1 and B2 with curvatures
k1.s/; k2.s/ and k3.s/ ¤ 0 lying fully in E4

2
. Then ˛ is congruent to the second kind osculating curve if and only if

there holds

�2�3

 
1

k1

�
k3

k2

�0!0
C

�
k3

k2

�
k1 D �

1

c0

(9)

where �2�3 D ˙1; c0 20 :

Proof. First assume that ˛.s/ is congruent to the second kind osculating curve in E4
2

. By using (8) and the first
equation in relation (7), we easily find that relation (9) holds.
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Conversely, assume that equation (9) is satisfied. Let us consider the vector X 2 E4
2

given by

X.s/ D ˛.s/C
�2�3c0

k1

�
k3

k2

�0
T .s/ � �2�3c0

�
k3

k2

�
N.s/ � c0B2.s/

By using relations (2) and (9) we easily find X
0

.s/ D 0, which means that X is a constant vector. Consequently, ˛
is congruent to the second kind osculating curve.

Recall that a unit speed non-null curve in E4
2

is called a W-curve, if it has constant curvature functions (see [9]). The
following theorem gives the characterization of a non-null W-curves in E4

2
in terms of osculating curves.

Theorem 4.2. Every non-null W-curve, with non-null vector fields N , B1 and B2 with curvatures k1.s/; k2.s/ and
k3.s/ ¤ 0 lying fully in E4

2
is congruent to the second kind osculating curve.

Proof. It is clear from Theorem 4.1.

Example 4.3. Let ˛.s/ be a unit speed spacelike curve in E4
2

given by

˛.s/ D 1

15
p

2

�
sinh

�
3
p
5s
�
; 9 cosh

�p
5s
�
; 9 sinh

�p
5s
�
; cosh

�
3
p
5s
��

We easily obtain the Frenet vectors and curvatures as follows:

T .s/ D 1p
10

�
cosh

�
3
p
5s
�
; 3 sinh

�p
5s
�
; 3 cosh

�p
5s
�
; sinh

�
3
p
5s
��
;

N.s/ D
p

2
2

�
sinh

�
3
p
5s
�
; cosh

�p
5s
�
; sinh

�p
5s
�
; cosh

�
3
p
5s
��
;

B1.s/ D
p

10
10

�
3 cosh

�
3
p
5s
�
; 1

4
sinh

�p
5s
�
; 1

4
cosh

�p
5s
�
; 3 sinh

�
3
p
5s
��
;

B2.s/ D
p

2
2

�
sinh

�
3
p
5s
�
;�3

4
cosh

�p
5s
�
;�3

4
sinh

�p
5s
�
; cosh

�
3
p
5s
��
;

where T and B1 are spacelike vectors, N and B2 are timelike vectors, k1.s/ D 3; k2.s/ D 4 and k3.s/ D 5: Since
g .˛;B2/ D 0; ˛ is congruent to second kind osculating curve. Also from Theorem 4.1. we find c0 D �

4
15
: Thus we

can write

˛.s/ D
1

3
N.s/ �

4

15
B2.s/

Example 4.4. Let ˛.s/ be a unit speed timelike curve in E4
2

with the equation

˛.s/ D 1p
15

�
sinh

�
2
p
5s
�
; cosh

�p
5s
�
; sinh

�p
5s
�
; cosh

�
2
p
5s
��

We easily obtain the Frenet vectors and curvatures as follows:

T .s/ D 1p
3

�
2 cosh

�
2
p
5s
�
; sinh

�p
5s
�
; cosh

�p
5s
�
; 2 sinh

�
2
p
5s
��
;

N.s/ D 1p
15

�
4 sinh

�
2
p
5s
�
; cosh

�p
5s
�
; sinh

�p
5s
�
; 4 cosh

�
2
p
5s
��
;

B1.s/ D
�1p

3

�
cosh

�
2
p
5s
�
; 2 sinh

�p
5s
�
; 2 cosh

�p
5s
�
; sinh

�
2
p
5s
��
;

B2.s/ D
�1p

15

�
sinh

�
2
p
5s
�
; 4 cosh

�p
5s
�
; 4 sinh

�p
5s
�
; cosh

�
2
p
5s
��
;

where N and B1 are spacelike vectors, T and B2 are timelike vectors, k1.s/ D 5; k2.s/ D 2 and k3.s/ D 2: It
can be easily verified that g .˛;B1/ D 0, which means that ˛ is congruent to the second kind osculating curve. Also
from Theorem 4.1. we find c0 D �

1
15
: Thus we can write

˛.s/ D �
1

5
N.s/C

1

5
B2.s/
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Remark. The curve given in Example 4.3 lies fully in the pseudohyperbolic spaceH3
1

with the equation�x2
1
�x2

2
C

x2
3
Cx2

4
D
�8
45
: The curve given in Example 4.4 lies fully in the light coneC 3 with the equation�x2

1
�x2

2
Cx2

3
Cx2

4
D

0:

Theorem 4.5. Let ˛.s/ be a unit speed non-null curve with non-null vector fields N , B1 and B2 with curvatures
k1.s/; k2.s/ and k3.s/ ¤ 0 lying fully in E4

2
. If ˛ is the second kind osculating curve, then the following statements

hold:
i) The tangential and the principal normal component of the position vector ˛ are respectively given by

h˛.s/; T .s/i D
�0�2�3c0

k1

�
k3

k2

�0
; h˛.s/; N.s/i D �1�2�3c0

�
k3

k2

�
; c0 2 R0: (10)

ii) The second binornmal component of the position vector ˛ is a non-zero constant, i.e.

h˛.s/; B2.s/i D c0�3; c0 2 R0 (11)

Conversely, if ˛.s/is a unit speed non-null curve with non-null vector fields N , B1 and B2 , lying fully in E4
2

and
one of the statements (i) or (ii) hold, then ˛ is congruent to the second kind osculating curve.

Proof. First assume that ˛ is congruent to the second kind osculating curve in E4
2
: By using relation (4) and (8), the

position vector of ˛ can be written as

˛.s/ D �
�2�3c0

k1

�
k3

k2

�0
T .s/C �2�3c0

�
k3

k2

�
N.s/C c0B2.s/ (12)

Relation (12) easily implies that relations (10) and (11) are satisfied, which proves statements (i) and (ii).
Conversely, assume that the statement (i) holds. By taking the derivative of the equations h˛.s/; N.s/i D

�1�2�3c0

�
k3

k2

�
;with respect to s and using (2) we get h˛;B1i D 0; which means that ˛ is congruent to the second

kind osculating curve.
If the statement (ii) holds, in a similar way we conclude that ˛ is congruent to the second kind osculating

curve.

Theorem 4.6. Let ˛.s/ be a non-null unit speed curve with non-null Frenet vectors and with curvatures k1.s/; k2.s/

and k3.s/ ¤ 0 lying fully in E4
2

. If ˛ is congruent to the second kind osculating curve then the following statements
hold:

i) If N and B1 have the opposite casual characters then

k3.s/

k2.s/
D �

1

2c0

�Z
e�

R
k1.s/dsds C c1

�
e
R

k1.s/ds (13)

C
1

2c0

�Z
e
R

k1.s/dsds C c2

�
e�

R
k1.s/ds

where c0 2 R0 and c1; c2 2 R ii) If N and B1 have the same casual characters then

k3.s/

k2.s/
D
1

c0

�Z
sin�.s/ds C c1

�
cos ffi.s/�

1

c0

�Z
cos�.s/ds C c2

�
sin ffi.s/ (14)

where �.s/ D
R
k1.s/ds, c0 2 R0 and c1; c2 2 R: Conversely, if ˛.s/ is a unit speed non-null curve with non-null

vector fields N;B1, lying fully in E4
2

and one of the statements (i) or (ii) holds, then ˛ is congruent to the second
kind osculating curve.

Proof. Let us first assume that ˛.s/ is the unit speed non-null second kind osculating curve with non-null Frenet
vector fields. From Theorem 4.1, the curvature functions of ˛ satisfy the equation

�2�3

 
1

k1

�
k3

k2

�0!0
C

�
k3

k2

�
k1 D �

1

c0
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Up to casual character of N and B1we have the following cases:
i)N andB1 have the opposite casual character. Putting �2�3 D �1; y.s/ D

k3.s/
k2.s/

and p.s/ D 1
k1.s/

in equation
(9), we have,

�
d

ds

�
p.s/

dy

ds

�
C
y.s/

p.s/
D �

1

c0

, c0 2 R0

Next, by changing the variables in the above equation by t .s/ D
R

1
p.s/

ds; we find

�
d2y

dt2
C y D �

p.t/

c0

; c0 2 R0

The solution of the previous differential equation is given by

yD �
1

2c0

�Z
p.t/e�tdt C c1

�
et
C

1

2c0

�Z
p.t/etdt C c2

�
e�t

where c0 2 R0; c1;c2 2 R: Finally, since

y.s/ D
k3.s/

k2.s/
and t .s/ D

Z
1

p.s/
ds;

we obtain

k3.s/

k2.s/
D �

1

2c0

�Z
e�

R
k1.s/dsds C c1

�
e
R

k1.s/ds

C
1

2c0

�Z
e
R

k1.s/dsds C c2

�
e�

R
k1.s/ds :

Conversely, if relation (13) holds, by taking the derivative of relation (13) two times with respect to s, we obtain that
relation (9) is satisfied. Hence Theorem 4.1 implies that ˛ is congruent to the first kind osculating curve.

In a similar way the statement (ii) can be proved.
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