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HATICE ASLAN HANÇER∗, GÜLHAN MINAK∗∗ AND ISHAK ALTUN∗∗∗

∗Department of Mathematics, Faculty of Science and Arts

Kirikkale University, 71540 Yahsihan, Kirikkale, Turkey

E-mail: haslan@kku.edu.tr

∗∗Department of Mathematics, Faculty of Science and Arts

Kirikkale University, 71540 Yahsihan, Kirikkale, Turkey
E-mail: g.minak.28@gmail.com

∗∗∗Adress 1: King Saud University, College of Science,
Riyadh, Saudi Arabia

Adress 2: Department of Mathematics,

Faculty of Science and Arts,
Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey,

E-mail: ishakaltun@yahoo.com.

Abstract. In the present paper, considering a recent technique which is used by Jleli and Samet

[10] for fixed points of single-valued maps, we introduce a new concept of multivalued θ-contractions
on metric spaces and prove that some of such mappings are multivalued weakly Picard operators on

complete metric space. Finally, we give a nontrivial example to show that the class of multivalued

θ-contractions is more general than multivalued contractions in the sense of Nadler [14] on complete
metric spaces.

Key Words and Phrases: fixed point, multivalued mapping, multivalued contraction, weakly
Picard operator.

2010 Mathematics Subject Classification: 54H25, 47H10.

1. Introduction and preliminaries

Let (X, d) be a metric space. We denote by P (X) the collection of all nonempty
subsets of X, by CB(X) the collection of all nonempty closed and bounded subsets
of X and by K(X) the collection of all nonempty compact subsets of X. It is well
known that H : CB(X)× CB(X)→ R defined by

H(A,B) = max

{
sup
x∈A

D(x,B), sup
y∈B

D(y,A)

}
is a metric on CB(X), whereD(x,B) = inf {d(x, y) : y ∈ B}, which is called Pompeiu-
Hausdorff metric induced by d. We can find detailed information about the Pompeiu-
Hausdorff metric in [1, 3, 5, 9]. An element x ∈ X is said to be a fixed point of a
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multivalued mapping T : X → P (X) if x ∈ Tx. Let T : X → CB(X) be a mapping,
then T is called multivalued contraction if there exists L ∈ [0, 1) such that

H(Tx, Ty) ≤ Ld(x, y)

for all x, y ∈ X.
In 1969, Nadler [14] proved a fundamental fixed point theorem for multivalued

mappings: Every multivalued contraction on complete metric spaces has a fixed point.
Inspired by his result, since then various fixed point results concerning multival-

ued contractions has been further developed in different directions by many authors
(see,[6, 7, 8, 11, 12]).

In 2003, Rus et al [19] introduced the concept of multivalued weakly Picard (MWP)
operator on a metric space: T : X → P (X) is a MWP operator if there exists a
sequence {xn} in X such that xn+1 ∈ Txn for any initial point x0, converges to a
fixed point of T . Then Petruşel extensively studied on MWP opeartors in [16]. It
is easy to see that every Nadler [14], Reich [17], Rus [18], Petruşel [15], Mizoguchi-
Takahashi [13], Berinde and Berinde [4] type multivalued contractions on complete
metric spaces are MWP operators.

On the other hand, a new type of contractive maps has been introduced by Jleli
and Samet [10]. Throughout this study, we called it as θ-contraction.

Let Θ be the set of all functions θ : (0,∞) → (1,∞) satisfying the following
conditions:

(Θ1) θ is nondecreasing,
(Θ2) for each sequence {tn} ⊂ (0,∞) , lim

n→∞
θ(tn) = 1 if and only if lim

n→∞
tn = 0+,

(Θ3) there exist r ∈ (0, 1) and l ∈ (0,∞] such that lim
t→0+

θ(t)−1
tr = l.

Definition 1.1. ([10]) Let (X, d) be a metric space and T : X → X be a mapping.
Given θ ∈ Θ, we say that T is θ-contraction if there exists k ∈ (0, 1) such that

θ(d(Tx, Ty)) ≤ [θ(d(x, y))]
k

(1.1)

for all x, y ∈ X with d(Tx, Ty) > 0.

If we consider the different type of mapping θ in Definition 1.1., we obtain some of

variety of contractions. For example, let θ : (0,∞) → (1,∞) be given by θ(t) = e
√
t.

It is clear that θ ∈ Θ. Then (1.1) turns to

d(Tx, Ty) ≤ k2d(x, y) (1.2)

for all x, y ∈ X,Tx 6= Ty. It is clear that for x, y ∈ X such that Tx = Ty the
inequality d(Tx, Ty) ≤ k2d(x, y) also holds. Therefore T is an ordinary contraction.

Similarly, let θ : (0,∞) → (1,∞) be given by θ(t) = e
√
tet . It is clear that θ ∈ Θ.

Then (1.1) turns to
d(Tx, Ty)

d(x, y)
ed(Tx,Ty)−d(x,y) ≤ k2 (1.3)

for all x, y ∈ X,Tx 6= Ty.
In addition, we have concluded that every θ-contraction T is a contractive mapping,

i.e.,
d(Tx, Ty) < d(x, y)
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for all x, y ∈ X,Tx 6= Ty. Thus, every θ-contraction is a continuous mapping. On the
other side, Example in [10] shows that the mapping T is not ordinary contraction, but

it is a θ-contraction with θ(t) = e
√
tet . Thus the following theorem, which was given

as a corollary by Jleli and Samet is a proper generalization of Banach Contraction
Principle.
Theorem 1.2. (Corollary 2.1 of [10]) Let (X, d) be a complete metric space and
T : X → X be a θ-contraction. Then T has a unique fixed point in X.

We can find some generalizations of Theorem 1.2. for single valued mappings in
[2]. The aim of this paper is to introduce the concept of multivalued θ-contraction, by
combining the ideas of Jleli, Samet’s and Nadler’s, and give some fixed point results
for mappings of this type on complete metric spaces.

2. Main results

Definition 2.1. Let (X, d) be a complete metric space and T : X → CB(X). Given
θ ∈ Θ, we say that T is multivalued θ-contraction if there exists k ∈ (0, 1) such that

θ(H(Tx, Ty)) ≤ [θ(d(x, y))]
k

(2.1)

for all x, y ∈ X with H(Tx, Ty) > 0.

We can easily obtain that every multivalued contraction is also multivalued θ-

contraction with θ(t) = e
√
t.

Our main result is as follows:
Theorem 2.2. Let (X, d) be a complete metric space and T : X → K(X) be a
multivalued θ-contraction. Then T is a MWP operator.

Proof. Let x0 ∈ X be an arbitrary point in X. Since Tx is nonempty for all x ∈ X,
we can choose x1 ∈ Tx0. If x1 ∈ Tx1, then x1 is a fixed point of T . Let x1 /∈ Tx1.
Then, since Tx1 is closed, D(x1, Tx1) > 0. On the other hand, from D(x1, Tx1) ≤
H(Tx0, Tx1) and (Θ1),

θ(D(x1, Tx1)) ≤ θ(H(Tx0, Tx1)).

From (2.1), we can write that

θ(D(x1, Tx1)) ≤ θ(H(Tx0, Tx1)) ≤ [θ(d(x1, x0))]
k
. (2.2)

Since Tx1 is compact, there exists x2 ∈ Tx1 such that

d(x1, x2) = D(x1, Tx1).

Then, from (2.2)

θ(d(x1, x2)) ≤ θ(H(Tx0, Tx1)) ≤ [θ(d(x1, x0))]
k
.

If we continue recursively, we obtain a sequence {xn} in X such that xn+1 ∈ Txn and
if xn /∈ Txn for all n ∈ N, then

θ(d(xn, xn+1)) ≤ [θ(d(xn, xn−1))]
k

(2.3)
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for all n ∈ N. Otherwise, obviously T has a fixed point. Denote an = d(xn, xn+1), for
n ∈ N. Then an > 0 for all n ∈ N and, using (2.3), we have

θ(an) ≤ [θ(an−1)]
k ≤ [θ(an−2)]

k2 ≤ · · · ≤ [θ(a0)]
kn
.

Thus, we obtain

1 < θ(an) ≤ [θ(a0)]
kn

(2.4)

for all n ∈ N. Letting n→∞ in (2.4), we obtain

lim
n→∞

θ(an) = 1. (2.5)

From (Θ2), limn→∞ an = 0+ and so from (Θ3) there exist r ∈ (0, 1) and l ∈ (0,∞]
such that

lim
n→∞

θ(an)− 1

(an)r
= l.

Suppose that l < ∞. In this case, let B = l
2 > 0. From the definition of the limit,

there exists n0 ∈ N such that, for all n ≥ n0,∣∣∣∣θ(an)− 1

(an)r
− l
∣∣∣∣ ≤ B.

This implies that, for all n ≥ n0,

θ(an)− 1

(an)r
≥ l −B = B.

Then, for all n ≥ n0,

n(an)r ≤ An [θ(an)− 1] ,

where A = 1/B.
Suppose now that l = ∞. Let B > 0 be an arbitrary positive number. From the

definition of the limit, there exists n0 ∈ N such that, for all n ≥ n0,

θ(an)− 1

(an)r
≥ B.

This implies that, for all n ≥ n0,

n(an)r ≤ An [θ(an)− 1] ,

where A = 1/B.
Thus, in all cases, there exist A > 0 and n0 ∈ N such that, for all n ≥ n0,

n(an)r ≤ An [θ(an)− 1] .

Using (2.4), we obtain, for all n ≥ n0,

n(an)r ≤ An
[
[θ(a0)]

kn − 1
]
.

Letting n→∞ in the above inequality, we obtain

lim
n→∞

n(an)r = 0.
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Thus, there exits n1 ∈ N such that n(an)r ≤ 1 for all n ≥ n1. So, we have, for all
n ≥ n1

an ≤
1

n1/r
. (2.6)

In order to show that {xn} is a Cauchy sequence, consider m,n ∈ N such that m >
n ≥ n1. Using the triangular inequality for the metric and from (2.6), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

= an + an+1 + · · ·+ am−1 =

m−1∑
i=n

ai ≤
∞∑
i=n

ai ≤
∞∑
i=n

1

i1/r
.

By the convergence of the series
∞∑
i=1

1
i1/r

, passing to limit n→∞, we get d(xn, xm) →

0. This yields that {xn} is a Cauchy sequence in (X, d). Since (X, d) is a complete
metric space, the sequence {xn} converges to some point z ∈ X, that is, limn→∞ xn =
z. On the other hand, from (Θ1) and (2.1), it is easy to conclude that

H(Tx, Ty) < d(x, y)

for all x, y ∈ X with Tx 6= Ty. Therefore, for all x, y ∈ X

H(Tx, Ty) ≤ d(x, y) (2.7)

is satisfied. Then

D(xn+1, T z) ≤ H(Txn, T z) ≤ d(xn, z)

Passing to limit n → ∞, we obtain D(z, Tz) = 0. Thus, we get z ∈ Tz = Tz.
Considering the proof technique, we can say that T is a MWP operator.
Remark 2.3. The following question arises: can we take CB(X) instead of K(X)
in Theorem 2.2. under the same conditions? Unfortunately, the answer is negative
as shown in the following example.
Example 2.4. Let X = [0, 2] and

d(x, y) =

 0 , x = y

1 + |x− y| , x 6= y
.

Then it is clear that (X, d) is complete metric space, which is also bounded. Since τd
is discrete topology, all subsets of X are closed. Therefore all subsets of X are closed
and bounded. Define a mapping T : X → CB(X),

Tx =

 Q , x ∈ X\Q

X\Q , x ∈ Q
,

where Q is the set of all rational numbers in X . Therefore T has no fixed points.
Now, define θ : (0,∞)→ (1,∞) by

θ(t) =

 e
√
t , t ≤ 1

9 , t > 1

,
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then we can see that θ ∈ Θ. Now we show that

θ(H(Tx, Ty)) ≤ [θ(d(x, y))]
1
2

for all x, y ∈ X with H(Tx, Ty) > 0. Note that H(Tx, Ty) > 0 ⇔ {x, y} ∩ Q is
singleton. Therefore, we have

H(Tx, Ty) > 0 ⇒ H(Tx, Ty) = 1 and d(x, y) = 1 + |x− y| > 1

⇒ θ(H(Tx, Ty)) = e and [θ(d(x, y))]
1
2 =
√

9 = 3

⇒ θ(H(Tx, Ty)) ≤ [θ(d(x, y))]
1
2 .

Therefore, T is a multivalued θ-contraction, but is not a MWP operator.

However, we can take CB(X) instead of K(X), by adding the following weak
condition on θ:

(Θ4) θ(inf A) = inf θ(A) for all A ⊂ (0,∞) with inf A > 0.
Note that, if θ satisfies (Θ1), then it satisfies (Θ4) if and only if it is right continuous.

Let
Ξ = {θ | θ : (0,∞)→ (1,∞) satisfies (Θ1) - (Θ4)}.

Theorem 2.5. Let (X, d) be a complete metric space and T : X → CB(X) be a
multivalued θ-contraction with θ ∈ Ξ. Then T is a MWP operator.
Proof. Let x0 ∈ X. Since Tx is nonempty for all x ∈ X, we can choose x1 ∈ Tx0. If
x1 ∈ Tx1, then x1 is a fixed point of T . Let x1 /∈ Tx1. Then, since Tx1 is closed,
D(x1, Tx1) > 0. On the other hand, from D(x1, Tx1) ≤ H(Tx0, Tx1) and (Θ1)

θ(D(x1, Tx1)) ≤ θ(H(Tx0, Tx1)).

From (2.1), we can write that

θ(D(x1, Tx1)) ≤ θ(H(Tx0, Tx1)) ≤ [θ(d(x0, x1))]
k
. (2.8)

From (Θ4) we can write (note that d(x1, Tx1) > 0 )

θ(D(x1, Tx1)) = inf
y∈Tx1

θ(d(x1, y)),

and so from (2.8) we have

inf
y∈Tx1

θ(d(x1, y)) ≤ [θ(d(x0, x1))]
k
< [θ(d(x0, x1))]

k+1
2 . (2.9)

Then, from (2.9) there exists x2 ∈ Tx1 such that

θ(d(x1, x2)) ≤ [θ(d(x0, x1))]
k+1
2 .

If x2 ∈ Tx2 we are finished. Otherwise, by the same way we can find x3 ∈ Tx2 such
that

θ(d(x2, x3)) ≤ [θ(d(x1, x2))]
k+1
2 .

We continue recursively, then we obtain a sequence {xn} in X such that xn+1 ∈ Txn
and

θ(d(xn, xn+1)) ≤ [θ(d(xn, xn−1))]
k+1
2

for all n ∈ N. The rest of the proof can be completed as in the proof of Theorem 2.2.
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Now we give an example showing that T is multivalued θ-contraction but is not a
multivalued contraction.
Example 2.6. Consider the complete metric space (X, d), where X = {0, 1, 2, · · · }
and d : X ×X → [0,+∞) is given by

d(x, y) =

 0 , x = y

x+ y , x 6= y
.

Let T : X → X be defined by

Tx =

 {0, 1} , x ∈ {0, 1, 2}

{0, x− 1} , x ≥ 3
.

Let x ≥ 3 and y = 0, then we obtain

lim
x→∞

H(Tx, Ty)

d(x, y)
= lim
x→∞

x− 1

x
= 1.

Thus, T is not multivalued contraction. Therefore, we can not guarantee that T is a
MWP operator by Nadler fixed point theorem.

Now we claim that, T is multivalued θ-contraction with θ(t) = e
√
tet and k = e−

1
2 .

To see (2.1), we have to show that

H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) ≤ e−1

for all x, y ∈ X with H(Tx, Ty) > 0.
First, observe that

H(Tx, Ty) > 0⇔ (x 6= y and {x, y} ∩ {0, 1, 2} is empty or singleton).

Now, without loss of generality we may assume x > y in the following cases. Case 1.
If {x, y}∩{0, 1, 2} is singleton, then H(Tx, Ty) = x−1 and d(x, y) ∈ {x, x+1, x+2}.
Thus, we have

H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) ≤ x− 1

x
e−1 ≤ e−1.

Case 2. If {x, y} ∩ {0, 1, 2} is empty, then H(Tx, Ty) = x − 1 and d(x, y) = x + y.
Thus, we have

H(Tx, Ty)

d(x, y)
eH(Tx,Ty)−d(x,y) =

x− 1

x+ y
e−1−y ≤ e−1.

This shows that all conditions of Theorem 2.2 (or Theorem 2.5) are satisfied and so
T is a MWP operator.
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[6] Lj.B. Ćirić, Multi-valued nonlinear contraction mappings, Nonlinear Anal., 71(2009), 2716-2723.

[7] P.Z. Daffer, H. Kaneko, Fixed points of generalized contractive multivalued mappings, J. Math.

Anal. Appl., 192(1995), 655-666.
[8] Y. Feng, S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued

Caristi type mappings, J. Math. Anal. Appl., 317(2006), 103-112.
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