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PSEUDO PICARD OPERATORS ON GENERALIZED

METRIC SPACES

Ishak Altun∗ and Bessem Samet

In this paper, we present a new class of pseudo Picard operators in the
setting of generalized metric spaces introduced recently in [M. Jleli and B.
Samet: A generalized metric space and related fixed point theorems, Fixed
Point Theory Appl., (2015) 2015:61]. An example is provided to illustrate
the main result.

1. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a metric space and T : X → X. Following Rus [10], the
operator T is said to be a Picard operator (PO), if T has a unique fixed point
x∗ ∈ X, and for all x ∈ X, the Picard sequence {Tnx} converges to x∗. Various
classes of Picard operators exist in the literature (see, for examples, [1, 2, 3, 4]).
In [11], Rus introduced the concept of weakly Picard operators as follows. The
operator T is said to be a weakly Picard operator (WPO), if the set of fixed points
of T is nonempty, and for all x ∈ X, the Picard sequence {Tnx} converges to a
fixed point of T . Different classes of weakly Picard operators exist in the literature.
As example, we cite the class of almost contractions introduced by Berinde [2]. On
the other hand, the concept of pseudo Picard operators (PPO) has been recently
introduced (see [9]). We say that the operator T is pseudo Picard operator, if the
set of fixed points of T is nonempty, and for some initial point x0 ∈ X, the Picard
sequence {Tnx0} converges to a fixed point of T . We can find many pseudo Picard
operators in the literature. As example, we cite the class of (α,ψ)-contractions
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introduced by Samet in [12] (see also [13]), which includes various types of pseudo
Picard operators. It is clear that every PO is WPO, and every WPO is PPO.
However, the converse is not true as shown in the following examples. Let X be
the set of all real numbers, endowed with the standard metric

d(x, y) = |x− y|, (x, y) ∈ X ×X.

Let T, S : X → X be the mappings defined by

Tx =

{
1 if x ≥ 0
−1 if x < 0

and
Sx = x2, x ∈ X.

Then T is a WPO but not a PO. However, S is a PPO but not a WPO.

In this paper, we present a new class of pseudo Picard operators on the
setting of generalized metric spaces (JS-metric spaces) in the sense of Jleli and
Samet [7] (see also [8, 14] ). For the sake of completeness, we recall briefly some
basic concepts of such spaces.

Let X be a nonempty set and D : X ×X → [0,∞] be a given mapping. For
every x ∈ X, we define the set

C(D,X, x) =
{
{xn} ⊂ X : lim

n→∞
D(xn, x) = 0

}
.

We say that D is a JS-metric (in the sense of Jleli and Samet [7]) on X if it satisfies
the following conditions:

(D1) For all (x, y) ∈ X ×X,

D(x, y) = 0 =⇒ x = y.

(D2) For all (x, y) ∈ X ×X,
D(x, y) = D(y, x).

(D3) There exists some constant C > 0 such that for every (x, y) ∈ X × X and
{xn} ∈ C(D,X, x),

D(x, y) ≤ C lim sup
n→∞

D(xn, y).

In this case (X,D) is said to be a JS-metric space. The class of JS-metric spaces
is larger than many known classes of metric spaces. For examples, every standard
metric space, every b-metric space, every dislocated metric space (in the sense of
Hitzler-Seda [5]), and every modular space with the Fatou property is a JS-metric
space. For more details see [7].

Let (X,D) be a JS-metric space.
We say that a sequence {xn} ⊂ X converges to some x ∈ X with respect to D iff
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{xn} ∈ C(D,X, x).
We say that a sequence {xn} ⊂ X is Cauchy iff lim

n,m→∞
D(xn, xm) = 0.

If every Cauchy sequence in (X,D) is convergent, then (X,D) is said to be complete.

By Proposition 2.4 in [7], we see that every convergent sequence in (X,D)
has a unique limit. That is, if {xn} ∈ C(D,X, x) ∩ C(D,X, y), for some x, y ∈ X,
then x = y.

Taking into account the convergence concept in JS-metric spaces, we can
define PO, WPO and PPO on such spaces.

After introducing the notion of JS-metric spaces, Jleli and Samet [7] presented
some fixed point results on such spaces, including Banach contraction and Ciric
type quasicontraction mappings. In fact, we can see that these types of contraction
mappings on complete JS-metric spaces are PPO.

In order to obtain a new class of PPO on JS-metric spaces, we need to present
the following class of functions introduced recently in [6].

Let Θ be the set of all functions θ : (0,∞) → (1,∞) satisfying the following
conditions:

(Θ1) θ is nondecreasing.

(Θ2) For each sequence {tn} ⊂ (0,∞),

lim
n→∞

θ(tn) = 1⇐⇒ lim
n→∞

tn = 0+.

(Θ3) There exist r ∈ (0, 1) and l ∈ (0,∞] such that

lim
t→0+

θ(t)− 1

tr
= l.

Definition 1.1. ([6]) Let (X, d) be a metric space and T : X → X be a mapping.
Given θ ∈ Θ, we say that T is a θ-contraction if there exists k ∈ (0, 1) such that

(1) θ(d(Tx, Ty)) ≤ [θ(d(x, y))]
k
,

for all x, y ∈ X with d(Tx, Ty) > 0.

For different choices of the mapping θ ∈ Θ, we can obtain a variety of contrac-
tions. For example, let θ : (0,∞)→ (1,∞) be the mapping defined by θ(t) = e

√
t.

It is clear that θ ∈ Θ. Then (1) turns to

(2) d(Tx, Ty) ≤ k2d(x, y), (x, y) ∈ X ×X, Tx 6= Ty.

It is clear that for x, y ∈ X such that Tx = Ty, the inequality (2) holds. Therefore,
T is an ordinary contraction. Similarly, let θ : (0,∞) → (1,∞) be the mapping

given by θ(t) = e
√
tet . It is clear that θ ∈ Θ. Then (1) turns to

(3)
d(Tx, Ty)

d(x, y)
ed(Tx,Ty)−d(x,y) ≤ k2, (x, y) ∈ X ×X, Tx 6= Ty.
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Observe that every θ-contraction T is continuous. Indeed, any θ-contraction
T satisfies

d(Tx, Ty) < d(x, y), (x, y) ∈ X ×X, Tx 6= Ty.

On the other side, an example is provided in [6] showing that a θ-contraction is
not necessarily an ordinary contraction. Thus, the following theorem, which was
given as a corollary by Jleli and Samet [6], is a proper generalization of Banach
Contraction Principle.

Theorem 1.1. ([6], Corollary 2.1) Let (X, d) be a complete metric space and
T : X → X be a θ-contraction. Then T has a unique fixed point in X.

If we examine the proof of the above theorem, we can say that every θ-
contraction on a complete metric space is a PO.

2. MAIN RESULT

In the sequel N denotes the set of non-negative intiger numbers. The follow-
ing lemmas will be useful later.

Lemma 2.1. Let (X,D) be a JS-metric space and {xn} be a sequence in X. Then
{xn} is Cauchy iff

∀ ε > 0, ∃N ∈ N : D(xn, xn+p) < ε, n ≥ N, p ∈ N.

Proof. It follows immediately from the axiom (D2) of a JS-metric. �

Lemma 2.2. Let (X,D) be a JS-metric space and {xn} be a sequence in X. If
there exists a real sequence {an} that converges to 0 such that

D(xn, xn+p) ≤ an, n ≥ N, p ∈ N,

then {xn} is Cauchy.

Proof. It follows immediately from Lemma 2.1. �

Let us introduce the following class of operators.

Definition 2.1. Let (X,D) be a JS-metric space, θ ∈ Θ, and T : X → X be such
that

(4) (x, y) ∈ X ×X, D(x, y) = 0 =⇒ D(Tx, Ty) = 0
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and

(5) (x, y) ∈ X ×X, D(Tx, Ty) =∞ =⇒ D(x, y) =∞.

Then T is said to be a θD-contraction, if there exists some k ∈ (0, 1) such that
(6)
(x, y) ∈ X ×X, D(Tx, Ty) > 0, D(x, y) <∞ =⇒ θ(D(Tx, Ty)) ≤ [θ(D(x, y))]k.

Remark 2.1. Observe that from (4), if for some (x, y) ∈ X × X, we have
D(Tx, Ty) > 0, then D(x, y) > 0. Moreover, from (5), if for some (x, y) ∈ X ×X,
we have D(x, y) <∞, then D(Tx, Ty) <∞. Therefore,

(x, y) ∈ X×X, D(Tx, Ty) > 0, D(x, y) <∞ =⇒ (D(x, y), D(Tx, Ty)) ∈ (0,∞)×(0,∞).

For every x ∈ X, set

δ(D,T, x) = sup{D(T ix, T jx) : i, j ∈ N}.

Our main result is given by the following theorem.

Theorem 2.1. Let (X,D) be a complete JS-metric space and T : X → X be a
θD-contraction for some θ ∈ Θ and k ∈ (0, 1). If there exists x0 ∈ X such that
δ(D,T, x0) <∞ and D(Tnx0, T

nx0) = 0, for all n ∈ N, then T is a PPO.

Proof. Let x0 ∈ X be such that

(7) δ(D,T, x0) <∞

and

(8) D(Tnx0, T
nx0) = 0, n ∈ N.

First, assume that
D(TNx0, T

N+qx0) = 0,

for some (N, q) ∈ N×N\{0}. From the axiom (D1), we obtain TNx0 = T q(TNx0),
that is, TNx0 is a fixed point of T q. We claim that TNx0 is the unique fixed point
of T q in the set {Tnx0 : n ∈ N}. Indeed, suppose that TMx0, M ∈ N, is another
fixed point of T q (M 6= N). In this case, we have

D(T q+Nx0, T
q+Mx0) = D(TNx0, T

Mx0) > 0

and
D(T q+N−1x0, T

q+M−1x0) ≤ δ(D,T, x0) <∞.
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Using (6), we obtain

θ(D(TNx0, T
Mx0)) = θ(D(T q+Nx0, T

q+Mx0)) ≤ [θ(D(T q+N−1x0, T
q+M−1x0))]k.

Again, we have
D(T q+N−1x0, T

q+M−1x0) > 0

and
D(T q+N−2x0, T

q+M−2x0) ≤ δ(D,T, x0) <∞.

Using (6), we obtain

θ(D(T q+N−1x0, T
q+M−1x0)) ≤ [θ(D(T q+N−2x0, T

q+M−2x0))]k.

Therefore,

θ(D(TNx0, T
Mx0)) ≤ [θ(D(T q+N−2x0, T

q+M−2x0))]k
2

.

Continuing this process, by induction we obtain the following contradiction

θ(D(TNx0, T
Mx0)) ≤ [θ(D(TNx0, T

Mx0))]k
q

< θ(D(TNx0, T
Mx0)),

which proves our claim. Since

T qTN+1x0 = T qTTNx0 = T (T qTNx0) = TTNx0 = TN+1x0,

then TN+1x0 is also a fixed point of T q. By uniqueness of the fixed points of T q in
the set {Tnx0 : n ∈ N}, we obtain

T (TNx0) = TN+1x0 = TNx0,

that is, TNx0 is a fixed point of T .

Now, assume that

D(Tnx0, T
n+qx0) > 0, (n, q) ∈ N× N\{0}.

Therefore, from (7)

(9) 0 < D(Tnx0, T
n+qx0) ≤ δ(D,T, x0) <∞, (n, q) ∈ N× N\{0}.

Using (9) and (6), we obtain

θ(D(Tnx0, T
n+qx0)) ≤ [θ(D(Tn−1x0, T

n+q−1x0))]k

≤ [θ(D(Tn−2x0, T
n+q−2x0))]k

2

...

≤ [θ(D(x0, T
qx0))]k

n

≤ [θ(δ(D,T, x0))]k
n

.
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Thus we have

(10) 1 < θ(D(Tnx0, T
n+qx0)) ≤ [θ(δ(D,T, x0))]k

n

, (n, q) ∈ N× N\{0}.

Fix q ∈ N\{0} and passing to the limit as n→∞, we get

lim
n→∞

θ(D(Tnx0, T
n+qx0)) = 1,

which yields from the axiom (Θ2),

lim
n→∞

D(Tnx0, T
n+qx0) = 0.

By the axiom (Θ3), there exist r ∈ (0, 1) and l ∈ (0,∞] such that

lim
n→∞

θ(D(Tnx0, T
n+qx0))− 1

[D(Tnx0, Tn+qx0)]r
= l.

By the definition of the limit, we infer that there exist a constant B > 0 and n0 ∈ N
such that

θ(D(Tnx0, T
n+qx0))− 1

[D(Tnx0, Tn+qx0)]r
≥ 1

B
, n ≥ n0,

which yields

n[D(Tnx0, T
n+qx0)]r ≤ Bn

(
θ(D(Tnx0, T

n+qx0))− 1
)
, n ≥ n0.

Using (10), we obtain

n[D(Tnx0, T
n+qx0)]r ≤ Bn

(
[θ(δ(D,T, x0))]k

n

− 1
)
, n ≥ n0.

Passing to the limit as n→∞, we obtain

lim
n→∞

n[D(Tnx0, T
n+qx0)]r = 0,

which implies that

D(Tnx0, T
n+qx0) <

(
1

n

)1/r

, n ≥ n1, q ∈ N\{0},

for some n1 ∈ N. On the other hand, since D(Tnx0, T
nx0) = 0, for all n ∈ N, the

above inequality holds also for q = 0. Thus we deduce that

D(Tnx0, T
n+qx0) <

(
1

n

)1/r

, n ≥ n1, q ∈ N,

which implies from Lemma 2.2 that {Tnx0} is a Cauchy sequence (since 0 < r < 1).

Since (X,D) is a complete JS-metric space, there is some z ∈ X such that

(11) {Tnx0} ∈ C(D,X, z).
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Consider now the set

Λ = {n ∈ N : D(Tnx0, T z) = 0}.

We distinguish two cases.
Case 1. If |Λ| =∞. In this case there is a sub-sequence {Tϕ(n)x0} of {Tnx0} such
that

D(Tϕ(n)x0, T z) = 0, n ∈ N.

By the axiom (D1) of a JS-metric, we have

Tϕ(n)x0 = Tz, n ∈ N.

Therefore, we have

{Tϕ(n)} ∈ C(D,X, z) ∩ C(D,X, Tz),

which yields by the uniqueness of the limit

z = Tz.

Case 2. If |Λ| <∞. In this case, for some n2 ∈ N,

D(Tnx0, T z) > 0, n ≥ n2.

On the other hand, from (11), there is some n3 ∈ N such that

D(Tn−1x0, z) <∞, n ≥ n3.

Using the above facts and (6), we obtain

θ(D(Tnx0, T z)) ≤ [θ(D(Tn−1x0, z))]
k, n ≥ max{n2, n3}.

Therefore,

ln θ(D(Tnx0, T z)) ≤ k ln θ(D(Tn−1x0, z)) ≤ ln θ(D(Tn−1x0, z)), n ≥ max{n2, n3}.

Since θ is a nondecreasing function, we obtain

D(Tnx0, T z) ≤ D(Tn−1x0, z), n ≥ max{n2, n3}.

Passing to the limit as n→∞ and using (11), we obtain

{Tnx0} ∈ C(D,X, z) ∩ C(D,X, Tz),

which yields
z = Tz.

Thus, in all cases, we proved that the Picard sequence {Tnx0} converges to a fixed
point of T . �
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3. AN EXAMPLE

In this section, we provide an example showing the importance of Theorem
2.1.

Example 3.1. Consider the set X = N and the mapping D : X × X → [0,∞]
defined by

D(x, y) =

{
0 if x = y,
x+ y if x 6= y.

It is easy to observe that D is a metric on X, and so it is a JS-metric on X.

Let us prove that (X,D) is a complete JS-metric space. Let {xn} ⊂ X be a
Cauchy sequence with respect to the JS-metric D. Then

lim
n,m→∞

D(xn, xm) = 0,

which yields

D(xn, xm) <
1

2
, n ≥ m ≥ N,

for some N ∈ N. On the other hand, observe that D(X × X) is a subset of X.
Taking into account this fact, and using the above inequality, we obtain

D(xn, xm) = 0, n ≥ m ≥ N.

Thus we have
xn = xN , n ≥ N,

which implies that
{xn} ∈ C(D,X, xN ).

Therefore, (X,D) is a complete JS-metric space.

Let T : X → X be defined by

Tx =

{
0 if x ∈ {0, 1} ,
x− 1 if x ≥ 2.

Observe that T is not a k-contraction (in the sense of Jleli and Samet [7]), for any
k ∈ (0, 1), that is, there is no k ∈ (0, 1) such that

D(Tx, Ty) ≤ kD(x, y), (x, y) ∈ X ×X.

Indeed, suppose that the above inequality is satisfied for some k ∈ (0, 1), take
(x, y) = (y + 1, y), y ≥ 2, we obtain

D(Tx, Ty) = D(y, y − 1) = 2y − 1 ≤ kD(x, y) = (2y + 1)k,

which yields

k ≥ 2y − 1

2y + 1
, y ∈ N, y ≥ 2.
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Passing to the limit as y →∞, we get

k ≥ 1,

which is a contradiction. Therefore, using Theorem 3.3 in [7], we can not decide that
whether T is pseudo Picard operator. Similarly, we can check also that Theorem
4.3 in [7] cannot be applied in this case.

Now, we claim that T is a θD-contraction with θ(t) = e
√
tet and k = e−

1
2 . To

see this we have to show that

θ(D(Tx, Ty)) ≤ [θ(D(x, y))]
k
,

for all (x, y) ∈ X ×X with D(Tx, Ty) > 0. For this, it is sufficient to show that

(12)
D(Tx, Ty)

D(x, y)
eD(Tx,Ty)−D(x,y) ≤ e−1,

for all (x, y) ∈ X ×X with D(Tx, Ty) > 0.

First, observe that

D(Tx, Ty) > 0⇐⇒ the set {x, y} ∩ {0, 1} is singleton or empty, x 6= y.

Since (12) is symmetric with respect to x and y, we may assume x > y in the
following cases.

Case 1. If {x, y} ∩ {0, 1} is a singleton.
Then D(Tx, Ty) = x− 1 and D(x, y) = x+ y, and so we have

D(Tx, Ty)

D(x, y)
eD(Tx,Ty)−D(x,y) =

(
x− 1

x+ y

)
ex−1−(x+y)

=

(
x− 1

x+ y

)
e−(y+1)

≤
(
x− 1

x

)
e−1

≤ e−1.

Case 2. If {x, y} ∩ {0, 1} = ∅.
Then D(Tx, Ty) = x+ y − 2, D(x, y) = x+ y, and so we have

D(Tx, Ty)

D(x, y)
eD(Tx,Ty)−D(x,y) =

(
x+ y − 2

x+ y

)
e−2 ≤ e−2 ≤ e−1.

Thus our claim is proved.

Finally, for x0 = 2, we have

δ(D,T, x0) = 3 <∞.

Therefore by Theorem 2.1, T is a pseudo Picard operator.
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11. I.A. Rus: Weakly Picard mappings. Comment. Math. Univ. Caroline., 34 (4) (1993),
769–773.

12. B. Samet: Fixed Points for α-ψ contractive mappings with an application to quadratic
integral equations. Electron. J. Differential Equations., 152 (2014), 1–18.

13. B. Samet, C. Vetro, P. Vetro: Fixed point theorem for α-ψ contractive type
mappings. Nonlinear Anal. 75 (2012), 2154–2165.

14. T. Senapati, L. K. Dey, D. Dolićanin Dekić: Extensions of Ćirić and Wardowski
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