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Abstract: In this paper, a tactical Production-Distribution Planning (PDP) has been handled in a
fuzzy and stochastic environment for supply chain systems (SCS) which has four echelons (suppliers,
plants, warehouses, retailers) with multi-products, multi-transport paths, and multi-time periods.
The mathematical model of fuzzy stochastic PDP is a NP-hard problem for large SCS because of the
binary variables which determine the transportation paths between echelons of the SCS and cannot
be solved by optimization packages. In this study, therefore, two new meta-heuristic algorithms
have been developed for solving fuzzy stochastic PDP: Ant Colony Optimization (ACO) and Genetic
Algorithm (GA). The proposed meta-heuristic algorithms are designed for route optimization in PDP
and integrated with the GAMS optimization package in order to solve the remaining mathematical
model which determines the other decisions in SCS, such as procurement decisions, production
decisions, etc. The solution procedure in the literature has been extended by aggregating proposed
meta-heuristic algorithms. The ACO and GA algorithms have been performed for test problems
which are randomly generated. The results of the test problem showed that the both ACO and GA
are capable to solve the NP-hard PDP for a big size SCS. However, GA produce better solutions than
the ACO.
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1. Introduction

In nowadays, as a result of globalization and technological developments, products have become
more complex structure; the numbers and varieties of the components in products have increased,
the number of suppliers has enlarged, and production systems have been transformed into a more
complex system to be flexible. On the other side, distribution of products on time and at required
quantity to the customer, who are located in different geographic areas in the world, became an
important issue for the companies to improve the customer satisfaction level and profitability.
Therefore, managers need the support of efficient approaches and methodologies to make right
decisions in dynamic and complex market conditions. Production-Distribution Planning (PDP), which
enables optimizing the supplying, manufacturing, and distributing process simultaneously, is one of
the techniques to support the managers.

PDP aims to determine the varieties and quantities of raw materials that will be supplied and
go on making decisions related to the production planning and distribution of final products to
the customers [1]. It can be operated by two different approaches in supply chain systems (SCS);
centralized and decentralized. In centralized approaches, a single member of the chain makes decision
on PDP for the whole system. In contrary to the first approach, all the members of the SCS manage
their own PDP in decentralized approach [2].
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PDP can be used for different decision problems. Akbari and Karimi [3], Yu and et al. [4] and
Mousazadeh and et al. [5] adopted PDP to the supply network design problem. Niknamfar and
et al. [6] and Su and et al. [7] developed PDP models for capacity and resource planning problems.
Nishi and et al. [8] proposed a PDP model for scheduling and routing problems.

There are two challenging issues to solve the PDP: size and complexity of the SCS and type of
the parameters. The number of echelons, which represents the components in SCS such as suppliers,
plants, warehouses, and retailers, the number of transportation path between components, number
of products and number of time periods affect the problem size and complexity. Haq and et al. [9],
Yilmaz and Çatay [10], Boudia and et al. [11], and Hamedi and et al. [12] considered single product
models. Lee and Kim [13] and Safaei and et al. [14] developed multi products and single plant
models. Mohamed [15] proposed multiple products, plants, and single (or no) warehouse models.
Tang and et al. [16] handled multi products, plants, warehouses, and single (or no) end-user models.
Dhaenens-Flipo and Finke [17], and Aliev and et al. [18] focused on multi products, plants, warehouses,
end-users, and single transport path models. Gunnarsson and et al. [19], and Ferrio and Wassick [20]
considered multiple products, plants, warehouses, end-users, transport paths, and no time period
models. Bashiri and et al. [21], and Raa and et al. [22] handled multi products, plants, warehouses,
end-users, time periods and single transport path models. Sakalli [1] proposed multi suppliers,
products, plants, warehouses, retailers, transport paths, and time periods model.

PDP models can include different type of parameters such as deterministic [23,24], stochastic [25,26],
fuzzy [27,28], and fuzzy stochastic [29,30]. On the other side, the numbers of echelons, products,
transportation paths, customers and time periods define the size and complexity of SCS [1].

The PDP, which is small size and less complex, can be solved optimally by using analytic
techniques whatever the type of the parameter is such as linear programming [24,31], mixed integer
programming [32], fuzzy programming [33,34], stochastic programming [35,36]. When the parameters
are stochastic and the SCS is larger and more complex, simulation is an efficient technique to analyze
the PDP performance. However, as indicated by Fahimnia [37], simulation is expensive and needs more
effort to evaluate the results. On the other hand, it is possible to develop meta-heuristic algorithms for
the solution of PDP mathematical model in complex SCS.

Meta-heuristic algorithms, inspired by natural process and systems, are powerful methods for
solving single or multi-objective engineering problems by means of using biological knowledge [38].
Recently, there are many successful meta-heuristic approaches that have been used to solve complex
problems such as Genetic Algorithm (GA), Simulated Annealing Algorithm (SA), Ant Colony
Optimization (ACO), Tabu search (TS), Particle Swarm Optimization (PSO), and etc. [39–41]. However,
they are successful in obtaining feasible solutions and cannot guarantee the optimality of solutions.

Chang and et al. [42] proposed a mathematical model for integrated PDP and a solution algorithm
using ACO. Cheng and et al. [43] developed a 0–1 integer mathematical model for PDP and ACO
to solve the problem. Calvete and et al. [44] proposed an ACO approach for decentralized PDP.
Fahimnia [45] proposed a mixed integer non-linear model for a PDP and solved the problem by using
GA. Amirtahari and et al. [2] modeled the PDP as two nonlinear bi-level programming and proposed
solution algorithms combining GA and PSO. Khalifehzadeh and et al. [46] developed a multi-objective
mixed integer mathematical model for PDP in a fuzzy environment and proposed two meta-heuristic
algorithms based on GA and Concessive Variable Neighborhood Search (CVNS).

Armentano et al. [47], proposed a 0–1 mixed integer model for PDP that aims to minimize the
total cost and proposed two TS algorithms. Chan [48] developed a GA for PDP in a multi plants
SCS in order to allocate the jobs to the plants. Gen [49] considered a PDP that handles inventory
management, facility location and distribution process and proposed a GA based meta-heuristic
algorithm. Altiparmak et al. [50] developed a steady-state GA to solve PDP for a SCS network
design problem.

In this paper, we considered a PDP for big size SCS by using centralized approach at tactical
decision level in a fuzzy stochastic environment. The SCS has four echelons (suppliers, plants,
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warehouses, retailers) with multi-products, multi-transport paths, and multi-time periods. The PDP
handled in this study has been investigated by only Sakalli [1] in the literature according to our best
knowledge. He developed a fuzzy stochastic 0–1 mixed integer mathematical model and converted
it into a deterministic multi-objective mixed integer model by integrating fuzzy programming and
chance-constrained programming techniques. Finally, he proposed a solution approach to solve
deterministic multi-objective mix integer linear programming (MOMILP). The proposed solution
approach can be successfully implemented into PDP for a small SCS. However, the mathematical
model includes binary variables that select the transportation paths between the echelons of the SCS.
Therefore, it cannot be solved optimally by using optimization packages when the numbers of the
binary variables increase, which is a challenge.

The main contribution of this study is developing meta-heuristic algorithms to deal with this
challenge. Two meta-heuristic algorithms have been proposed for big size PDP in a fuzzy and
stochastic environment; ACO and GA. The proposed meta-heuristic algorithms have been designed
for determining routing problem (selecting transportation paths) in PDP. The solution procedure
mentioned by Sakalli [1] has been extended by integrating proposed meta-heuristic algorithms.

The paper is organized as follows: the problem definition and mathematical model are given
in Section 2. Section 3 presents the proposed solution approach. The computational experiment is
performed in Section 4. Finally, in Section 5, we make some concluding remarks.

2. Problem Formulation

The SCS for PDP includes four echelons. Plants manufacture products in regular and overtime
by using raw materials supplied by different suppliers. The products are delivered to the customer
by using warehouses and retailers. Customers only pick up their products from retailers. The SCS
considered is drawn in Figure 1.

Figure 1. SCS network.

Sakalli [1] developed a 0–1 mixed integer programming model for PDP which includes uncertain
parameters in both objective function and constraints. In order to solve uncertain model, it is required to
transform the uncertain parameters into an equivalent deterministic one [51]. Therefore, he converted
the fuzzy stochastic 0–1 mixed integer programming into a deterministic MOMILP by using fuzzy and
chance-constraint approaches.

Fuzzy parameters, which are symbolized by “~”, are modeled by using triangular fuzzy numbers.
A triangular fuzzy number is denoted by the triplet (ap, am, ao) where am represents the most possible
value, ao represents the most optimistic value, and ap represents the most pessimistic value.
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Fuzzy random parameters (transportation capacities), which are symbolized by “¯”, are modeled
by using the triangular fuzzy number as follows:

ε =


(ap, am, ao) with probabilty Pra

(bp, bm, bo) with probabilty Prb
(cp, cm, co) with probabilty Prc

(1)

Pra, Prb, and Prc represent the probabilities of transportation capacity situations such as high,
medium, and low capacities. Triangular fuzzy numbers (ap, am, ao), (bp, bm, bo) and (cp, cm, co), define
the amounts of each transportation.

There is one random fuzzy parameter CDPjrtc that represents the customer demand. The customer
demand is a discrete variable which can occur in three situations such as high, medium, and low.

The probabilities of each situation are modeled as random fuzzy variables which are defined in
Equation (2) for only high demand:

ζ
(

Pr(D)high

)
=

{
0.8 with possibility 1.0
0.6 with possibility 0.8

(2)

On the other hand, demand quantities for each situation follow normal distributions with different
fuzzy mean parameters and variances which is defined in Equation (3) for only high demand:

ζ
(

θhigh

)
∼ N

(
X
(

θhigh

)
, Y
(

θhigh

))
(3)

where X
(

θhigh

)
is a fuzzy variable. Therefore, demand quantity is a random fuzzy variable. Interested

readers can be referred to Sakalli [1] for more detailed discussion on modeling uncertainties:
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RPQjpt + OPQjpt + SLPjp(t−1) −
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∑
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(
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TRQispkt, SRPipt, RPQjpt, OPQjpt, SLPjpt, TPQPjpwkt ≥ 0

SLRjrt, BLRjrtc, SPQjrtc, SLWjwt, TPQWjwrkt ≥ 0

UKSspkt, UKPpwkt, UKWwrkt = 0, 1

(32)

The objective functions, Z1, Z2, and Z3 define lower profit risk, possible profit, and higher profit
possibility, respectively. Therefore, the decision maker aims to maximize Z1 and Z3 and minimize Z2.
Equations (7) or (8) ensures that the total transported quantity from s for i at t will be less than, or equal
to, on-hand quantity. Equations (9)–(11) are modeled for selecting the k from s to p and not to exceed
its capacity where M is a big number. Equation (12) is a stock balance constraint for i in p at t. Equation
(13) is a capacity constraint for inventory level of i in p. Equations (14)–(18) are capacity constraints for
regular production, overtime production and product inventory levels in p, respectively. Equation (19)
is an inventory balance constraint for j in p. Equations (20)–(22) are constructed to select the k from p to
the w and not to exceed its capacity. Equation (23) is an inventory balance constraint in w. Equation
(24) is an inventory capacity constraint for a w. Equations (25)–(27) are constructed to select k from w
to r and not to exceed its capacity. Equation (28) is a balance constraint for inventory and backorder
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level in r. Equation (29) is an inventory capacity constraint for r. Equations (30) or (31) ensures to meet
customer demand at a given probability level. Equation (32) is the definition of the decisions variables.

In order to solve PDP, the MOMILP is converted into an equivalent single-objective 0–1 mixed
integer programming model by using Zimmermann’s [52] fuzzy programming method. According to
the fuzzy programming method, first, the positive ideal solutions (PIS) and negative ideal solutions
(NIS) of the objective functions can be specified as Equation (33) [53]:

ZPIS
1 = min(Cm − Cp)x, ZNIS

1 = max(Cm − Cp)x
x ∈ X x ∈ X

ZPIS
2 = min(Cm)x, ZNIS

2 = max(Cm)x
x ∈ X x ∈ X

ZPIS
3 = min(Co − Cm)x, ZNIS

3 = max(Co − Cm)x
x ∈ X x ∈ X

(33)

Second, the linear membership function of each objective function is defined by Equations (34)
and (35):

f1(Z1) =


1(

ZNIS
1 − Z1

)
/
(
ZNIS

1 − ZPIS
1
)

0

Z1 < ZPIS
1

ZPIS
1 ≤ Z1 ≤ ZNIS

1
Z1 > ZNIS

1

(34)

f2(Z2) =


1(

ZNIS
2 − Z2

)
/
(
ZNIS

2 − ZPIS
2
)

0

Z2 > ZPIS
2

ZNIS
2 ≤ Z2 ≤ ZPIS

2
Z2 < ZNIS

2

(35)

f3(Z3)
is similar to f2(Z2)

Finally, the equivalent single-objective 0–1 mixed integer programming model is constructed
as follows:

maxλ

s.t. fi(zi) ≥ λ, i = 1, 2, 3 and x ∈ X
(36)

Sakalli [1] proposed a procedure for the solution of PDP which is given as follows:
Step 1: Construct the PDP model.
Step 2: Formulate the fuzzy and fuzzy random parameters as triangular fuzzy numbers and

triangular fuzzy numbers with probability values, respectively. Model the demand quantities and
situations as random fuzzy parameters.

Step 3: Transform the fully fuzzy objective function into three new crisp objective functions
Step 4: Convert triangular fuzzy numbers into deterministic close intervals for a fixed α value.

Use the lower bound of the close interval for constructing Equations (7), (14) and (16). Use the upper
bound of the close interval for constructing Equations (8), (15) and (17).

Step 5: Convert the discrete fuzzy random parameters into deterministic close intervals. Use the
lower bound of the close interval for constructing Equations (9), (20) and (25). Use the upper bound of
the close interval for constructing Equations (10), (21) and (26).

Step 6: Convert the random fuzzy parameters into normally distributed random parameters with
a deterministic close interval mean parameters

Step 7: Fix an acceptable probability value (β). According to the β and chance-constraint approach,
convert the demand constraint which is obtained at step 6, into deterministic linear constraints by
considering lower and upper bounds of close interval separately.

Step 8: Find the maximum and minimum values for Z1, Z2, and Z3 and construct the membership
functions. Formulate a single-objective 0–1 mixed integer programming model (Z4) by using
membership functions.

For: ZPIS
1 : Min Z1

s.t. Equations (7), (9), (11)–(14), (16), (18)–(20), (22)–(25), (27)–(30) and (32)
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For ZNIS
1 : Max Z1

s.t. Equations (8), (10–(13), (15), (17)–(19), (21)–(24), (26)–(29), (31) and (32)
For ZPIS

2 : Max Z2

s.t. Equations (8), (10–(13), (15), (17)–(19), (21)–(24), (26)–(29), (31) and (32)
For ZNIS

2 : Min Z2

s.t. Equations (7), (9), (11)–(14), (16), (18)–(20), (22)–(25), (27)–(30) and (32)
For ZPIS

3 : Max Z3

s.t. Equations (8), (10)–(13), (15), (17)–(19), (21)–(24), (26)–(29), (31) and (32)
For ZNIS

3 : Min Z3

s.t. Equations (7), (9), (11)–(14), (16), (18)–(20), (22)–(25), (27)–(30) and (32)
Step 9: Solve Z4

For Z4:
max λ

s.t. fi(zi) ≥ λ, i = 1, 2, 3 and Equations (8), (10)–(13), (15), (17)–(19), (21)–(24), (26)–(29), (31)
and (32)

Step 10: If the DM is not satisfied with the initial solution, return to Step 4 and update the α and β

values and repeat the remaining steps until a satisfactory solution is found.
The proposed modeling and solution approaches can be solved global optimally by using GAMS’s

Cplex solver. However, if the numbers of echelons (s, p, w, r, k and t) increase, the number of binary
variables in the model will increase exponentially. Therefore, optimization packages cannot solve the
PDP global optimum, which is a reason to develop a meta-heuristic algorithm.

3. The Proposed Solution Algorithms

The 0–1 mixed integer PDP model is an NP-hard optimization problem for large SCS. In this
study, the solution approaches of NP-hard PDP under fuzzy stochastic environments for a large SCS
has been considered. Therefore, two meta-heuristic algorithms have been developed to solve PDP; the
Ant Colony Algorithm (ACA) and Genetic Algorithm (GA).

The GA and ACO have been developed for route optimization process in PDP. The route
optimization process aims to find optimal transportation paths between suppliers-plants (UKS),
plants-warehouses (UKP), and warehouses-retailers (UKW). At each iteration of the GA and ACO, the
obtained routes are sent to the GAMS as parameters and GAMS solves the remaining problem with an
objective function value which is returned to GA/ACO as a fitness function value. The framework of
the proposed solution approach is given in Figure 2.

Figure 2. The framework of the proposed approach.

In order to integrate the proposed solution meta-heuristic algorithms, solution procedure,
proposed by Sakalli [1], has been extended by reorganizing Steps 8 and 9, which is given in Section 2,
as follows:

Step 8: Find the maximum and minimum values for Z1, Z2, and Z3 by using ACO or GA and
construct the membership functions. Formulate a single-objective 0–1 mixed integer programming
model (Z4) by using membership functions.

Step 9: Solve Z4 by using the ACO or GA.
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3.1. Ant Colony Optimization (ACO)

ACO is an approximate optimization approach, proposed by Colorni, Dorigo, and Maniezzo [54],
that was inspired by the behavior of ants. Ants use pheromones for sharing information in order
to reach food by using the shortest path. ACO has been successfully implemented to several
combinatorial optimization problems, such as Travelling Salesman [55], vehicle routing [56], and
scheduling problems [57].

Chang and et al. [42] proposed a mathematical model for integrated PDP and a solution algorithm
using ant colony optimization. Cheng and et al. [43] developed a 0–1 integer mathematical model for
PDP and ant colony optimization to solve the production part. Calvete and et al. [44] proposed an ant
colony optimization approach for decentralized PDP.

At the beginning of the ACO process, whole constants, variables (iteration limit, tolerance etc.), and
weight matrix are defined. A weight matrix which will be updated according to the choices of ants and
pheromone amounts is defined by the size of input variables (suppliers, plants, retailers, and warehouses).

Iteration limits and ant population sizes are defined in compliance with the objective function
type. The optimization process proceeds till the iteration limit is reached. Each step of the iteration
begins with a transportation route determination. Routes are defined by the weight matrix in each step
of the iteration. At the beginning of the process, first route is defined randomly because of equality
of the weight matrix. The existing route is sent to GAMS solver module and the success rate or with
another saying objective function fitness value (zj) is calculated and saved. Calculated objective value
is compared to the best fitness value. If a new fitness value is equal or better than the tolerance level,
the pheromone amount (ph) is calculated and each active relation of the weight matrix is updated and
rewarded using the calculated ph value. If the fitness value is worse than the tolerance level, the weight
matrix is updated by using the calculated ph value and the selection probability of the existing route
is decreased. If GAMS finds an infeasible solution, the optimization process carries on with previous
objective function value (zj−1). ACO process pseudo code for maximization problem is given in Table 1.

Table 1. Pseudo-code for ACO.

Cost Maximization Problem (Z1NIS, Z2PIS, Z3PIS)
Define iteration limit, objective tolerance, pheromone update constant (iter_lim, tol, ph)
Define transportation path using same initializing values (iter_lim/2) weight matrix for each set (UKSW,
UKPW, UKWW)
Create random initializing transportation path route randomly using weight matrix
Evaluate GAMS using existed route, calculate fitness and save
İnitialize ant population (antpop)
for j = 2: iter_lim

Create fabric-supplier binary relation matrix (UKS)
for i = 1: antpop

Create random route according to weight matrix (UKSW)
end
Create fabric-supplier binary relation matrix (UKP)
for i = 1: antpop

Create random route according to weight matrix (UKPW)
end
Create fabric-supplier binary relation matrix (UKW)
for i = 1: antpop

Create random route according to weight matrix (UKWW)
end
Evaluate existing route (transportation path) in GAMS (zj)
Calculate pheromone values (ph) for each route
if zj > zbest/tol

ph = zj/zbest
else

ph = zbest/zi
Update transportation path weight matrix for active node (UKSW, UKPW, UKWW)

end



Appl. Sci. 2018, 8, 2042 10 of 25

3.2. Genetic Algorithm (GA)

GAs are nature-inspired evolutionary search algorithms based on natural selection and
genetics [58]. GAs give promising performance results for optimizing complex, large-scaled, single
or multi-objective engineering problems and provides an optimal or a near-optimal solution [59].
The multi-objective optimization process is similar to a single-objective operation. However, in the
single-objective process, there is only one global optimal solution; in the multi-objective process, there
are more than one superior to the rest of the solutions in the search area [60]. Fundamentals of GA
were developed by Holland [61]. Goldberg et al. presented the detailed research and implementation
of GAs in various fields [62,63].

In a GA, each solution is called individual which is one of the global candidate solutions.
The population consists of individual solutions and each individual carries ancestors’ genetic
information in their chromosomes.

The initial population is generally created with the randomly distributed dataset. The GA uses
crossover and mutation operators to find the optimal solution. The crossover operator is used for
information transference to new individuals and populations. Genetic diversity is held with the
mutation operation.

3.2.1. Selection Operator

Selection operation is based on the idea of the “survival of the fittest”. In general, the selection is
the process of transferring the characteristics of the most powerful or individual having the closest
fitness value to the next generation. There are many different selection methods in the literature such
as roulette wheel, tournament, or truncation selection.

3.2.2. Crossover Operator

Global search called exploration is held with a crossover operator. Every individual consists of
gene and chromosome sets and these genes and chromosomes carry over meaningful information
coming from their ancestors. This operator chooses a crossing position or layout to diversify genetic
pool. New individuals are produced by using this crossing combination. Breeding by using multi-point
crossing is given in Figure 3.

Figure 3. Multi-point crossover operation.
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3.2.3. Mutation Operator

The mutation operator is responsible for abstaining local optimal solutions and helps to prevent
the recessive population. This operator randomly changes one or more genes values 1 to 0 or 0 to 1.
The mutation constant is defined at the beginning of the optimization process.

The genetic algorithm-based optimization process begins with the transportation path (tp) relation
base matrix creation. Each tp matrix involves a combination of three different relation matrices,
which are UKS, UKP, and UKW. The initial population is involving four different randomly uniform
distributed individuals. After the base population creation phase, all of the transportation paths
(tp1 to tp4) are evaluated by using GAMS optimization package, respectively, and objective values
are obtained. The roulette wheel selection method is used for elitism and provides transferring more
powerful individuals’ features to the next generations. Selected paths are used for generating new
individuals by using single point cross-over operation. The crossing point is defined as the middle
position of the path. After the crossing operation, each bit of the new individuals is controlled with
the mutation constant. The mutation constant is defined as 1% before the optimization process at the
beginning of the script. If randomly produced variable for each bit is greater than mutation value, it is
changed to 1 to 0 or 0 to 1 randomly. After the mutation process, a new population is created and the
optimization process continues while the iteration limit or deserved objective value is not reached. The
optimization script is evaluated several times with 500–1000 iteration. The GA process pseudo-code
for maximization problem is given in Table 2.

Table 2. Pseudo-code for GA.

Begin;
Define iteration limit, mutation constant, cross-over position,
Generate initial Transportation Relation Population tppop

Generate UKS
For i = 1 to (s ∗ p)

For j = 1 to (t ∗ k)
tp(i,j) = rand[0 1]

End
End

Generate UKP
For i = (s ∗ p + 1) to (s ∗ p + p ∗ w)

For j = 1 to (t ∗ k)
tp(i,j) = rand[0 1]

End
End

Generate UKP
For i = (s ∗ p + p ∗ w + 1) to ((s ∗ p + p ∗ w + w ∗ r)

For j = 1 to (t ∗ k)
tp(i,j) = rand[0 1]

End
End

Evaluate each individual solution using GAMS and save fitness values
For i = 1 to Iteration Limit

Select parental individuals by Roulette Wheel Selection operator
Generate new candidate offspring solutions by Crossover operator
Improve candidate solutions using Mutation Operator
Evaluate each offspring solution using GAMS and save new fitness values

End
Return Best Solution
End
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4. Computational Experiments

The computational experiments described in this section have been conducted in order to analyze
the performance of the proposed solution procedures. According to our best knowledge, this is the
first study that handles PDP for a large SCS which includes multiple-supplier, multiple-product,
multiple-plant, multiple-warehouse, multiple-retailers, multiple-transport paths, and multiple time
periods. Thus, any data for comparison does not exist. Therefore, five test problems have been
considered to evaluate the proposed algorithms which are randomly generated.

On the other side, proposed ACO and GA have been compared with a Simulated Annealing (SA),
which is a well-known and widely used algorithm in order to analyze and observe the superiorities
(or weakness) of them. SA is a general form of optimization which refers to tempering materials
such as alloys of metal, glass etc. by heating and cooling to reach perfect atomic structure [64]. SA is
based on finding global optima using hill climbing method. Firstly, movement (position) is selected
randomly from a pool of all possible movements and applied to the objective function. Then, if the
current movement improves the solution it is accepted and the search area is moved to this position.
Otherwise, the next movement is chosen from other ones, which are probably less than current [65].
The pseudo-code of SA is given in Table A5 in Appendix A.

In each test problem, there are six parameters: the number of suppliers (s), the number of plants
(p), the number of warehouses (w), the number of retailers (r), the number of time periods (t), and the
number of transportation paths (k) between echelons of the SCS. The characteristics of test problems
are given in Table 3. There are five raw materials and one product in each test problem.

Table 3. Characteristics of test problem.

Problem s p w r t k

1 5 1 5 5 3 3
2 5 1 5 10 3 3
3 5 1 10 10 3 3
4 5 2 10 10 3 3
5 10 2 10 10 3 3

The proposed algorithms were implemented in MATLAB (The MathWorks Inc., New York, NY,
USA), using the COIN-OR (Computational Infrastructure for Operations Research) solver of GAMS
(GAMS Software GmbH, Frechen, Germany) optimization package. The computational experiments
and validation were performed on a PC with Intel ®Core i7-7700K CPU at 4.20 GHz having 64 GB RAM.

In each test problem, α and β values were set as 0.4 and 0.95 respectively. Test problems were
solved by COIN-OR and the optimal solutions for NIS and PIS of Z1, Z2, Z3, and Z4 are given in
rows which are entitled “Optimal” in Table 4. On the other hand, the proposed ACO and GA were
repeated five times with 250 iterations for each test problem. The best solutions for NIS and PIS of
Z1, Z2, Z3, and Z4 obtained by the proposed approaches are reported in Table 4. The performances of
the proposed algorithms are measured in terms of the solution gap (in %). The proposed algorithms
achieved to obtain optimal solutions for Problem 1 and 2 which are small in size. When the size of the
problem increases, such as in Problems 3, 4, and 5, the proposed approaches are capable of obtaining
near-optimal solutions in an acceptable gap. It can be stated that the results of the ACO and GA
approaches are close to each other while the GA finds relatively better solutions.

According to the gaps (%) given in Table 4, ACO and GA obtained lower values than SA in test
Problems 3, 4, and 5. It is observed that the proposed ACO and GA approaches are more promising
methods for fuzzy stochastic PDP than SA.

After the validation and verification of proposed approaches, a new test problem (Problem 6),
which has a larger size than the other problems, was generated. Only ACO and GA have been
performed to Problem 6 because of their robustness. Problem 6 includes 40 suppliers (s = 40) 12 raw
materials (i = 12), three plants (p = 3), three products (j = 3), 12 warehouses (w = 12), 40 retailers
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(r = 40), and four transportation paths between each of echelons (supplier-plant, plant-warehouse,
warehouse-retailer). Therefore, Problem 6 is more suitable for real-life problems. The parameters in
the mathematical model which were randomly generated by using domains are given in Tables A1–A4
in Appendix A. Problem 6 could not be solved by using COIN-OR within the maximum limits of
iteration and time.

Table 4. Test problem results.

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

Z1

PIS

Optimal 1,108,835 1,404,026 1,659,658 1,776,098 1,972,490
ACO Best 1,108,835 1,404,026 1,721,895 1,864,015 2,094,193

Gap (%) 0 0 0.0375 0.0495 0.0617
GA Best 1,108,835 1,404,026 1,712,435 1,851,760 2,087,683

Gap (%) 0 0 0.0318 0.0426 0.0584
SA Best 1,108,835 1,404,026 1,736,500 1,879,467 2,126,739

Gap (%) 0 0 0.0463 0.0582 0.0782

NIS

Optimal 2,709,941 3,017,161 3,286,451 3,480,057 3,837,795
ACO Best 2,709,941 3,017,161 3,134,946 3,293,178 3,556,101

Gap (%) 0 0 0.0461 0.0537 0.0734
GA Best 2,709,941 3,017,161 3,175,369 3,315,798 3,625,949

Gap (%) 0 0 0.0338 0.0472 0.0552
SA Best 1108835 1,404,026 3,481,338 3,709,045 4,177,056

Gap (%) 0 0 0.0593 0.0658 0.0884

Z2

PIS

Optimal 15,658,380 16,184,285 16,301,772 16,831,979 1,7763,954
ACO Best 15,658,380 16,184,285 15,468,751 15,845,625 16,632,390

Gap (%) 0 0 0.0511 0.0586 0.0637
GA Best 15,658,380 16,184,285 15,511,136 15,862,457 16,678,576

Gap (%) 0 0 0.0485 0.0576 0.0611
SA Best 1108835 1,404,026 17,260,316 17,885,661 18,979,008

Gap (%) 0 0 0.0588 0.0626 0.0684

NIS

Optimal 11,063,345 11,864,926 12,303,159 12,627,619 12,966,067
ACO Best 11,063,345 11,864,926 12,754,685 13,199,650 13,642,896

Gap (%) 0 0 0.0367 0.0453 0.0522
GA Best 11063345 11,864,926 12,744,842 13,168,081 13,609,184

Gap (%) 0 0 0.0359 0.0428 0.0496
SA Best 1108835 1,404,026 12,912,165 13,312,036 13,767,370

Gap (%) 0 0 0.0495 0.0542 0.0618

Z3

PIS

Optimal 2,365,633 2,760,450 2,980,651 3,277,653 3,413,026
ACO Best 2,365,633 11,864,926 2,893,020 3,125,898 3,240,668

Gap (%) 0 0 0.0294 0.0463 0.0505
GA Best 2,365,633 11864926 2,888,251 3,148,513 3,262,853

Gap (%) 0 0 0.031 0.0394 0.044
SA Best 1108835 1,404,026 3,098,983 3,462,185 3,612,347

Gap (%) 0 0 0.0397 0.0563 0.0584

NIS

Optimal 1,083,653 1,377,620 1,648,027 1,740,722 1,915,385
ACO Best 1,083,653 1,377,620 1,722,188 1,834,025 2,034,713

Gap (%) 0 0 0.045 0.0536 0.0623
GA Best 1,083,653 1,377,620 1,713,618 1,815,747 2,019,199

Gap (%) 0 0 0.0398 0.0431 0.0542
SA Best 1,108,835 1,404,026 1,733,395 1,844,469 2,046,397

Gap (%) 0 0 0.0518 0.0596 0.0684

Z4

Optimal 0.685 0.693 0.618 0.635 0.709
ACO Best 0.685 0.693 0.581909 0.594932 0.65859

Gap (%) 0 0 0.0584 0.0631 0.0711
GA Best 0.685 0.693 0.582156 0.596138 0.660504

Gap(%) 0 0 0.058 0.0612 0.0684
SA Best 1,108,835 1,404,026 0.658912 0.682181 0.763735

Gap (%) 0 0 0.0662 0.0743 0.0772

Z1PIS, Z2NIS, and Z3NIS are minimization problems. The minimization process generally lasts
longer than maximization process because of GAMS’ solving procedures for the proposed methods and
problems. Therefore, the iteration process is limited to 500 and 1000 for minimization and maximization
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problems, respectively. Comparative results of the proposed meta-heuristic algorithms are represented
in Figure 4a–c Figures 5a–c and 6.

Figure 4. (a) Minimization process of the Z1; (b) minimization process of the Z2; and (c) minimization
process of the Z3.
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Figure 5. (a) Maximization process of the Z1; (b) maximization process of the Z2; and (c) maximization
process of the Z3.

Figure 6. Maximization process of Z4.
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According to the negative and positive ideal solutions for Z1, Z2, and Z3, it can be observed
that the GA shows better performance than ACO in four of six problems. However, these solutions
are used as lower and upper limits for the membership function in Z4. The optimal solution of Z4

cannot be obtained at the lower or upper bounds of membership functions because of conflicting
objectives. Therefore, the comparative solutions of ACO and GA for Z1, Z2, and Z3 are not significant
indicators in determining the best meta-heuristic approach. The main problem that determines the
best performance for proposed meta-heuristic algorithms is Z4.

According to the ACO, the positive ideal solution and negative ideal solution values of the
objective functions are found as (15,742,124, 4,421,268), (45,856,319, 78,583,274), and (4,964,094,
15,906,761) for Z1, Z2, and Z3, respectively. When the equivalent single-objective 0–1 mixed integer
programming model of the auxiliary MOMILP problem is solved, the total profit is obtained as a
triangular possibility distribution with (54,920,893, 66,474,301, 78,332,275) and the overall degree
of decision maker (DM) satisfaction with multiple goal values is achieved at 0.63. On the other
hand, GA obtained the positive ideal solution and negative ideal solution values of the objective
functions as (15,757,821, 4,694,713), (45,781,117, 79,004,432), and (4,852,275, 15,781,522) for Z1, Z2,
and Z3, respectively. When the equivalent single-objective 0–1 mixed integer programming model is
solved, the total profit is obtained as a triangular possibility distribution with (56,243,986, 68,505,864,
80,833,744) and the overall degree of DM satisfaction with multiple goal values is achieved at 0.684.,

Total profits in triangular fuzzy numbers can be defuzzified by using the expected value (EV) of
fuzzy numbers which is given in Equation (37):

EV(c̃) =
cp + 2cm + co

4
(37)

The expected profit values of the ACO and GA have been calculated as 66,550,442 and 68,522,364
Turkish Lira, respectively, by using Equation (37). According to the total profit and DM satisfaction
level, it can be concluded that GA found better solutions than ACO.

The solutions of the proposed algorithms are summarized in Tables 5–7 because of large sizes of
indices. Although ACO produces more product 1 and 2 (j1 and j2), its production quantity for product
3 is significantly smaller than the GA. Therefore, GA produced and sold more products than the ACO
in total. The available capacities of the plants are not adequate to meet all demand. This situation
caused to backorders. Therefore, there are no inventories in warehouses and retailers. Total backorder
level of GA is smaller than ACO which enables reducing the cost in GA.

According to the total purchased raw material quantities by plants, it can be absorbed that the
numbers of raw materials supplied GA and ACO are close to each other. However, while GA supplied
raw materials from 13 different suppliers, ACO used 23 suppliers. Cooperating with more suppliers
means extra fixed transportation.
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Table 5. Summary of results.

Total Sold
Quantity of

Product at Periods

Backorder
Quantity of

Product at Periods

Inventory Level of
Product at Periods

in Retailers

Inventory Level of
Product at Periods

in Warehouses
Total Production Quantity in Each Plant at Periods

GA ACO GA ACO GA ACO GA ACO
GA ACO GA ACO GA ACO

p1 p1 p2 p2 p3 p3

j1.t1 6699.43 6619.75 574.61 654.30 0.00 0.00 0.00 0.00 1834.28 0.00 2004.95 3345.89 2860.20 3273.86
j1.t2 6364.37 6619.75 909.67 654.30 0.00 0.00 0.00 0.00 2748.15 895.47 1840.83 3345.89 1775.39 2378.39
j1.t3 6553.76 6619.75 720.28 654.30 0.00 0.00 0.00 0.00 2568.38 2400.90 1957.15 978.87 2028.22 3239.98
j2.t1 5822.66 6008.03 834.75 649.37 0.00 0.00 0.00 0.00 2411.49 2793.11 2106.34 1794.34 1304.83 1420.59
j2.t2 5822.66 6024.95 834.75 632.46 0.00 0.00 0.00 0.00 1680.00 2808.02 2921.17 1509.36 1221.49 1707.57
j2.t3 5822.66 6012.11 834.75 645.29 0.00 0.00 0.00 0.00 1680.00 1257.98 2780.30 3024.45 1362.36 1729.68
j3.t1 6664.43 6064.51 0.00 599.92 0.00 0.00 0.00 0.00 3108.48 4699.02 1694.07 0.00 1861.88 1365.49
j3.t2 6664.43 6064.51 0.00 599.92 0.00 0.00 0.00 0.00 3182.22 3600.60 0.00 483.02 3482.21 1980.89
j3.t3 6664.43 6064.51 0.00 599.92 0.00 0.00 0.00 0.00 3397.94 4274.15 313.08 878.78 2953.41 911.59
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Table 6. Summary of results.

Total Purchased Raw Material Quantities by Plants at Periods

GA ACO GA ACO GA ACO GA ACO GA ACO GA ACO

i1 i1 i2 i2 i3 i3 i4 i4 i5 i5 i6 i6
p1,t1 6080 2793 7234 8379 1834 0 13,571 16,890 3669 0 17,817 19,683
p1,t2 7176 4599 5040 8424 2748 895 13,975 14,505 5496 1791 18,403 18,209
p1,t3 6817 6060 5040 3774 2568 2401 14,442 16,481 5137 4802 18,691 20,140
p2,t1 6116 8486 6319 5383 2005 3346 9193 5140 4010 6692 13,305 10,280
p2,t2 6603 8201 8764 4528 1841 3346 4762 6304 3682 6692 9524 11,160
p2,t3 6695 4982 8341 9073 1957 979 5677 6640 3914 1958 10,414 10,643
p3,t1 7025 7968 3914 4262 2860 3274 9751 8791 5720 6548 13,916 13,485
p3,t2 4772 6464 3664 5123 1775 2378 13,444 10,029 3551 4757 16,440 14,115
p3,t3 5419 8210 4087 5189 2028 3240 12,251 7704 4056 6480 15,641 12,674

i7 i7 i8 i8 i9 i9 i10 i10 i11 i11 i12 i12
p1,t1 3669 1791 11,737 16,890 8492 5586 10,903 8379 7234 8379 8628 12,191
p1,t2 5496 4802 11,227 13,610 8856 7407 10,536 10,215 5040 8424 8044 10,009
p1,t3 5137 6692 11,874 14,080 8497 7318 10,177 8576 5040 3774 8476 9806
p2,t1 4010 6692 7189 1794 8223 10,280 10,329 12,075 6319 5383 5494 1794
p2,t2 3682 1958 2921 2958 9524 9710 12,445 11,220 8764 4528 2921 2475
p2,t3 3914 6548 3720 5661 9475 8007 12,255 11,031 8341 9073 3406 4782
p3,t1 5720 4757 6890 5517 8330 9389 9635 10,809 3914 4262 5029 4152
p3,t2 3551 6480 11,668 7650 5994 8172 7215 9879 3664 5123 8186 5669
p3,t3 4056 0 10,223 4464 6781 9939 8144 11,669 4087 5189 7269 3553

Table 7. Summary of results.

Cooperated Suppliers

GA s2, s5, s7, s8, s13, s17, s18, s27, s28, s29, s31, s34, s37
ACO s2, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s17, s18, s19, s20, s21, s23, s25, s27, s28, s29, s31
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5. Conclusions

In this paper, a fuzzy stochastic PDP has been considered for an SCS which includes four echelons.
The PDP handled in this study was considered by Sakalli [1] and modeled as a 0–1 mixed integer
model. He developed a solution procedure and successfully implemented it for small SCS. However, it
is not possible to solve the mathematical model global optimally by using optimization packages for
large SCS because of the binary variables which are designed for selecting routes between echelons in
SCS. Therefore, it is required to develop meta-heuristic algorithms to solve NP-hard PDP.

In this study, we have developed two meta-heuristic algorithms, GA and ACO, in order to solve
Sakalli’s model for large size SCS. In the solution process of PDP, meta-heuristic algorithms (GA/ACO)
are performed for route optimization. By determining routes, 0–1 mixed integer model is converted
into a deterministic linear programming model and can be solved optimally by the COIN-OR solver
of GAMS.

The proposed solution approaches have been performed for randomly generated test problems.
The results of the test problems have showed that both proposed meta-heuristic algorithms are capable
of solving the problem where the GA obtain better solutions than the ACO.

In real-life applications, some parameters of the PDP can be affected by the conditions of dynamic
market structure and it is not possible to define them precisely in the decision making process at the
tactical or strategic level. This challenge can be overcome by including the manager’s expertise and
judgments into the modeling process by using fuzzy, random fuzzy, and fuzzy random parameters.
Therefore, decision or policy makers can manage the large production and distribution systems
more effectively by using the proposed approach. The proposed approach can be used in several
industries, such as automotive, electronic devices, and textiles, by implementing the proposed extended
procedure in ten steps. The proposed approach is implemented iteratively for real-life problems.
In each solution, the proposed approach produces several performance values that show capacity
usage proportions in the production-distribution system. In this way, decision makers can detect
the bottlenecks in the system and take preventive measures for balancing the capacities of supply,
transport, manufacture, and storage. On the other hand, the proposed approach can be used to manage
customer demand. The proposed approach enables the analysis of the results of changes in demand
quantity on profitability by using random fuzzy parameters. Therefore, managers can specify their
marketing and pricing strategies. Consequently, decision makers can evaluate the effects of different
predictions and judgments by performing the proposed approach several times.

There are two main limitations of the proposed approach. The first one is determining the
minimum acceptable possibility degree (α) which represents the decision maker satisfaction level and
takes values between 0 and 1. A very low possibility degree may cause obtaining an optimistic and
unrealistic solution. On the contrary, a very high possibility degree may cause obtaining a conservative
solution which can be feasible, but not robust. Therefore, the proposed approach has to be performed
with different α values in real-life applications, which means longer processing time. The second one
is starting with the GA/ACO with a better feasible solution. According to the nature of proposed
approaches, the starting solutions have just been selected randomly. This situation directly affects
the processing time which is required to approximate the optimal solution. If GA/ACO start from a
better feasible solution, they reach the best solution which is close to the optimal value in a shorter
processing time.

With respect to future research, it is possible to integrate other heuristic algorithms, such as a
Flower Pollination Algorithm (FPA), Krill Herd Algorithm (KH), and Particle Swarm Optimization
etc., into the GA/ACO in order to obtain better starting solutions. On the other hand, PDP can be
modeled as bi-objective functions by considering the maximization of the customer satisfaction level
or minimization of the total transportation time.
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Abbreviations

The MOMILP is given at below.
Indices
i Raw materials
j Products
s Suppliers
p Plant
w Warehouses
r Retailers
k Transportation path
c Customers
t Time period
Parameters
R̃UPist raw material i price in s at t
R̃Cist on hand quantity of i in s at t
TCSPspkt transportation capacity of k between s and p at t
FTCSspkt fixed cost of using k between s and p at t

ṼTCSispkt variable cost of transporting i from s to p by using k at t
RRCi required transporting capacity of i
RRMij required i quantity for producing j
IRCi required storing capacity for i
TSCp raw material storage capacity of p
S̃RCipt holding cost of i in p at t
UPTjpt manufacturing time of j in p at t
R̃PCjpt manufacturing cost of j in p at t (regular time)

ÃRCpt regular capacity (time) in p at t
ÕPCjpt manufacturing cost of j in p at t (overtime)

ÃOCpt overtime capacity (time) in p at t
PICp products storage capacity in p
P̃HCjpt holding cost of j in p at t
RHCj required storing capacity for j
TCPWpwkt transportation capacity of k from p to w at t
FTCPpwkt fixed cost of using k from p to w at t

ṼTCPjpwkt variable cost of transporting j from p to w by using k at t
RTCj required transporting capacity of j
TCWRwrkt transportation capacity of k from w to r at t
FTCWwrkt fixed cost of using k from w to r at t

ṼTCW jwrkt variable cost of transporting j from w to r by using k at t

W̃HCjwt holding cost of j in w at t
WICw products storage capacity in w
H̃CRjrt holding cost of j in r at t
RICr storage capacity in r
B̃CRjrt backorder cost of j in r at t

CDPjrt demand of c for j from r at t

P̃OPjt price of j at period t
Decision Variables
TRQispkt transported quantity of i from s to p by using k at t
SRPipt stored quantity of i in p at the end of t
RPQjpt quantity of j produced at regular time in p at t
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OPQjpt quantity of j produced at over time in part
TPQPjpwkt transported quantity of j from p to w by using k at t
SLPjpt stored quantity of j in p at the end of t
SLWjwt stored quantity of j in w at the end of t
TPQWjwrkt transported quantity of j from w to r by using k at t
SLRjrt stored quantity of j in r at the end of t
BLRjrtc backorder quantity of j in r for c at the end of t
SPQjrtc sold quantity of j from r to c at t

UKSspkt

{
1 i f k is used between s and p at t

0 otherwise

UKPpwkt

{
1 i f k is used between p and w at t

0 otherwise

UKWwrkt

{
1 i f k is used between w and r at t

0 otherwise

Appendix A

Table A1. Deterministic parameters.

Parameter Domain

FTCSspkt U~[1000; 3500]
RRCi U~[0.85; 1.53]
RRMij [0, 1, 2, 3]
IRCi U~[0.55; 1.20]
TSCp U~[900; 2500]

UPTjpt U~[5; 8.70]
PICp [1000, 2200, 2800]
RHCj [2, 2.3, 2.9]

FTCPpwkt U~[670; 1700]
RTCj [2.5, 2, 3]

FTCWwrkt U~[900; 2300]
WICw U~[16000; 24000]
RICr U~[3500; 4100]

Table A2. Fuzzy parameters.

Domain

Parameter Pessimistic Possibilistic Optimistic

RUPist U~[27; 30] U~[30; 50] U~[50; 55]
RCist U~[144,000; 168,000] U~[180,000; 210,000] U~[216,000; 273,000]

VTCSispkt U~[3; 6] U~[7; 10] U~[11; 14]
SRCipt U~[0.72; 0.98] U~[1; 1.25] U~[1.3; 1.54]
RPCjpt U~[10.8; 11.9] U~[12; 17] U~[17.1; 19.8]
ARCpt U~[62,560; 66,240] U~[68,000; 72,000] U~[7,3440; 77,760]
OPCjpt U~[0.8; 0.98] U~[1; 2] U~[2; 2.4]
AOCpt U~[20,240; 23,000] U~[23,000; 30,000] U~[30,000; 33,600]
PHCjpt U~[4.5; 5] U~[5; 7] U~[7; 8.8]

VTCPjpwkt U~[1.7; 2] U~[2; 8] U~[8; 9.2]
VTCWjwrkt U~[0.85; 1] U~[1; 3] U~[3; 3.45]

WHCjwt U~[5.95; 7] U~[7; 10] U~[10; 11.5]
HCRjrt U~[6.3; 7] U~[7; 10] U~[10; 11]
BCRjrt U~[1.8; 2] U~[2; 5] U~[5; 5.5]
POPjt U~[800; 960] U~[1000; 1200] U~[1200; 1440]
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Table A3. Fuzzy random parameters.

Domain

Parameter Pessimistic Possibilistic Optimistic Description

TCSPspkt

U~[182,400;
211,200];

U~[228,000;
264,000]

U~[273,600;
316,800] High (Pra)

U~[152,000;
168,000]

U~[190,000;
220,000]

U~[228,000;
264,000] Medium (Prb)

U~[106,400;
123,200]

U~[133,000;
15,4000]

U~[159,600;
184,800] Low (Prc)

TCPWpwkt

U~[33,120; 36,800] U~[36,800; 43,700] U~[43,700; 48,070] High (Pra)
U~[28,800; 32,000] U~[32,000; 38,000] U~[38,000; 41,800] Medium (Prb)
U~[23,040; 25,600] U~[25,600; 30,400] U~[30,400; 33,440] Low (Prc)

TCWRwrkt

U~[38,400; 46,080] U~[48,000; 57,600] U~[57,600; 69,120] High (Pra)
U~[32,000; 40,000] U~[40,000; 48,000] U~[48,000; 57,600] Medium (Prb)
U~[25,600; 30,720] U~[32,000; 38,400] U~[38,400; 46,080] Low (Prc)

Where Pra = 0.5, Prb = 0.35 and Prc = 0.15.

Table A4. Random fuzzy parameters.

Domain

Parameter Pessimistic Possibilistic Optimistic Description

Mean Parameter of
CDPjrt

U~[10,400; 12,480] U~[13,000; 15,600] U~[15,600; 18,720] High (Prhigh)
U~[8000; 9600] U~[10,000; 12,000] U~[12,000; 14,400] Medium (Prmedium)
U~[6000; 7200] U~[7500; 9000] U~[9000; 10,800] Low ((Prlow)

Parameter Domain Description

Standard Deviation
of CDPjrt

U~[1800; 2500] High (Prhigh)
U~[2528; 3300] Medium (Prmedium)
U~[1000; 1800] Low ((Prlow)

Table A5. Pseudo-code for SA.

Start
Initialize transportation routes (UKPZ0, UKSZ0, UKWZ0), Iteration limit N, cooling rate β, j = 0, neighborhood
parameter a, maximum neighborhood limit K, starting temperature T0 and maximum temperature Tend
Evaluate objective function with current transportation routes.
Compute F(UKPZ0, UKSZ0, UKWZ0) and set Fbest = F(UKPZ0, UKSZ0, UKWZ0)
while(T > Tend)

while(j < N)
set neighbor routes
i = 1
while(i ≤ K)

a = random [1, −1](
UKPZ′i = UKPZi ± a

)(
UKSZ′i = UKSZi ± a

)(
UKWZ′i = UKWZi ± a

)
Compute F

(
UKPZ′i , UKSZ′i , UKWZ′i)

IF F
(
UKPZ′i , UKSZ′i , UKWZ′i) ≥ F(UKPZi , UKSZi, UKWZi)

accept the new solution vector and j = j + 1
end
ELSE accept or reject with acceptance probability

p = e(
−∆
T )

Generate a uniform random number p’ with a range [0,1]
IF p’ < p accept the new solution and j = j + 1
end

ELSE reject the new solution
end

end
i = i + 1

end
end

Tnext = β x T
end
Stop Procedure
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