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Abstract
In this paper, considering an order relation on a vector metric space which is introduced by Çevik and Altun in 2009, we

present some fundamental fixed point results. Then, we provide some nontrivial examples show that the investigation of this
work is significant. c©2017 All rights reserved.
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1. Introduction

Recent works about contraction mapping on metric spaces, show us there is a tendency to weaken the
conditions of this mapping by considering especially (partially) ordered metric spaces. This began with
Ran and Reurings in 2004 [9]. They were inspired by classical Banach fixed point theorem and showed
the existence of fixed point for contraction mapping on ordered metric spaces. In addition to that they
applied the results of their works to matrix equations. Many mathematicians have worked on ordered
metric spaces since that time (see for example [4, 5]). Nieto and Rodrı́guez-López [7, 8] presented some
new results for contractions in ordered metric spaces. They extended the work of Ran and Reuring by
considering convergent sequences whose successive terms are comparable (monotone or non-monotone)
instead of the continuity of contraction mapping [7, 8]. On the other hand, Çevik and Altun [3] expanded
the concepts of metric spaces to vector metric spaces by using Riesz space valued metric (called vector
metric). They obtained Banach contraction principle and some fixed point results for these spaces [3].
Also in [2], vectorially continuous function between vector metric spaces was defined. By this concept,
the continuity can be given for more general spaces. In fact, the known description of continuity could
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be extended to all vector metric spaces in topological sense. However, this extension would not yield
fruitful results. Although sequential continuity is equivalent to continuity in metric spaces specially, and
first countable topological spaces in general, an appropriate extension could be attained by a version of
sequentially continuity that does not fit this concept. It is provided by vectorial convergence and named
as vectorial continuity.

In this work, we consider ordered vector metric spaces for the first time. Thus, the conditions of the
contraction mappings on ordered metric space are even more weakened by this work. Since the real
numbers equipped with the usual order is a Riesz space, the works in [7] and [8] become a special case
of ours.

2. Preliminaries

Let X be a nonempty set equipped with an order relation 6. A function f from X to itself is said to
be order-preserving, if f(x) 6 f(y) and is said to be order-reversing, if f(y) 6 f(x) whenever x,y ∈ X
with x 6 y. A lattice is an ordered set that every two elements a and b have a supremum a∨ b and
an infimum a∧ b. An ordered vector space is a (real) vector space equipped with an order relation 6
which is compatible with the vector space operations. An ordered set E = (E,6) is called a Riesz space
or vector lattice, if it is an ordered vector space and a lattice. If a ∈ E, then we define |a| = a∨ (−a). The
element |a| is called module of a. The notation an ↓ a means that (an) is an order-reversing sequence
and a is the infimum for the set {an : n ∈ N}. A Riesz space E is said to be Archimedean, if 1

na ↓ 0
holds for every a ∈ E+. A sequence (bn) is said to be order-convergent (or o-convergent) to b in E,
if there is a sequence (an) in E satisfying an ↓ 0 and |bn − b| 6 an for all n, and written bn

o→ b.
Furthermore (bn) is said to be order-Cauchy (or o-Cauchy), if there exists a sequence (an) in E such
that an ↓ 0 and |bn − bn+p| 6 an holds for all n and p. The Riesz space E is o-Cauchy complete, if
every o-Cauchy sequence is o-convergent. The Riesz space E is called Dedekind (σ-)complete, if every
nonempty (countable) subset of E that is bounded from above has a supremum. For notations and other
facts regarding Riesz space we refer to [1] and [6].

We recall now some useful definitions for our main results and the concept of vector metric space
introduced in [3].

Definition 2.1. Let X be a non-empty set and let E be a Riesz space. The mapping d : X× X → E is said
to be a vector metric (or E-metric), if it satisfies the following properties:

(vm1) d(x,y) = 0, if and only if x = y;

(vm2) d(x,y) 6 d(x, z) + d(y, z), for all x,y, z ∈ X.

Also the triple (X,d,E) is said to be vector metric space.

By (vm1) and (vm2), the conditions of nonnegative and symmetry hold in a vector metric space.

Definition 2.2.

(a) A sequence (xn) in a vector metric space (X,d,E) vectorial converges (or is E-converges) to some

x ∈ E, written xn
d,E→ x, if there is a sequence (an) in E satisfying an ↓ 0 and d(xn, x) 6 an for all n.

(b) A sequence (xn) is called an E-Cauchy sequence whenever there exists a sequence (an) in E such
that an ↓ 0 and d(xn, xn+p) 6 an holds for all n and p.

(c) A vector metric space (X,d,E) is called E-complete if each E-Cauchy sequence in X E-converges to a
limit in X.

We give the following result without proof.
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Lemma 2.3. Let (X,d,E) be a vector metric space and (xn) be a sequence in X. Then, xn
d,E→ x, if and only if

d(xn, x) o→ 0. Also, the sequence (xn) is E-Cauchy, if and only if d(xn, xn+p)
o→ 0 for all n and p.

Let us recall the vectorial continuity defined in [2]. This concept will be used throughout this paper.

Definition 2.4. Let (X,d,E) and (Y, ρ, F) be vector metric spaces, and let x ∈ X. A function f : X → Y is

said to be vectorially continuous at x, if xn
d,E−→ x in X implies f(xn)

ρ,F−→ f(x) in Y. The function f is said
to be vectorially continuous, if it is vectorially continuous at each point of X.

3. Main results

Let (X,d) be a metric space equipped with an order relation 6 and let f be a contraction mapping
from X to itself. In [7–9], the contraction condition on f is applied only to comparable elements, thus that
is weakened with the order relation 6 on X. Ran and Reurings [9] showed the existence of fixed point
for the continuous mapping f in a metric space equipped with an order relation 6. Later, in [7] and [8],
Nieto and Rodrı́guez-López removed the continuity of f, and they put one of the following conditions:

(i) if an order-preserving sequence (xn) converges to x, then xn 6 x for all n;

(ii) if an order-reversing sequence (yn) converges to y, then y 6 yn for all n.

Note that every metric space is a vector metric space since R with usual order is a Riesz space. Here,
we extend the results given for metric spaces in [7] and [8] to vector metric spaces. This is the result of
the fact that vectorial convergence is used instead of usual convergence.

We use the notation ≶ for comparable elements according to the order relation 6 on X. That is, x ≶ y
if and only if x 6 y or y 6 x. Throughout this section, the contraction condition on any function f from X

to itself is the following.

If there exists a constant k ∈ [0, 1) such that
d(f(x), f(y)) 6 kd(x,y) for all x,y ∈ X with x ≶ y. (3.1)

Theorem 3.1. Let (X,d,E) be an E-complete vector metric space equipped with an order relation 6 and E is
Archimedean. Let f be an order-preserving mapping (according to 6) from X to itself, and one of the followings is
satisfied:

(a) The mapping f is vectorially continuous; or

(b) xn 6 x for all n whenever (xn) order-preserving sequence and xn
d,E→ x.

If there exists an element u in X such that u 6 f(u) and if f satisfies the condition (3.1), then f has a fixed point in
X.

Proof. Let u = x0. Define the sequence (xn) by xn = f(xn−1) for all n. We have

xn+1 = f(xn) = f
2(xn−1) = . . . = fn(x1) = f

n+1(x0),

for all n. Since the mapping f is order-preserving, then for arbitrary n

x0 6 f(x0) = x1 6 · · · 6 f(xn−1) = f
n(x0) = xn,

holds. Since the sequence (xn) is order-preserving, we obtain

d(xn, xn+1) = d(f(xn−1), f(xn))
6 kd(xn−1, xn) = kd(f(xn−2), f(xn−1))
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6 k2d(xn−2, xn−1) = k
2d(f(xn−3), f(xn−2))

...
6 knd(x0, x1).

Thus, for all n and p

d(xn, xn+p) 6 d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

6
(
kn + kn+1 + · · ·+ kn+p−1)d(x0, x1)

6
kn

1 − k
d(x0, x1).

Then the sequence (xn) is E-Cauchy since E is Archimedean. By the E-completeness of X, there exists x in

X such that xn
d,E→ x. Hence there exists a sequence (an) in E such that an ↓ 0 and d(xn, x) 6 an for all n.

Case 1. Due to the vectorial continuity of f there exists another sequence (bn) in E such that bn ↓ 0 and
d(f(xn), f(x)) 6 bn for all n. Since

d(f(x), x) 6 d(f(x), f(xn)) + d(f(xn), x)
6 bn + d(xn+1, x)
6 bn + an+1 6 bn + an,

for all n and bn + an ↓ 0, then d(f(x), x) = 0, i.e., f(x) = x holds.

Case 2. By xn 6 x for all n we have

d(f(x), x) 6 d(f(xn), f(x)) + d(f(xn), x)
6 kd(xn, x) + d(xn+1, x)
6 kan + an+1 6 (k+ 1)an,

for all n. Since (k+ 1)an ↓ 0, then d(f(x), x) = 0. Consequently, x is a fixed point of f.

According to the partial order 6, for every two elements x and y in X the following two conditions (1)
and (2) are equivalent [7].

(1) x and y have an upper bound or a lower bound in X.

(2) There exists z in X which is comparable to x and y.

These conditions are weaker than the followings:

(3) x and y are comparable.

(4) x∨ y or x∧ y in X.

(5) X is a lattice.

(6) X is Dedekind (σ-) complete.

When one of the conditions (1) and (2) is added to the hypothesis of Theorem 3.1, the uniqueness of
the fixed point is obtained.

Theorem 3.2. If the condition (1) is added to the hypotheses of Theorem 3.1, then the fixed point x of f is unique.

Moreover, for every u ∈ X, fn(u) d,E→ x.
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Proof. If y is another fixed points of f, we prove that d(x,y) = 0.
Consider two cases:

Case 1. If x and y are comparable, we have

d(x,y) = d(f(x), f(y)) 6 kd(x,y).

Since k ∈ [0, 1), then d(x,y) = 0.
Case 2. If x and y are incomparable, then there exists z in X comparable to x and y by the above discussion.
Monotonicity of f implies that fn(z) is comparable to fn(x) = x and fn(y) = y for all n. Thus,

d(x,y) 6 d(fn(x), fn(z)) + d(fn(z), fn(y)) 6 kn[d(x, z) + d(z,y)],

for all n. Since E is Archimedean, then d(x,y) = 0.
On the other hand, for arbitrary element u in X,

(i) if x is comparable to u, then fn(x) = x is comparable to fn(u) and hence

d(fn(u), x) 6 knd(u, x),

for all n, and

(ii) if x is incomparable to u, there exists z ∈ X which is comparable to x and u such that

d(fn(u), x) 6 d(fn(u), fn(z)) + d(fn(z), fn(x)) 6 kn[d(u, z) + d(z, x)],

for all n since fn(z) is comparable to fn(x) = x and fn(u) for all n.

By E is Archimedean, knd(u, x) ↓ 0 in (i) and kn[d(u, z) + d(z, x)] ↓ 0 in (ii). From both (i) and (ii),

fn(u)
d,E→ x.

Example 3.3. Let X = {1, 2, 3, 4}. Consider the order 6 defined by

x 6 y, if and only if there exists a positive integer k such that y = kx,

for x,y ∈ X. It is well-known that R2 is an Archimedean Riesz space according to the coordinatewise
ordering 6 defined by

(a1,a2) 6 (b1,b2) if and only if a1 6 b1 and a2 6 b2,

for a1,a2,b1,b2 ∈ R. The mapping d : X×X→ R2 defined by

d(x,y) =

{ (
|x− y| ,

∣∣∣ 1
x −

1
y

∣∣∣) , (x,y) /∈ {(2, 4), (4, 2)},
(4, 4) , (x,y) ∈ {(2, 4), (4, 2)},

is R2-complete vector metric on X.
Let f : X → X with f(1) = 1 and f(x) = x− 1 for x 6= 1. Then the function f is order-preserving and

the condition (b) in Theorem 3.1 is satisfied. Also, 1 6 f(1) and the function f verify the inequality (3.1)
with k = 2/3. Moreover, 1 ∈ X is comparable with every pair of elements of X. Therefore, f has unique
fixed point. But f is not contractive mapping for any real-valued metric on X, thus we can not apply [7,
Theorem 2.1] which was given for metric spaces to this example.

Remark 3.4. From now on the condition (1) is going to be given in the hypothesis of existence theorems,
because proving the uniqueness is similar to the proof of Theorem 3.2 in next results. Therefore, it should
be considered that this condition is only concerned with the uniqueness of the fixed point.
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The above discussion is also applicable to order-reversing sequences. The detail is following.

Theorem 3.5. Let (X,d,E) be an E-complete vector metric space equipped with an order relation 6 satisfying (1)
and E is Archimedean. Let f be an order-preserving mapping (according to 6) from X to itself, and one of the
followings is satisfied:

(a) the mapping f is vectorially continuous; or

(b) x 6 xn for all n whenever (xn) is order-reversing sequence and xn
d,E→ x.

If there exists an element u in X such that f(u) 6 u and if f satisfies the condition (3.1), then f has a fixed point in
X.

Proof. Let u = x0. Define the sequence (xn) by xn = f(xn−1) for all n. Note that xn+1 = fn+1(x0) for all
n. Since the mapping f is order-preserving, then for arbitrary n

x0 > f(x0) = x1 > · · · > f(xn−1) = f
n(x0) = xn,

holds. The rest of proof is similar to the proof of Theorem 3.1.

Let us give fixed point theorems for order-reversing mappings.

Theorem 3.6. Let (X,d,E) be an E-complete vector metric space equipped with an order relation 6 satisfying (1)
and E is Archimedean. Let f be an order-reversing mapping from X to itself, and one of the followings is satisfied:

(a) the mapping f is vectorially continuous; or

(b) if (xn) is a sequence in X satisfying xn ≶ xn+1 for all n and xn
d,E→ x, then there exists a subsequence (xnm)

of (xn) such that xnm ≶ x for all nm.

If there exists an element u in X such that f(u) ≶ u and if f satisfies the condition (3.1), then f has a unique fixed
point in X.

Proof. Let u = x0. Define the sequence (xn) by xn = f(xn−1) for all n. Since xn+1 = fn+1(x0) for all
n, by hypotheses, xn and xn+1 are comparable for all n. We can assume without loss of generality that
x0 6 f(x0). Since the mapping f is order-reversing, then for arbitrary n

x0 6 f(x0) = x1

> f(x1) = f
2(x0) = x2

6 f(x2) = f
3(x0) = x3

> f(x3) = f
4(x0) = x4

...

holds. By induction,
d(xn+1, xn) 6 knd(x1, x0),

for all n since every successive terms of (xn) are comparable. As the proof of Theorem 3.1, for all n and p

d(xn, xn+p) 6
kn

1 − k
d(x0, x1).

Then the sequence (xn) is E-Cauchy since E is Archimedean. By the E-completeness of X, there exists x

in X such that xn
d,E→ x.
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We show that x is fixed point of f. If f is vectorially continuous, by the proof of Theorem 3.1 it is clear
that x is fixed point of f. Although the sequence (xn) is not monotone, but every successive terms of (xn)
are comparable and convergent sequence to x. Supposing the hypotheses in (b), there is a subsequence
(xnm) of (xn) whose each term is comparable to x. Since there exists a sequence (an) in E such that an ↓ 0
and d(xn, x) 6 an for all n, we have

d(x, f(x)) 6 d(x, xnm+1) + d(f(x), xnm+1)

6 d(x, xnm+1) + d(f(x), f(xnm))
6 d(x, xnm+1) + kd(x, xnm)
6 anm+1 + kanm

6 (k+ 1)anm

for all m. Then f(x) = x. The uniqueness of the fixed point x is obtained from Theorem 3.2.

Example 3.7. The set `∞ of all bounded real sequences is a lattice with the pointwise ordering (that is,
(xn) 6 (yn) in `∞ if and only if xn 6 yn for all n). With the same ordering and the usual operations, the
set `1 of all real sequences (an) satisfying

∑∞
n=1 |an| < ∞ is an Archimedean Riesz space. The mapping

d : `∞ × `∞ → `1 defined by

d((xn), (yn)) =
(

1
2n

|xn − yn|

)
,

is `1-complete vector metric on `∞. Define a sequence (xn) = ((xnm)) of `∞ with

xnm =


2 , m = 1,

1/2 , 2 6 m 6 n+ 1,
1 , m > n+ 1.

.

The sequence (xn) is order-reversing and xn
d,`1→ 1 = (1, 1, . . .). Since the all terms of (xn) are not

comparable with 1, the condition (b) is not satisfied. However, the function f : `∞ → `∞; f(x) = x/2 is
monotone and vectorially continuous. For every x ∈ `∞, f(x) 6 x and the function f verify the inequality
(3.1) with k = 1/2. Therefore, f has the unique fixed point 0 = (0, 0, . . .).

The existence of Theorem 3.1 (b) or Theorem 3.5 (b) imply the existence of Theorem 3.6 (b). Conversely,
if d(x, z) 6 d(y, z) for any x,y, z ∈ X, y 6 x 6 z and the existence of Theorem 3.6 (b) are valid, then the
existence of Theorem 3.1 (b) and Theorem 3.5 (b) are valid when the iterative sequence is monotone ([8,
Remark 1]).

On the light the conclusion previously discussed we attain following result.

Theorem 3.8. Let (X,d,E) be an E-complete vector metric space equipped with an order relation 6 satisfying (1)
and E is Archimedean. Let f be a monotone mapping from X to itself, and one of the followings is satisfied:

(a) the mapping f is vectorially continuous; or

(b) if (xn) is a sequence in X satisfying xn ≶ xn+1 for all n and xn
d,E→ x, then there exists a subsequence (xnm)

of (xn) such that xnm ≶ x for all nm.

If there exists an element u in X such that f(u) ≶ u and if f satisfies the condition (3.1), then f has a unique fixed
point in X.

Now, we give a fixed point theorem by a condition weaker than the monotonicity of f.

Theorem 3.9. Let (X,d,E) be an E-complete vector metric space equipped with an order relation 6 satisfying (1)
and E is Archimedean. Let f be a mapping from X to itself such that for every x,y ∈ X, f(x) ≶ f(y) whenever
x 6 y, and one of the followings is satisfied:
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(a) the mapping f is vectorially continuous; or

(b) if (xn) is a sequence in X satisfying xn ≶ xn+1 for all n and xn
d,E→ x, then there exists a subsequence (xnm)

of (xn) such that xnm ≶ x for all nm.

If there exists an element u in X such that f(u) ≶ u and if f satisfies the condition (3.1), then f has a unique fixed
point in X.

Proof. Let u = x0. Define the sequence (xn) by xn = f(xn−1) for all n. We have xn+1 = fn+1(x0) for all
n. Since the mapping f transforms to comparable elements into comparable elements, xn and xn+1 are
comparable for all n. The rest of proof is similar to the proof of Theorem 3.6.

Example 3.10. Let X = {(x, 0), (0, x) : x ∈ [0, 1]}. Consider the order 6 on X defined by

(x, 0) 6 (y, 0) ⇔ x 6 y
(0, x) 6 (0,y) ⇔ x 6 y, x 6= 0, y 6= 0.

The order 6 on R2 is coordinatewise as in Example 3.3. The mapping d : X×X→ R2 defined by

d((x, 0), (y, 0)) = (2 |x− y| , |x− y|),

d((0, x), (0,y)) =
(
|x− y| ,

1
2
|x− y|

)
,

d((x, 0), (0,y)) =
(

2x+ y, x+
y

2

)
,

is R2-complete vector metric on X.
Let f : X → X with f((x, 0)) = (0, x) for x ∈ [0, 1] and f((0, x)) =

(
0, 1 − x

2

)
for x ∈ (0, 1]. Then the

function f is vectorially continuous, but it is not monotone. Also, for every x ∈ [0, 1] (0, x) ≶ f((0, x)) and
the function f verify the condition (3.1) with k = 1/2. The elements (0, 0) and

(
0, 1

2

)
are fixed points of

f. There are pairs o elements of X have not an upper bound and a lower bound in X as (1, 0) and (0, 1).
Thus, f has not unique fixed point in X. Furthermore, we can not apply [8, Theorem 7] which was given
for metric spaces to this example since the function f is not a contractive mapping for any real-valued
metric on X.

4. Conclusion

In this paper, we have generated nontrivial class by using ordered vector metric spaces. Also, we have
given three examples show that theorems in [7] and [8] are specific versions of our theorems. So that, this
study will lead to some new applications.
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[8] J. J. Nieto, R. Rodrı́guez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to
ordinary differential equations, Acta Mathematica Sinica (English Series), 23 (2007), 2205–2212. 1, 3, 3, 3.10, 4

[9] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations,
Proc. Amer. Math. Soc., 132 (2004), 1435–1443. 1, 3


	Introduction
	Preliminaries
	Main results
	Conclusion

