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Abstract: This study proposes solving the constraint optimal power flow problem (OPF) by using vortex 
search algorithm (VSA). VSA is inspired by natural vortexes. Piecewise quadratic fuel cost and quadratic 
cost curve with valve point loadings test cases are solved on IEEE-30 bus test system by taking into 
consideration the system constraints such as generation limits, voltages at nodes, tap settings. The 
obtained test results show that VSA gives better results than any other algorithms which are used to solve 
the OPF problem. 
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

1. INTRODUCTION 

In the early years when the electricity use began, the number 
of subscribers was few, so the number of loads on the power 
system was limited. Thanks to rapid development of 
technology, the number of electric appliances and the number 
of people using these appliances increased. As a result of this 
increase, loads on power systems began to grow, which made 
the electricity networks bigger and more complicated. As the 
networks grew day by day, difficulties arose in planning and 
operating. Various methods were developed to cope with 
these difficulties. The most efficient and most widely used of 
these methods was optimal power flow (OPF) in 1962, 
published by Carpentier (Carpentier, 1962). 

The starting point of OPF is power flow calculations. OPF’s 

difference from the power flow is that the calculations are 
made while the system limitations are also taken into 
consideration in these calculations. OPF is trying to optimize 
the results that will arise in various situations of the system. 

Following the development of OPF, various solution 
techniques and algorithms were used to achieve better results. 
We can divide these techniques into two main groups: These 
are classical numerical analysis methods and heuristic 
algorithms that have emerged in recent years. Examples of 
classic solution methods in the literature are: Gradient 
adjustment algorithm (Hermann et. al., 1968), quadratic and 
linear programming (Nabona et. al., 1973), linear 
programming based (Srijib et. al., 1992 ), interior-point 
(Torres et al, 1998) and quadratic programming (Wibowo et. 
al., 2013). These methods can be considered successful in 
obtaining solutions. However, these techniques are 
inadequate due to their lack of finding optimum results in 

large scale non-linear problems, excessive dependence on 
initial values, solving only certain objective functions and 
solution search takes a lot of time. 

Heuristic algorithms have begun to be used to solve the OPF 
problem in order to overcome these deficiencies of classical 
methods and achieve more optimal results. Example studies 
where heuristic algorithms are used to solve OPF problem 
are: Improved genetic (Lai et. al., 1997), particle swarm 
optimization (Abido, 2002), simulated annealing (Sepulveda 
et. al., 2003), ant colony (Bouktir et. al., 2005), chaotic krill 
herd (Mukherjee et. al., 2005), artificial bee colony 
(Sumpavakup et. al., 2010), glowworm swarm optimization 
(Reddy et. al., 2016). 

The aim of this study is to solve the piecewise quadratic fuel 
cost and quadratic cost curve with valve point loadings 
objective functions using vortex search algorithm (VSA), 
which is one the heuristic algorithms. 

This paper consists of 5 sections. Section 2 provides 
information on OPF. Section 3 explains the VSA’s working 

logic which is used to solve the OPF problem. In section 4 
the obtained results are given and in section 5 results are 
evaluated. 

2. OPTIMAL POWER FLOW 

In a few words OPF is a non-linear optimization problem. 
The solution of the OPF problem is to optimize the chosen 
objective functions by taking into account the constraints of 
the system being studied. While optimizing the objective 
function, the equality and inequality constraints defined in the 
problem have to be verified (Abido, 2002). The mathematical 
representation of the OPF is as follows: 
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Minimize f(x, u) 

Subject to: g(x, u)                      (1)   

h(x, u) ≤ 0 

Where, f represents the objective function to be minimized, 
g(x,u) and h(x,u) represents the constraints that objective 
function is subject to. Where, x represents dependent 
variables and can be expressed as: 

1 1 1 ,  ..... ,  .. ,  ..    
L G

T

G L LN G GN l lnlx P V V Q Q S S             (2)   

U is called as control variables and can be expressed as: 

1 2 1 1 ..... ,  .. ,  .. , ..  
G G T c

T

G GN G GN N C CNu V V P P T T Q Q                 (3)   

OPF constraints can be divided in to two groups: These are 
equality constraints and inequality constraints. 

2.1 Equality Constraints 

OPF equality constraints consist of equations derived from 
power flow equations. These constraints are divided into 
active power equations and reactive power equations. Active 
power equations is as follows: 

1

   cos sin  0
BN

j

V V G B
Di j ij i j i

P P
Gi i j i j
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

            


 
     (4)  

Reactive power equation is as follows: 

1

sin   - co  0s
BN

j

Q Q
Gi i

V V G B
Di j ij i j ij i j

  


              
        (5)   

2.2 Inequality Constraints 

Power systems consist of many devices and elements coming 
together. These device and components have their own 
physical limits. Inequality constraints consist of these 
physical minimum and maximum limitations. These 
constraints are divided into four groups: Generation, shunt 
VAR compensations, transformers and security. 

Generation constraints: 

                   1,2,3,    min max

Gi Gi Gi PVV V V i N                   (6)   

                    1,2,3,    min max

Gi Gi Gi PVP P P i N                   (7)   

                 1,2,3,    min max

Gi Gi Gi PVQ Q Q i N                    (8)   

Transformer constraints: 

                         1,2,3,  min max

i i i TT T T i N                       (9)   

Shunt VAR compensator constraints: 

                    1,2,3,  min max

ci ci ci CQ Q Q i N                    (10)   

Security constraints: 

                    1,2,3,  min max

Li Li Li PQV V V i N                     (11)   

                                  1,2,3,  N   max

li li TLS S i                   (12)   

In order to obtain more suitable results, the given inequalities 
are inserted to the objective function as: 

lim 2 lim 2
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λp, λv, λQ and λS are penalty coefficients selected by user. 
Explanations of all abridgments are given in Table 1. 

Table 1.  Explanations of abridgments 

Abbreviation Explanation 

PGi Active power generation at bus i 

PDi Active power demand at bus i 

QGi Reactive power generation at bus i 

QDi Reactive power demand at bus i 

Vi Voltage at bus i 

Vj Voltage at bus j 

Gij Conductance between bus i and bus j 

Bij Susceptance between bus i and bus j 

VGi Generator voltage at ith generation bus 

Ti Tap setting of ith transformer 

Qci Var injection of ith shunt capacitor 

VLi Load voltage of ith unit 

Sli Apparent power flow of ith branch 

NB Number of bus bars 

NPV Number of PV buses 

NPQ Number of PQ buses 

NT Number of tap regulating transformers 

NC Number of shunt var compensators 

NTL Number of transmission lines 

 

3. VORTEX SEARCH ALGORITHM 

Vortex search algorithm (VSA) is an artificial intelligence-
based optimization technique developed by Dogan and 
Olmez in 2015 (Dogan et. al., 2015). Developers of VSA are 
inspired by the natural swirls. The algorithm is based on the 
random distributed artificial particles which search the two-
dimensional solution space to find the optimal solution.  

The vortex, consist of nested circles in two-dimensional 
space. The algorithm tries to decrease the biggest circle’s 

radius to find the optimal solution. Initial circle’s center (µ0) 
calculated as follows: 

0

 

2

 upper limit lower limit



          (14)   

Circle’s initial radius is equals to the standard deviation and 

calculation of radius is as same as the calculation of µ0. 
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QDi Reactive power demand at bus i 

Vi Voltage at bus i 

Vj Voltage at bus j 

Gij Conductance between bus i and bus j 

Bij Susceptance between bus i and bus j 

VGi Generator voltage at ith generation bus 

Ti Tap setting of ith transformer 

Qci Var injection of ith shunt capacitor 

VLi Load voltage of ith unit 

Sli Apparent power flow of ith branch 

NB Number of bus bars 

NPV Number of PV buses 

NPQ Number of PQ buses 

NT Number of tap regulating transformers 

NC Number of shunt var compensators 

NTL Number of transmission lines 

 

3. VORTEX SEARCH ALGORITHM 

Vortex search algorithm (VSA) is an artificial intelligence-
based optimization technique developed by Dogan and 
Olmez in 2015 (Dogan et. al., 2015). Developers of VSA are 
inspired by the natural swirls. The algorithm is based on the 
random distributed artificial particles which search the two-
dimensional solution space to find the optimal solution.  

The vortex, consist of nested circles in two-dimensional 
space. The algorithm tries to decrease the biggest circle’s 

radius to find the optimal solution. Initial circle’s center (µ0) 
calculated as follows: 

0

 

2

 upper limit lower limit



          (14)   

Circle’s initial radius is equals to the standard deviation and 

calculation of radius is as same as the calculation of µ0. 
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Calculate initial radius σ0 

 

f(Sbest) = inf 
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C(S) 

If exceeded, then shift the C(s) 
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      Sbest=S’ 
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Decrease the radius for the next 
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Itr>Maxitr 
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Power flow calculations 

Fig. 1. Flow chart of VSA 
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At the beginning of iterations, best solution of objective 
function is set to the infinity. Thus, the function is provided 
on the next iterations to get better values. New fitness values 
possessed by each particle are evaluated and particles that are 
better positioned than the average values saved by the 
algorithm in every iteration. 

Candidate solutions around the vortex initial center can be 
generated in the d-dimensional space via gaussian 
distribution Ct(s), (t represents the iteration index). At the 
beginning these candidate solutions may sometimes be 
created outside the limits. If a candidate solution is greater 
than the upper limit or less than the lower limit, it can be 
drawn into limits as: 

Ct(s)= rand (upper limiti –                       (16)   

lower limiti) + lower limiti    

In every iteration, solutions are compared to the previous 
ones. Smaller solutions are saved as best solutions. 
Correspondingly, the central point of vortex shifted towards 
the best solution. At the same time, radius of vortex is 
decreased to find the best solution rapidly. Decreasing the 
radius can be done by using inverse of gamma function as 
follows: 

   0 1/ ,t tr x gammaincinv x a        (17)   

at can be calculated as follows: 

MaxItr

t
aa ot           (18)   

t is iteration number, MaxItr is maximum limit of iteration 
number.  

Flow chart of proposed Vortex search algorithm is shown in 
Fig. 1. 

4. RESULTS 

The parameters and limits of the test system used in this 
study are given in Table 2 as given in literature (Yao et. al., 
1999). The results are obtained by using MATLAB on a 
personal computer in the accordance with these parameters. 
MATPOWER software package is used to calculate the 
power flow equations.  

50 particles are used to search the best value on the solution 
space. Iteration number is set to 100. Two different cases 
tested to show the effectiveness of the VSA algorithm. The 
obtained results are compared to best results reported in the 
literature.    

  

 

 
 

    Table 2.  Test system parameters 

Parameters and Limits Information 

Test System IEEE-30 bus test system 

Generation Buses 1, 2, 5, 8, 11, 13 

Shunt Var Compensator 
Buses 

10, 12, 15, 17, 20, 21, 23, 24, 29 

Tap ratio buses 6-9, 6-10, 4-12, 27-28 

Active Power Demand 2,834 p.u. 

Reactive Power Demand 1,262 p.u. 

Base MVA 100 

Generator Voltage Limits  Vmin=0,95 p.u. 
Vmax=1,1 p.u. 

Load Bus Voltage Limits Vmin=0,95 p.u. 
Vmax=1,05 p.u. 

Tap Setting Limits Tmin= 0,9 p.u. 
Tmax= 1,1 p.u. 

Shunt VAR 
Compensation Limits 

Qcmin= 0,0 p.u. 
Qcmax= 5,0 p.u. 

 

4.1 Case1: Piecewise quadratic fuel cost functions 

Thermal generation units can be used with different sources 
such as natural gas, coal and oil. In these cases, different 
functions should be used when calculating the fuel cost. Cost 
functions of generators 1 and 2 described as follows. 

2
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i i Gi i Gi
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ik ik Gi ik Gi
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  


 
 

  

                                 (19) 

Where, aik, bik and cik are used as coefficients of the ith 
generator for fuel type 3. These coefficients are given in 
Table 3. For other generation units, main case coefficients in 
other words total fuel basic cost coefficients are used. These 
coefficients are given in Table 4. We used basic coefficients 
to minimize the total fuel cost and improve the voltage 
profile in our previous study (Aydin et. al., 2016). 

Table 3.  Generator cost coefficients for Case 1 

Bus  
Min 
MW 

Max 
Mw 

a b c 

1 50 140 55.00 0.70 0.0050 

140 200 82.5 1.05 0.0075 

2 20 55 40.00 0.30 0.0100 

55 80 80.00 0.60 0.0200 

 

Table 4.  Total fuel cost basic coefficients 

Bus a b c 

1 0 2 0.00375 

2 0 1.75 0.01750 

5 0 1 0.06250 

8 0 3.25 0.00834 

11 0 3 0.0250 

13 0 3 0.0250 
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At the beginning of iterations, best solution of objective 
function is set to the infinity. Thus, the function is provided 
on the next iterations to get better values. New fitness values 
possessed by each particle are evaluated and particles that are 
better positioned than the average values saved by the 
algorithm in every iteration. 
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In every iteration, solutions are compared to the previous 
ones. Smaller solutions are saved as best solutions. 
Correspondingly, the central point of vortex shifted towards 
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t is iteration number, MaxItr is maximum limit of iteration 
number.  

Flow chart of proposed Vortex search algorithm is shown in 
Fig. 1. 

4. RESULTS 

The parameters and limits of the test system used in this 
study are given in Table 2 as given in literature (Yao et. al., 
1999). The results are obtained by using MATLAB on a 
personal computer in the accordance with these parameters. 
MATPOWER software package is used to calculate the 
power flow equations.  

50 particles are used to search the best value on the solution 
space. Iteration number is set to 100. Two different cases 
tested to show the effectiveness of the VSA algorithm. The 
obtained results are compared to best results reported in the 
literature.    
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4.1 Case1: Piecewise quadratic fuel cost functions 

Thermal generation units can be used with different sources 
such as natural gas, coal and oil. In these cases, different 
functions should be used when calculating the fuel cost. Cost 
functions of generators 1 and 2 described as follows. 
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Where, aik, bik and cik are used as coefficients of the ith 
generator for fuel type 3. These coefficients are given in 
Table 3. For other generation units, main case coefficients in 
other words total fuel basic cost coefficients are used. These 
coefficients are given in Table 4. We used basic coefficients 
to minimize the total fuel cost and improve the voltage 
profile in our previous study (Aydin et. al., 2016). 

Table 3.  Generator cost coefficients for Case 1 

Bus  
Min 
MW 

Max 
Mw 

a b c 

1 50 140 55.00 0.70 0.0050 

140 200 82.5 1.05 0.0075 

2 20 55 40.00 0.30 0.0100 

55 80 80.00 0.60 0.0200 

 

Table 4.  Total fuel cost basic coefficients 

Bus a b c 

1 0 2 0.00375 

2 0 1.75 0.01750 

5 0 1 0.06250 

8 0 3.25 0.00834 

11 0 3 0.0250 

13 0 3 0.0250 

 

 

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

244

 
 

     

 

Objective function of this case is defined as: 
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The results are given in Table 5. Results are compared to 
moth swarm algorithm (MSA) (Mohamed et. al., 2017), 
gravitational search algorithm (GSA) (Duman et. al. 2012) 
and artificial bee colony (ABC) (Adaryani et. al.,2013). The 
convergence of the VSA with minimum fuel cost is shown in 
Fig. 2. It can be seen that the minimum piecewise quadratic 
fuel cost is 626.0253 $/h. 

Table 5.  Results for Case 1 

Parameter MSA GSA ABC VSA 

PG1 (MW) 139.99 139.99 139.94 124.82 

PG2 (MW) 54.99 54.92 54.98 51.20 

PG5 (MW) 24.09 24.99 23.01 43.64 

PG8 (MW) 35 30.24 33.05 31.86 

PG11 (MW) 19.50 19.58 17.84 16.28 

PG13 (MW) 16.61 20.21 21.80 21.38 

V1 (p.u.) 1.075 1.049 1.050 0.998 

V2 (p.u.) 1.056 1.009 1.039 1.047 

V5 (p.u.) 1.026 1.014 1.013 0.969 

V8 (p.u.) 1.035 1.034 1.024 1.033 

V11 (p.u.) 1.068 0.950 1.100 0.967 

V13 (p.u.) 1.077 1.003 1.086 0.979 

T6,9 (p.u.) 0.992 1.100 1.000 0.909 

T6,10 (p.u.) 0.958 1.099 0.900 0.920 

T6,12 (p.u.) 1.024 1.099 1.000 0.924 

T28,27 (p.u.) 0.968 1.079 0.923 1.008 

Cost ($/h) 646.83 646.84 649.08 626.02 

Ploss (MW) 6.80 6.57 7.25 5.81 

 

 

Fig. 2. Convergence characteristic for case 1 

4.2 Case 2: Minimization of quadratic fuel cost with valve-
point loadings 

In this case, first and second generation units considered to 
have valve-point effects. Coefficients of these two generation 
units are given in Table 6. Fuel cost coefficients of remaining 
units are given in Table 4. Generator 1 and 2 have cost 
characteristic as follows: 

 
2

2 min

1

( ) sin ( )i Gi i i Gi i Gi i i Gi Gi
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F P a b P c P d e P P


 
     
 
   (21)   

where, ai, bi, ci, di and ei are fuel coefficients for unit i. 
Objective function for this case is given as follows: 
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     (22) 

Table 6.  Generator cost coefficients for Case 2 

Bus 
no 

PGi
min PGi

max a b c d e 

1 50 200 150 2 0.0016 50 0.0630 

2 20 80 25 2.5 0.0100 40 0.0980 

 

The obtained results are given in Table 7. In addition to these 
results compared with those results given in literature. 
Results are compared to moth swarm algorithm (MSA), 
gravitational search algorithm (GSA) and artificial bee 
colony (ABC). 

Table 7.  Results for Case 2  

Parameter MSA GSA ABC VSA 

PG1 (MW) 197.56 199.59 194.84 199.59 

PG2 (MW) 51.96 51.94 51.99 51.82 

PG5 (MW) 15 15 15 14.22 

PG8 (MW) 10 10 10 9.12 

PG11 (MW) 10 10 10 9.22 

PG13 (MW) 12 12 15.65 11.13 

V1 (p.u.) 1.033 1.099 1.022 0.970 

V2 (p.u.) 1.011 1.018 1.003 1.005 

V5 (p.u.) 0.971 1.052 1.025 0.952 

V8 (p.u.) 1.034 0.950 1.007 0.958 

V11 (p.u.) 1.099 0.963 0.982 1.006 

V13 (p.u.) 1.099 0.950 1.100 1.003 

T6,9 (p.u.) 1.1 0.909 1.050 0.987 

T6,10 (p.u.) 1.053 0.918 1.100 1.049 

T6,12 (p.u.) 1.069 0.925 0.962 0.962 

T28,27 (p.u.) 1.065 0.945 0.900 1.071 

Cost ($/h) 930.74 929.72 945.44 918.79 

Ploss (MW) 13.13 15.14 14.09 11.73 

 

As given in Table 7, result for this case is 918.790 $/h which 
is better than any other results given in literature. 
Convergence of the algorithm for case 2 is shown in Fig. 3. 
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Fig. 3. Convergence characteristic for case 2 

5. CONCLUSION 

 

In this paper, VSA is used to solve two quadratic OPF cases. 
The obtained results are compared to MSA, GSA, ABC 
algorithms to show the superiority of VSA algorithm on large 
scale, complex optimization problems. Under favour of 
VSA’s adaptive step size adjustment scheme, all the obtained 
results are better than other algorithms in the literature.  
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