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Abstract. In this paper we give the complete characterization of the boundedness of generalized
fractional maximal operator

Mφ ,Λα (b) f (x) := sup
Q�x

‖ f χQ‖Λα (b)

φ(|Q|) (x ∈ R
n),

between the classical Lorentz spaces Λp(v) and Λq(w) , as well as between Λp(v) and weak-
type Lorentz spaces Λq,∞(w) , and between Λp,∞(v) and Λq,∞(w) , and between Λp,∞(v) and
Λq(w) , for appropriate functions φ , where 0 < p, q, α < ∞ , v,w, b are weights on (0,∞) such
that 0 < B(t) :=

∫ t
0 b < ∞ , t > 0 , B ∈ Δ2 and B(t)/tr is quasi-increasing for some 0 < r � 1 .

1. Introduction

Throughout the paper, we always denote by c or C a positive constant, which is
independent of main parameters but it may vary from line to line. However a constant
with subscript such as c1 does not change in different occurrences. By a � b , we mean
that a � λb , where λ > 0 depends on inessential parameters. If a � b and b � a , we
write a ≈ b and say that a and b are equivalent. By a cube, we mean an open cube
with sides parallel to the coordinate axes.

Let Ω be any measurable subset of Rn , n � 1. Let M(Ω) denote the set of
all measurable functions on Ω and M0(Ω) the class of functions in M(Ω) that are
finite a.e. The symbol M+(Ω) stands for the collection of all f ∈ M(Ω) which are
non-negative on Ω . The symbol M+((0,∞);↓) is used to denote the subset of those
functions from M+(0,∞) which are non-increasing on (0,∞) . Denote by Mrad,↓ ≡
Mrad,↓(Rn) the set of all measurable, non-negative, radially decreasing functions on
Rn , that is,

Mrad,↓ := { f ∈ M(Rn) : f (x) = h(|x|), x ∈ R
n with h ∈ M+((0,∞);↓)}.

The family of all weight functions (also called just weights) on Ω , that is, locally
integrable non-negative functions on Ω , is given by W (Ω) . Everywhere in the paper,
u , v and w are weights.
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For p ∈ (0,∞] and w ∈ M+(Ω) , we define the functional ‖ · ‖p,w,Ω on M(Ω) by

‖ f‖p,w,Ω :=
{

(
∫

Ω | f (x)|pw(x)dx)1/p if p < ∞,
esssupΩ | f (x)|w(x) if p = ∞.

If, in addition, w ∈ W (Ω) , then the weighted Lebesgue space Lp(w,Ω) is given
by

Lp(w,Ω) = { f ∈ M(Ω) : ‖ f‖p,w,Ω < ∞}
and it is equipped with the quasi-norm ‖ · ‖p,w,Ω .

When w ≡ 1 on Ω , we write simply Lp(Ω) and ‖ · ‖p,Ω instead of Lp(w,Ω) and
‖ · ‖p,w,Ω , respectively.

Denote by

V (x) :=
∫ x

0
v(t)dt and W (x) :=

∫ x

0
w(t)dt for all x > 0.

A quasi-Banach space X is a complete metrizable real vector space whose topol-
ogy is given by a quasi-norm ‖ · ‖ satisfying the following three conditions: ‖x‖ > 0,
x ∈ X , x �= 0; ‖λx‖ = |λ |‖x‖ , λ ∈ R , x ∈ X ; and ‖x1 + x2‖ � C(‖x1‖+ ‖x2‖) ,
x1, x2 ∈ X , where C � 1 is a constant independent of x1 and x2 .

A quasi-Banach function space on a measure space (Rn,dx) is defined to be a
quasi-Banach space X which is a subspace of M0(Rn) (the topological linear space
of all equivalence classes of the real Lebesgue measurable functions equipped with the
topology of convergence in measure) such that there exists h ∈ X with h > 0 a.e. and
if | f | � |g| a.e., where g ∈ X and f ∈ M0(Rn) , then f ∈ X and ‖ f‖X � ‖g‖X .

A quasi-Banach function space X is said to satisfy a lower r -estimate, 0 < r < ∞ ,
if there exists a constant C such that the inequality

( n

∑
i=1

‖ fi‖r
X

)1/r

� C

∥∥∥∥ n

∑
i=1

fi

∥∥∥∥
X

holds for every finite set of functions { f1, . . . , fn} ⊂ X with pairwise disjoint supports
(see [37, 1.f.4]).

Suppose f is a measurable a.e. finite function on Rn . Then its non-increasing
rearrangement f ∗ is given by

f ∗(t) = inf{λ > 0 : |{x ∈ R
n : | f (x)| > λ}|� t}, t ∈ (0,∞),

and let f ∗∗ denotes the Hardy-Littlewood maximal function of f ∗ , i.e.

f ∗∗(t) :=
1
t

∫ t

0
f ∗(τ)dτ, t > 0.

A quasi-Banach function space (X ,‖·‖X) of real-valued, locally integrable, Lebes-
gue measurable functions on Rn is said to be a rearrangement-invariant (r.i.) space if it
satisfies the following conditions:
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1. If g∗ � f ∗ and f ∈ X , then g ∈ X with ‖g‖X � ‖ f‖X .

2. If A is a Lebesgue measurable set of finite measure, then χA ∈ X .

3. 0 � fn ↑ , sup
n∈N

‖ fn‖X � M imply that f = sup
n∈N

fn ∈ X and ‖ f‖X = sup
n∈N

‖ fn‖X

(see, for instance, [2]).
For each r.i. space X on Rn , a r.i. space X on (0,+∞) is associated such that

f ∈ X if and only if f ∗ ∈ X and ‖ f‖X = ‖ f ∗‖X (see [3]).
Quite many familiar function spaces can be defined using the non-increasing re-

arrangement of a function. One of the most important classes of such spaces are the
so-called classical Lorentz spaces.

Let p ∈ (0,∞) and w ∈ W (0,∞) . The classical Lorentz spaces Λp(w) consist of
all functions f ∈ M(Rn) for which ‖ f‖Λp(w) := ‖ f ∗‖p,w,(0,∞) < ∞ . For more informa-
tion about the Lorentz Λ spaces see e.g. [9] and the references therein.

A weak-type modification of the space Λp(w) is defined by (cf. [12, 49])

Λp,∞(w) :=
{

f ∈ M(Rn) : ‖ f‖Λp,∞(w) := sup
t>0

f ∗(t)W (t)1/p < ∞
}

.

Recall that classical and weak-type Lorentz spaces include many familiar spaces (see,
for instance, [18]).

A function φ : (0,∞)→ (0,∞) is said to satisfy the Δ2 -condition, denoted φ ∈ Δ2 ,
if for some C > 0

φ(2t) � Cφ(t) for all t > 0.

Suppose 0< p< ∞ and let w be a weight on (0,∞) such that W ∈Δ2 and W (∞) =
∞ . Then the classical Lorentz space Λp(w) is a r.i. quasi-Banach function space (see,
for instance, [10, Section 2.2] and [31]).

THEOREM 1.1. [31, Theorem 7] Let w be a weight function such that W ∈ Δ2 .
Given 0 < p, r < ∞ , the following assertions are equivalent:

(i) Λp(w) satisfies a lower r -estimate.
(ii) W (t)/t p/r is quasi-increasing and r � p.

The study of maximal operators is one of the most important topics in harmonic
analysis. These significant non-linear operators, whose behavior are very informative
in particular in differentiation theory, provided the understanding and the inspiration
for the development of the general class of singular and potential operators (see, for
instance, [51, 30, 21, 54, 52, 28, 29]).

Suppose that X is a quasi-Banach space of measurable functions defined on Rn .
Given a function φ : (0,∞) → (0,∞) , denote for every f ∈ Xloc :=

{
f ∈ M0(Rn) :

f χQ ∈ X for every cube Q ⊂ Rn
}

by

Mφ ,X f (x) := sup
Q�x

‖ f χQ‖X

φ(|Q|) (x ∈ R
n). (1.1)
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It is easy to see that Mφ ,X f is a lower-semicontinuous function.
A function φ : (0,∞) → (0,∞) is said to be quasi-increasing (quasi-decreasing), if

for some C > 0
φ(t1) � Cφ(t2) (φ(t2) � cφ(t1))

holds whenever 0 < t1 � t2 < ∞ .
A function φ : (0,∞) → (0,∞) is said to satisfy the Qr -condition, 0 < r < ∞ ,

denoted φ ∈ Qr , if for some constant C > 0

φ
( n

∑
i=1

ti

)
� C

( n

∑
i=1

φ(ti)r
)1/r

holds for every finite set of non-negative real numbers {t1, . . . ,tn} .
In this paper we study the boundedness of Mφ ,X between the classical Lorentz

spaces Λp(v) and Λq(w) , as well as between Λp(v) and weak-type Lorentz spaces
Λq,∞(w) , and between Λp,∞(v) and Λq,∞(w) , and between Λp,∞(v) and Λq(w)

Our main result reads as follows.

THEOREM 1.2. Let 0 < p,q < ∞ , 0 < r < ∞ . Assume that φ ∈ Qr is a quasi-
increasing function on (0,∞) . Suppose that X is a r.i. quasi-Banach function space
satisfying a lower r -estimate. Then:

(a) Mφ ,X is bounded from Λp(v) to Λq(w) , that is, the inequality

‖Mφ ,X f‖Λq(w) � C‖ f‖Λp(v)

holds for all f ∈ M(Rn) if and only if the inequality(∫ ∞

0

[
sup
τ>t

‖ψχ[0,τ)‖X

φ(τ)

]q

w(t)dt

)1/q

� C

(∫ ∞

0
ψ(t)pv(t)dt

)1/p

holds for all ψ ∈ M+((0,∞);↓) .
(b) Mφ ,X is bounded from Λp(v) to Λq,∞(w) , that is, the inequality

‖Mφ ,X f‖Λq,∞(w) � C‖ f‖Λp(v)

holds for all f ∈ M(Rn) if and only if the inequality

sup
t>0

W (t)1/q sup
τ>t

‖ψχ[0,τ)‖X

φ(τ)
� C

(∫ ∞

0
ψ(t)pv(t)dt

)1/p

holds for all ψ ∈ M+((0,∞);↓) .
(c) Mφ ,X is bounded from Λp,∞(v) to Λq,∞(w) , that is, the inequality

‖Mφ ,X f‖Λq,∞(w) � C‖ f‖Λp,∞(v)

holds for all f ∈ M(Rn) if and only if the inequality

sup
t>0

W (t)1/q sup
τ>t

‖ψχ[0,τ)‖X

φ(τ)
� C sup

t>0
V (t)1/qψ(t)
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holds for all ψ ∈ M+((0,∞);↓) .
(d) Mφ ,X is bounded from Λp,∞(v) to Λq(w) , that is, the inequality

‖Mφ ,X f‖Λq(w) � C‖ f‖Λp,∞(v)

holds for all f ∈ M(Rn) if and only if the inequality(∫ ∞

0

[
sup
τ>t

‖ψχ[0,τ)‖X

φ(τ)

]q

w(t)dt

)1/q

� C sup
t>0

V (t)1/qψ(t)

holds for all ψ ∈ M+((0,∞);↓) .
Let u∈W (0,∞)∩C(0,∞) , b∈W (0,∞) and B(t) :=

∫ t
0 b(s)ds . Assume that b is

such that 0 < B(t) < ∞ for every t ∈ (0,∞) . The iterated Hardy-type operator involving
suprema Tu,b is defined at g ∈ M+(0,∞) by

(Tu,bg)(t) := sup
t�τ<∞

u(τ)
B(τ)

∫ τ

0
g(y)b(y)dy, t ∈ (0,∞).

Such operators have been found indispensable in the search for optimal pairs of
rearrangement-invariant norms for which a Sobolev-type inequality holds (cf. [32]).
They constitute a very useful tool for characterization of the associate norm of an
operator-inducednorm, which naturally appears as an optimal domain norm in a Sobolev
embedding (cf. [45], [46]). Supremum operators are also very useful in limiting inter-
polation theory as can be seen from their appearance for example in [20, 17, 16, 47].

In the present paper we also give solution of the inequality

‖Tu,b f‖q,w,(0,∞) � c‖ f‖p,v,(0,∞), f ∈ M↓(0,∞) (1.2)

when p = ∞ or q = ∞ (see Theorems 2.6, 2.7 and 2.8). Recall that the complete
characterization of inequality (1.2) for 0 < q < ∞ , 0 < p < ∞ is given in [24] (see
Theorem 2.3).

In particular case, when X = Λα(b) , 0 < α < ∞ , we are able to give the complete
characterization of the boundedness of Mφ ,X between the classical Lorentz spaces Λ
(see Theorem 3.14, 3.16, 3.18 and 3.20). We reduce the problem to the boundedness
of the operator Tu,b in weighted Lebesgue spaces on the cone of non-negative non-
increasing functions (see, Theorem 1.2 applied with X = Λα(b) , as well as Theorems
3.13, 3.15, 3.17 and 3.19).

EXAMPLE 1.3. The main example is the Hardy-Littlewoodmaximal function which
is defined for locally integrable functions f on R

n by

M f (x) := sup
Q�x

1
|Q|

∫
Q
| f (y)|dy, x ∈ R

n.

Obviously, Mφ ,Λα (b) = M , when α = 1, b ≡ 1 and φ(t) = t (t > 0) .
The first results on the problem of boundedness of the Hardy-Littlewood maximal

operator between the classical Lorentz spaces Λp(v) and Λq(w) were obtained by Boyd
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[5] and in an explicit form by Ariño and Muckenhoupt [1] when p = q and w = v . The
problem with w �= v and p �= q , 1 < p, q < ∞ was first successfully solved by Sawyer
[48] using duality argument. Stepanov [53] applied a different approach which enabled
him to extend the range of parameters to 0 < q < ∞ , 1 < p < ∞ . He also proved the
appropriate analogue of Sawyer’s duality principle in the case 0 < p < 1, and extended
the range of parameters to 0 < p < 1 < q < ∞ . The case 0 < p � q � 1 have been
obtained (in different ways) by several authors (see [11, 12]). The missing case 0 < q <
p < 1 was considered in [26] and [7]. Full characterizations for all range of parameters
using different discretization techniques were obtained in the papers [4] and [22]. Many
articles on this topic followed, providing the results for a wider range of parameters
(see for instance survey [9], the monographs [33, 34], for the latest development of this
subject see [27, 23], and references given there). The boundedness of M from Λp(v)
to Λq,∞(w) was characterized in [6, 13, 9]. Necessary and sufficient conditions for the
booundedness of M from Λp,∞(v) to Λq,∞(w) were established in [49].

EXAMPLE 1.4. The fractional maximal operator, Mγ , γ ∈ (0,n) , is defined at
f ∈ L1

loc(R
n) by

(Mγ f )(x) := sup
Q�x

|Q|γ/n−1
∫

Q
| f (y)|dy, x ∈ R

n.

Note that Mφ ,Λα (b) = Mγ , when α = 1, b≡ 1 and φ(t) = t1−γ/n (t > 0) with 0< γ < n .
The characterization of the boundedness of Mγ between Λp(v) and Λq(w) was

obtained in [15] for the particular case when 1 < p � q < ∞ and in [40, Theorem 2.10]
in the case of more general operators and for extended range of p and q .

EXAMPLE 1.5. Let s ∈ (0,∞) , γ ∈ [0,n) and A = (A0,A∞) ∈ R2 . Denote by

�A(t) := (1+ | logt|)A0 χ[0,1](t)+ (1+ | logt|)A∞ χ[1,∞)(t), (t > 0).

Recall that the fractional maximal operator Ms,γ,A at f ∈ M(Rn) defined in [18] by

(Ms,γ,A f )(x) := sup
Q�x

‖ f χQ‖s

‖χQ‖sn/(n−γ),A
, x ∈ R

n

satisfies the following equivalency

(Ms,γ,A f )(x) ≈ sup
Q�x

‖ f χQ‖s

|Q|(n−γ)/(sn)�A(|Q|) , x ∈ R
n.

Hence, if s = 1, γ = 0 and A = (0,0) , then Ms,γ,A is equivalent to the classical Hardy-
Littlewood maximal operator M . If s = 1, γ ∈ (0,n) and A = (0,0) , then Ms,γ,A

is equivalent to the usual fractional maximal operator Mγ . Moreover, if s = 1, γ ∈
[0,n) and A ∈R2 , then Ms,γ,A is the fractional maximal operator which corresponds to
potentials with logarithmic smoothness treated in [42, 43]. In particular, if γ = 0, then
M1,γ,A is the maximal operator of purely logarithmic order.
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Note that Mφ ,Λα (b) ≈ Ms,γ,A , when α = s , b ≡ 1 and φ(t) = t(n−γ)/(sn)�A(t) ,
(t > 0) with 0 < γ < n and A = (A0,A∞) ∈ R2 .

The complete characterization of the boundedness of Ms,γ,A between Λp(v) and
Λq(w) , as well as between Λp(v) and Λq,∞(w) , and between Λp,∞(v) and Λq,∞(w) ,
and between Λp,∞(v) and Λq(w) was given in [18, p. 17 and p. 34]. Full proofs and
some further extensions and applications can be found in [18, 19].

EXAMPLE 1.6. Given p and q , 0 < p, q < ∞ , let Mp,q denote the maximal op-
erator associated to the Lorentz Lp,q spaces defined by

Mp,q f (x) := sup
Q�x

‖ f χQ‖p,q

‖χQ‖p,q
= sup

Q�x

‖ f χQ‖p,q

|Q|1/p
,

where ‖ · ‖p,q is the usual Lorentz norm

‖ f‖p,q :=
(∫ ∞

0

[
τ1/p f ∗(τ)

]q dτ
τ

)1/q

.

This operator was introduced by Stein in [50] in order to obtain certain endpoint results
in differentiation theory. The operator Mp,q have been also considered by other authors,
for instance see [39, 35, 2, 44, 36]. The boundedness of Mp,q between Λp(v) and
Λq(w) was studied in [8].

Evidently, Mφ ,Λα (b) = Mp,q , when α = q , b(t) = tq/p−1 and φ(t) = t1/p (t > 0) .

The paper is organized as follows. In Section 2, for the convenience of the reader,
we recall the above-mentioned characterization of inequality (1.2), when 0 < p, q < ∞ ,
and give solution of this inequality, when p = ∞ or q = ∞ . The main results are proved
in Section 3.

2. Restricted inequalities for Tu,b

In this section, we recall the characterization of (1.2), when 0 < p, q < ∞ , and
give solution of this inequality, when p = ∞ or q = ∞ .

REMARK 2.1. Inequality (1.2) was characterized in [25, Theorem 3.5] under ad-
ditional condition

sup
0<t<∞

u(t)
B(t)

∫ t

0

b(τ)
u(τ)

dτ < ∞.

Note that the case when 0 < p � 1 < q < ∞ was not considered in [25]. It is also worth
to mention that in the case when 1 < p < ∞ , 0 < q < p < ∞ , q �= 1 [25, Theorem 3.5]
contains only discrete condition. In [26] the new reduction theorem was obtained when
0 < p � 1, and this technique allowed to characterize inequality (1.2) when b ≡ 1, and
in the case when 0 < q < p � 1, [26] contains only discrete condition.

We adopt the following conventions:
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CONVENTION 2.2. (i) Throughout the paper we put 0 · ∞ = 0, ∞/∞ = 0 and
0/0 = 0.

(ii) If p ∈ [1,+∞] , we define p′ by 1/p+1/p′ = 1.
(iii) If 0 < q < p < ∞ , we define r by 1/r = 1/q−1/p .

THEOREM 2.3. [24, Theorems 5.1 and 5.5] Let 0 < p, q < ∞ and let u∈W (0,∞)∩
C(0,∞) . Assume that b, v, w ∈ W (0,∞) is such that 0 < B(x) < ∞ , 0 <V (x) < ∞ and
0 < W (x) < ∞ for all x > 0 . Then inequality (1.2) is satisfied with the best constant C
if and only if the following holds:

(i) 1 < p � q and A1 +A2 < ∞ , where

A1 : = sup
x>0

([
sup

x�τ<∞

u(τ)
B(τ)

]q

W (x)+
∫ ∞

x

[
sup

t�τ<∞

u(τ)
B(τ)

]q

w(t)dt

)1/q

×
(∫ x

0

(
B(y)
V (y)

)p′

v(y)dy

)1/p′

,

A2 : = sup
x>0

([
sup

x�τ<∞

u(τ)
V 2(τ)

]q

W (x)

+
∫ ∞

x

[
sup

t�τ<∞

u(τ)
V 2(τ)

]q

w(t)dt

)1/q(∫ x

0
V p′(y)v(y)dy

)1/p′

,

and in this case C ≈ A1 +A2;
(ii) 1 = p � q and B1 +B2 < ∞ , where

B1 : = sup
x>0

([
sup

x�τ<∞

u(τ)
B(τ)

]q

W (x)+
∫ ∞

x

[
sup

t�τ<∞

u(τ)
B(τ)

]q

w(t)dt

)1/q(
sup

0<y�x

B(y)
V (y)

)
,

B2 : = sup
x>0

([
sup

x�τ<∞

u(τ)
V 2(τ)

]q

W (x)+
∫ ∞

x

[
sup

t�τ<∞

u(τ)
V 2(τ)

]q

w(t)dt

)1/q

V (x),

and in this case C ≈ B1 +B2;
(iii) max{q,1} < p and C1 +C2 +C3 +C4 < ∞ , where

C1 : =
(∫ ∞

0

(∫ ∞

x

[
sup

t�τ<∞

u(τ)
B(τ)

]q

w(t)dt

)r/p[
sup

x�τ<∞

u(τ)
B(τ)

]q

×
(∫ x

0

(
B(y)
V (y)

)p′

v(y)dy

)r/p′

w(x)dx

)1/r

,

C2 : =
(∫ ∞

0
Wr/p(x)

[
sup

x�τ<∞

[
sup

τ�y<∞

u(y)
B(y)

](∫ τ

0

(
B(y)
V (y)

)p′

v(y)dy

)1/p′]r

w(x)dx

)1/r

,

C3 : =
(∫ ∞

0

(∫ ∞

x

[
sup

t�τ<∞

u(τ)
V 2(τ)

]q

w(t)dt

)r/p[
sup

x�τ<∞

u(τ)
V 2(τ)

]q

×
(∫ x

0
V p′(y)v(y)dy

)r/p′

w(x)dx

)1/r

,



GENERALIZED FRACTIONAL MAXIMAL FUNCTIONS IN LORENTZ SPACES Λ 835

C4 : =
(∫ ∞

0
Wr/p(x)

[
sup

x�τ<∞

[
sup

τ�y<∞

u(y)
V 2(y)

](∫ τ

0
V p′(y)v(y)dy

)1/p′]r

w(x)dx

)1/r

,

and in this case C ≈C1 +C2 +C3 +C4;
(iv) q < 1 = p and D1 +D2 +D3 +D4 < ∞ , where

D1 : =
(∫ ∞

0

(∫ ∞

x

[
sup

t�τ<∞

u(τ)
B(τ)

]q

w(t)dt

)r/p[
sup

x�τ<∞

u(τ)
B(τ)

]q

×
(

sup
0<y�x

B(y)
V (y)

)r

w(x)dx

)1/r

,

D2 : =
(∫ ∞

0
Wr/p(x)

[
sup

x�τ<∞

[
sup

τ�y<∞

u(y)
B(y)

](
sup

0<y�τ

B(y)
V (y)

)]r

w(x)dx

)1/r

,

D3 : =
(∫ ∞

0

(∫ ∞

x

[
sup

t�τ<∞

u(τ)
V 2(τ)

]q

w(t)dt

)r/p[
sup

x�τ<∞

u(τ)
V 2(τ)

]q

V r(x)w(x)dx

)1/r

,

D4 : =
(∫ ∞

0
Wr/p(x)

[
sup

x�τ<∞

[
sup

τ�y<∞

u(y)
V 2(y)

]
V (τ)

]r

w(x)dx

)1/r

,

and in this case C ≈ D1 +D2 +D3 +D4;
(v) p � min{q,1} and E1 +E2 < ∞ , where

E1 : = sup
x>0

([
sup

x�τ<∞

u(τ)
B(τ)

]q

W (x)+
∫ ∞

x

[
sup

t�τ<∞

u(τ)
B(τ)

]q

w(t)dt

)1/q

sup
0<y�x

B(y)
V 1/p(y)

,

E2 : = sup
x>0

([
sup

x�y<∞

up(y)
V 2(y)

]q/p

W (x)+
∫ ∞

x

[
sup

t�y<∞

up(y)
V 2(y)

]q/p

w(t)dt

)1/q

V 1/p(x),

and in this case C ≈ E1 +E2;
(vi) q < p � 1 and F1 +F2 +F3 +F4 < ∞ , where

F1 : =
(∫ ∞

0
Wr/p(x)

[
sup

x�τ<∞

[
sup

τ�y<∞

u(y)
B(y)

]p(
sup

0<y�τ

B(y)p

V (y)

)]r/p

w(x)dx

)1/r

,

F2 : =
(∫ ∞

0

(∫ ∞

x

[
sup

t�τ<∞

u(τ)
B(τ)

]q

w(t)dt

)r/p[
sup

0<τ�x

Bp(τ)
V (τ)

]r/p

×
[

sup
x�τ<∞

u(τ)
B(τ)

]q

w(x)dx

)1/r

,

F3 : =
(∫ ∞

0
Wr/p(x)

(
sup

x�τ<∞

[
sup

τ�y<∞

up(y)
V 2(y)

]
V (τ)

)r/p

w(x)dx

)1/r

,

F4 : =
(∫ ∞

0

(∫ ∞

x

[
sup

t�y<∞

up(y)
V 2(y)

]q/p

w(t)dt

)r/p[
sup

x�y<∞

up(y)
V 2(y)

]q/p

V r/p(x)w(x)dx

)1/r

,

and in this case C ≈ F1 +F2 +F3 +F4.
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We recall the following results from [27]. Our formulations of these statements
are not exactly the same as in the mentioned paper. But by following the proof of these
theorems in [27], it is not difficult to see that such formulations are also true.

THEOREM 2.4. Let 0< β � ∞ and 1 � s < ∞ , and let T : M+(0,∞)→M+(0,∞)
satisfying the following conditions:

(i) T (λ f ) = λT f for all λ � 0 and f ∈ M+(0,∞);
(ii) T f (x) � cTg(x) for almost all x ∈ R+ if f (x) � g(x) for almost all x ∈ R+ ,

with constant c > 0 independent of f and g;
(iii) T ( f +g) � c(T f +Tg) for all f , g ∈ M+(0,∞) , with a constant c > 0 inde-

pendent of f and g.
Then the inequality

‖T f‖β ,w,(0,∞) � c‖ f‖s,v,(0,∞), f ∈ M+((0,∞);↓) (2.1)

holds iff both inequalities∥∥∥∥T

(∫ ∞

x
h

)∥∥∥∥
β ,w,(0,∞)

� c‖h‖s,Vsv1−s,(0,∞), h ∈ M+(0,∞) (2.2)

and
‖T1‖β ,w,(0,∞) � c‖1‖s,v,(0,∞) (2.3)

hold.

THEOREM 2.5. Let 0< β � ∞ and 1 � s < ∞ , and let T : M+(0,∞)→M+(0,∞)
satisfies conditions (i) - (iii). Then inequality (2.1) holds iff the inequality∥∥∥∥T

(
1

V 2(x)

∫ x

0
hV

)∥∥∥∥
β ,w,(0,∞)

� c‖h‖s,v1−s,(0,∞), h ∈ M+(0,∞) (2.4)

holds.

Now we give the solution of inequality (1.2), when p = ∞ or q = ∞ .

THEOREM 2.6. Let 0 < p < ∞ . Assume that b ∈ W (0,∞) , u, w ∈ W (0,∞)∩
C(0,∞) is such that 0 < B(x) < ∞ and 0 < V (x) < ∞ for all x > 0 . Then inequality

‖Tu,b f‖∞,w,(0,∞) � C‖ f‖p,v,(0,∞), f ∈ M+((0,∞);↓) (2.5)

is satisfied with the best constant C if and only if the following holds:
(i) 1 < p and G1 +G2 < ∞ , where

G1 : = sup
x>0

(
sup

x�t<∞

[
sup

0<τ�t
w(τ)

]
u(t)
B(t)

)(∫ x

0

(
B(y)
V (y)

)p′

v(y)dy

)1/p′

,

G2 : = sup
x>0

(
sup

x�t<∞

[
sup

0<τ�t
w(τ)

]
u(t)

V 2(t)

)(∫ x

0
V p′(y)v(y)dy

)1/p′

,
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and in this case C ≈ G1 +G2;
(ii) p � 1 and H1 +H2 < ∞ , where

H1 : = sup
x>0

(
sup

0<y�x

(
B(y) sup

y�t<∞

[
sup

0<τ�t
w(τ)

]
u(t)
B(t)

))
V−1/p(x),

H2 : = sup
x>0

(
sup

x�t<∞

[
sup

0<τ�t
w(τ)

]
u(t)
B(t)

)
B(x)

V 1/p(x)
,

and in this case C ≈ H1 +H2.

Proof. Whenever F, G are non-negative measurable functions on (0,∞) and F is
non-increasing, then

esssup
t∈(0,∞)

F(t)G(t) = esssup
t∈(0,∞)

F(t)esssup
τ∈(0,t)

G(τ);

likewise, when F is non-decreasing, then

esssup
t∈(0,∞)

F(t)G(t) = esssup
t∈(0,∞)

F(t)esssup
τ∈(t,∞)

G(τ).

Hence

‖Tu,b f‖∞,w,(0,∞) = sup
x>0

w(x) sup
x�τ<∞

u(τ)
B(τ)

∫ τ

0
f (y)b(y)dy

= sup
x>0

(
sup

0<τ�x
w(τ)

)
sup

x�τ<∞

u(τ)
B(τ)

∫ τ

0
f (y)b(y)dy

= sup
x>0

(
sup

0<τ�x
w(τ)

)
u(x)
B(x)

∫ x

0
f (y)b(y)dy

= sup
x>0

w̃(x)
∫ x

0
f (y)b(y)dy, (2.6)

where

w̃(x) :=
(

sup
0<τ�x

w(τ)
)

u(x)
B(x)

(x > 0),

and inequality (2.5) is equivalent to the inequality

sup
x>0

w̃(x)
∫ x

0
f (y)b(y)dy � C

(∫ ∞

0
f p(y)v(y)dy

)1/p

, f ∈ M+((0,∞);↓). (2.7)

(i) Let p > 1. By Theorem 2.4, (2.7) holds iff both

sup
x>0

w̃(x)
∫ x

0

(∫ ∞

y
h(τ)dτ

)
b(y)dy �C

(∫ ∞

0
hp(y)V p(y)v1−p(y)dy

)1/p

, h∈M+(0,∞),

(2.8)
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and

sup
x>0

w̃(x)B(x) � C

(∫ ∞

0
v(y)dy

)1/p

(2.9)

hold.
Evidently, inequality (2.8) is equivalent to the following inequalities:

sup
x>0

w̃(x)
∫ x

0
h(τ)B(τ)dτ

� C

(∫ ∞

0
hp(y)V p(y)v1−p(y)dy

)1/p

, h ∈ M+(0,∞), (2.10)

sup
x>0

w̃(x)B(x)
∫ ∞

x
h(τ)dτ

� C

(∫ ∞

0
hp(y)V p(y)v1−p(y)dy

)1/p

, h ∈ M+(0,∞). (2.11)

By Theorem 2.4, inequalities (2.11) and (2.9) hold if and only if the inequality

sup
x>0

w̃(x)B(x) f (x) � C

(∫ ∞

0
f p(y)v(y)dy

)1/p

, f ∈ M+((0,∞);↓) (2.12)

holds.
By Theorem 2.5, inequality (2.12) holds if and only if the inequality

sup
x>0

w̃(x)B(x)
1

V 2(x)

∫ x

0
h(τ)V (τ)dτ

� C

(∫ ∞

0
hp(y)v1−p(y)dy

)1/p

, h ∈ M+(0,∞) (2.13)

holds.
Consequently, we have shown that (2.5) is equivalent to the following two inequal-

ities:

sup
x>0

[
sup

0<τ�x
w(τ)

]
u(x)
B(x)

∫ x

0
h(y)dy

� C

(∫ ∞

0
hp(y)

(
V (y)
B(y)

)p

v1−p(y)dy

)1/p

, h ∈ M+(0,∞),

sup
x>0

[
sup

0<τ�x
w(τ)

]
u(x)

V 2(x)

∫ x

0
h(y)dy

� C

(∫ ∞

0

(
h(y)
V (y)

)p

v1−p(y)dy

)1/p

, h ∈ M+(0,∞),

which hold if and only if G1 < ∞ and G2 < ∞ , respectively (see, for instance, [41, 33,
34]).
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(ii) Let p � 1. It is known that inequality (2.7) holds if and only if

sup
x>0

(
sup
y>0

B(min{x,y})
(

sup
y�t<∞

[
sup

0<τ�t
w(τ)

]
u(t)
B(t)

))
V−1/p(x) < ∞

(see, for instance, [23, Theorem 5.1, (v)]), which is evidently holds iff H1 < ∞ and
H2 < ∞ . �

THEOREM 2.7. Assume that b ∈W (0,∞) , u, w ∈ W (0,∞)∩C(0,∞) is such that
0 < B(x) < ∞ for all x > 0 . Then inequality

‖Tu,b f‖∞,w,(0,∞) � C‖ f‖∞,v,(0,∞), f ∈ M↓(0,∞) (2.14)

holds if and only if

I := sup
x>0

(∫ x

0

b(y)dy
esssupτ∈(0,y) v(τ)

)[
sup

0<τ�x
w(τ)

]
u(x)
B(x)

< ∞.

Moreover, the best constant C in (2.14) satisfies C ≈ I .

Proof. By (2.6), we know that inequality (2.14) is equivalent to the inequality

sup
x>0

(
sup

x�t<∞

[
sup

0<τ�t
w(τ)

]
u(t)
B(t)

)∫ x

0
f (y)b(y)dy

� Cesssup
x>0

f (x)v(x), f ∈ M+((0,∞);↓), (2.15)

which, by [27, Theorem 3.16], holds if and only if

sup
x>0

(∫ x

0

b(y)dy
esssupτ∈(0,y) v(τ)

)[
sup

0<τ�x
w(τ)

]
u(x)
B(x)

< ∞. �

THEOREM 2.8. Let 0 < q < ∞ and let u ∈ W (0,∞) ∩C(0,∞) . Assume that
b, v, w ∈ W (0,∞) is such that 0 < B(x) < ∞ for all x > 0 . Then inequality

‖Tu,b f‖q,w,(0,∞) � c‖ f‖∞,v,(0,∞), f ∈ M+((0,∞);↓) (2.16)

is satisfied with the best constant C if and only if

J :=
(∫ ∞

0

[
sup

t�τ<∞

u(τ)
B(τ)

∫ τ

0

b(y)dy
esssupτ∈(0,y) v(τ)

]q

w(x)dx

)1/q

< ∞.

Moreover, the best constant C in (2.14) satisfies C ≈ J .

Proof. The statement follows by [27, Theorem 3.16]. �
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3. Main results

In this section we give statements and proofs of our main results.
Let F be any non-negative set function defined on the collection of all sets of

positive finite measure. Define its maximal function by

MF(x) := sup
Q�x

F(Q),

where the supremum is taken over all cubes containing x .

DEFINITION 3.1. [36, Definition 1] We say that a set function F is pseudo-
increasing if there is a positive constant C > 0 such that for any finite collection of
pairwise disjoint cubes {Qj} , we have

min
i

F(Qi) � CF

(⋃
i

Qi

)
. (3.1)

THEOREM 3.2. [36, Theorem 1] Let F be a pseudo-increasing set function.
Then, for any t > 0 ,

(MF)∗(t) � C sup
|E|>t/3n

F(E), (3.2)

where C is the constant appearing in (3.1), and the supremum is taken over all sets E
of finite measure |E| > t/3n .

LEMMA 3.3. Let 0 < r < ∞ . Assume that φ ∈ Qr . Suppose that X is a quasi-
Banach function space on a measure space (Rn,dx) . Moreover, assume that X satisfy
a lower r -estimate. Then there exists C > 0 such that for any function f from X and
any finite pairwise disjoint collection cubes {Qj} on Rn

min
i

‖ f χQi‖X

φ(|Qi|) � C
‖ f χ∪iQi‖X

φ(| ∪i Qi|) (3.3)

holds true.

Proof. Denote by

A := min
i

‖ f χQi‖X

φ(|Qi|) .

Since φ ∈ Qr , we have that

Aφ(| ∪i Qi|) = Aφ
(

∑
i
|Qi|

)
� A

(
∑
i

φ(|Qi|)r
)1/r

�
(

∑
i
‖ f χQi‖r

X

)1/r

.

On using the r -lower estimate property of X , we get that

Aφ(| ∪i Qi|) �
∥∥∥∥ n

∑
i=1

f χQi

∥∥∥∥
X

= ‖ f χ∪iQi‖X . �
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LEMMA 3.4. Let 0 < r < ∞ . Assume that φ ∈ Qr . Suppose that X is a quasi-
Banach function space satisfying a lower r -estimate. Then, for any t > 0 ,

(Mφ ,X f )∗(t) � C sup
|E|>t/3n

‖ f χE‖X

φ(|E|) (3.4)

holds, where C > 0 is the constant appearing in (3.3).

Proof. The statement follows by Theorem 3.2 and Lemma 3.3. �

LEMMA 3.5. Let 0 < r < ∞ . Assume that φ ∈Qr . Suppose that X is a r.i. quasi-
Banach function space satisfying a lower r -estimate. Then, for any t > 0 ,

(Mφ ,X f )∗(t) � C sup
τ>t

‖ f ∗χ[0,τ)‖X

φ(τ)
(3.5)

holds, where C > 0 is constant independent of f and t .

Proof. By Lemma 3.4, we have that

(Mφ ,X f )∗(t) � C sup
|E|>t/3n

‖ f χE‖X

φ(|E|)

= C sup
|E|>t/3n

‖( f χE)∗‖X

φ(|E|)

� C sup
|E|>t/3n

‖ f ∗χ[0,|E|)‖X

φ(|E|)

� C sup
τ>t/3n

‖ f ∗χ[0,τ)‖X

φ(τ)
.

Since φ ∈ Qr implies φ ∈ Δ2 , we obtain that

sup
τ>t/3n

‖ f ∗χ[0,τ)‖X

φ(τ)
� C sup

3nτ>t

‖ f ∗χ[0,3nτ)‖X

φ(3nτ)
= C sup

τ>t

‖ f ∗χ[0,τ)‖X

φ(τ)
.

Combining, we arrive at (3.5). �

COROLLARY 3.6. Let 0 < α � r < ∞ , φ ∈ Qr and b ∈ W (0,∞) be such that
B(∞) = ∞ , B ∈ Δ2 and B(t)/tα/r is quasi-increasing. Then there exists a constant
C > 0 such that for any measurable function f on Rn the inequality

(Mφ ,Λα (b) f )∗(t) � C sup
τ>t

(∫ τ
0 ( f ∗)α(y)b(y)dy

)1/α

φ(τ)

holds.
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Proof. In view of Theorem 1.1, Λα(b) satisfies a lower r -estimate. Then the
statement follows from Lemma 3.5, when X = Λα(b) . �

COROLLARY 3.7. Let 0 < q � p < ∞ . Then there exists a constant C > 0 such
that for any measurable function f on Rn the inequality

(Mp,q f )∗(t) � C

t1/p

(∫ t

0
( f ∗)q(y)yq/p−1 dy

)1/q

(3.6)

holds.

Proof. Let α = q , b(t) = tq/p−1 and φ(t) = t1/p (t > 0) . Then Mp,q = Mφ ,Λα (b) .

It is clear that B(t) ≈ tq/p (t > 0) . Since φ ∈ Qr , B ∈ Δ2 and B(t)/tq/r is quasi-
increasing when r = p � q , by Corollary 3.6, we get that

(Mp,q f )∗(t) � C sup
τ>t

1

τ1/p

(∫ τ

0
( f ∗)q(y)yq/p−1 dy

)1/q

.

It is easy to see that function G(τ) = 1
τq/p

∫ τ
0 g(y)dyq/p is non-increasing on (0,∞)

when g is non-increasing. Consequently,

sup
τ>t

1

τ1/p

(∫ τ

0
( f ∗)q(y)yq/p−1dy

)1/q

=
1

t1/p

(∫ t

0
( f ∗)q(y)yq/p−1 dy

)1/q

.

Thus

(Mp,q f )∗(t) � C

t1/p

(∫ t

0
( f ∗)q(y)yq/p−1 dy

)1/q

. �

REMARK 3.8. Note that inequality (3.6) was proved in [2] with the help of in-
terpolation. This result was extended to more general setting of maximal operators in
[38].

REMARK 3.9. It is clear that if ω ∈ Qr , 0 < r < ∞ and g : (0,∞) → (0,∞) is a
quasi-decreasing function, then ω ·g∈Qr . Indeed: Since g

(
∑n

i=1 ti
)
�C mini g(ti) , we

get that

(ω ·g)
( n

∑
i=1

ti

)
= ω

( n

∑
i=1

ti

)
·g

( n

∑
i=1

ti

)

� C

( n

∑
i=1

ω(ti)r
)1/r

·min
i

g(ti)

= C

( n

∑
i=1

(
ω(ti) ·min

i
g(ti)

)r
)1/r

� C

( n

∑
i=1

(ω ·g)(ti)r
)1/r

.
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COROLLARY 3.10. Let s ∈ (0,∞) , γ ∈ (0,n) and A = (A0,A∞)∈ R2 . Then there
exists a constant C > 0 depending only in n, s, γ and A such that for all f ∈ M(Rn)
and every t ∈ (0,∞)

(Ms,γ,A f )∗(t) � C

[
sup
τ>t

τγ/n−1�−sA(τ)
∫ τ

0
( f ∗)s(y)dy

]1/s

. (3.7)

Proof. It is mentioned in the introduction that Mφ ,Λα (b) ≈ Ms,γ,A , when α = s ,

b ≡ 1 and φ(t) = t(n−γ)/(sn)�A(t) , (t > 0) . Let r = s . Writing φ = ω · g , where
ω(t) = t1/s and g(t) = t−γ/(sn)�A(t) , (t > 0) , observing that ω ∈ Qs and g is quasi-
decreasing, in view of remark 3.9, we claim that φ ∈ Qr . On the other side, since
B(t) = t , t > 0, we get that B ∈ Δ2 and B(t)/tα/r ≡ 1 is quasi-increasing. Hence, by
Corollary 3.6, inequality (3.7) holds. �

REMARK 3.11. Note that inequality (3.7) was proved in [18, Theorem 3.1].

LEMMA 3.12. Let 0 < r < ∞ . Assume that φ ∈ Δ2 is a quasi-increasing function
on (0,∞) . Suppose that X is a r.i. quasi-Banach function space. Then, for any t > 0 ,

(Mφ ,X f )∗(t) � csup
τ>t

‖ f ∗χ[0,τ)‖X

φ(τ)
, f ∈ Mrad,↓(Rn) (3.8)

holds, where c > 0 is constant independent of f and t .

Proof. Let f be any function from Mrad,↓ . For every x, y∈Rn such that |y|> |x| ,
we have that

(Mφ ,X f )(x) �
‖ f χB(0,|y|)‖X

φ(|B(0, |y|)|) .

Since ( f χB(0,|y|))∗(t) = f ∗(t)χ[0,|B(0,|y|)|)(t) , t > 0, we get that

(Mφ ,X f )(x) �
‖ f ∗χ[0,|B(0,|y|)|)‖X

φ(|B(0, |y|)|) .

Hence

(Mφ ,X f )(x) � sup
|y|>|x|

‖ f ∗χ[0,|B(0,|y|)|)‖X

φ(|B(0, |y|)|) = sup
|y|>|x|

‖ f ∗χ[0,ωn|y|n)‖X

φ(ωn|y|n) = sup
τ>ωn|x|n

‖ f ∗χ[0,τ)‖X

φ(τ)

holds, where ωn is the Lebesgue measure of the unit ball in Rn .
Recall that

f ∗(t) = sup
|E|=t

ess inf
x∈E

| f (x)|, t ∈ (0,∞),

(see, for instance, [14, p. 33]).
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On taking rearrangements, we obtain that

(Mφ ,X f )∗(t) = sup
|E|=t

ess inf
x∈E

(Mφ ,X f )(x)

� ess inf
x∈B(0,(t/ωn)1/n)

(Mφ ,X f )(x)

� ess inf
x∈B(0,(t/ωn)1/n)

sup
τ>ωn|x|n

‖ f ∗χ[0,τ)‖X

φ(τ)

= ess inf
0�s<t

sup
τ>s

‖ f ∗χ[0,τ)‖X

φ(τ)
= sup

τ>t

‖ f ∗χ[0,τ)‖X

φ(τ)
. �

We are now in a position to prove our main result.

Proof of Theorem 1.2. The statement follows by Lemmas 3.5 and 3.12. �

3.1. Boundedness of Mφ ,Λα (b) : Λp(v) → Λq(w) , 0 < p, q < ∞

THEOREM 3.13. Let 0 < p,q < ∞ , 0 < α � r < ∞ and v, w ∈ W (0,∞) . Assume
that φ ∈Qr is a quasi-increasing function. Moreover, assume that b∈W (0,∞) is such
that 0 < B(t) < ∞ for all t > 0 , B(∞) = ∞ , B ∈ Δ2 and B(t)/tα/r is quasi-increasing.
Then Mφ ,Λα (b) is bounded from Λp(v) to Λq(w) , that is, the inequality

‖Mφ ,Λα (b)‖Λq(w) � C‖ f‖Λp(v)

holds for all f ∈ M(Rn) if and only if the inequality

‖TB/φ α ,bψ‖q/α ,w,(0,∞) � Cα‖ψ‖p/α ,v,(0,∞) (3.9)

holds for all ψ ∈ M+((0,∞);↓) .

Proof. The statement follows from Theorem 1.2, (a), when X = Λα(b) . �

THEOREM 3.14. Let 0 < p,q < ∞ , 0 < α � r < ∞ and v, w ∈ W (0,∞) . Assume
that φ ∈Qr is a quasi-increasing function. Moreover, assume that b∈W (0,∞) is such
that 0 < B(t) < ∞ for all t > 0 , B(∞) = ∞ , B ∈ Δ2 and B(t)/tα/r is quasi-increasing.
Then Mφ ,Λα (b) is bounded from Λp(v) to Λq(w) if and only if the following holds:

(i) α < p � q and A1 +A2 < ∞ , where

A1 : = sup
x>0

(
φ−q(x)W (x)+

∫ ∞

x
φ−q(t)w(t)dt

) 1
q
(∫ x

0

(
B(y)
V (y)

) p
p−α

v(y)dy

) p−α
pα

,

A2 : = sup
x>0

([
sup

x�τ<∞

B(τ)
φα (τ)V 2(τ)

] q
α
W (x)+

∫ ∞

x

[
sup

t�τ<∞

B(τ)
φα (τ)V 2(τ)

] q
α
w(t)dt

) 1
q

×
(∫ x

0
V

p
p−α v

) p−α
pα

,



GENERALIZED FRACTIONAL MAXIMAL FUNCTIONS IN LORENTZ SPACES Λ 845

and in this case ‖Mφ ,Λα (b)‖Λp(v)→Λq(w) ≈ A1 +A2;
(ii) α = p � q and B1 +B2 < ∞ , where

B1 : = sup
x>0

(
φ−q(x)W (x)+

∫ ∞

x
φ−q(t)w(t)dt

) 1
q
(

sup
0<y�x

B(y)
V (y)

) 1
α
,

B2 : = sup
x>0

([
sup

x�τ<∞

B(τ)
φα(τ)V 2(τ)

] q
α
W (x)+

∫ ∞

x

[
sup

t�τ<∞

B(τ)
φα (τ)V 2(τ)

] q
α
w(t)dt

) 1
q

V
1
α (x),

and in this case ‖Mφ ,Λα (b)‖Λp(v)→Λq(w) ≈ B1 +B2;
(iii) max{α,q} < p and C1 +C2 +C3 +C4 < ∞ , where

C1 : =
(∫ ∞

0

(∫ ∞

x
φ−q(t)w(t)dt

) q
p−q

φ−q(x)

×
(∫ x

0

(
B(y)
V (y)

) p
p−α

v(y)dy

) q(p−α)
α(p−q)

w(x)dx

) p−q
pq

,

C2 : =
(∫ ∞

0
W

q
p−q (x)

[
sup

x�τ<∞
φ−α(τ)

(∫ τ

0

(
B(y)
V (y)

) p
p−α

v(y)dy

) p−α
p

] pq
α(p−q)

w(x)dx

) p−q
pq

,

C3 : =
(∫ ∞

0

(∫ ∞

x

[
sup

t�τ<∞

B(τ)
φα (τ)V 2(τ)

] q
α
w(t)dt

) q
p−q

[
sup

x�τ<∞

B(τ)
φα (τ)V 2(τ)

] q
α

×
(∫ x

0
V

p
p−α v

) q(p−α)
α(p−q)

w(x)dx

) p−q
pq

,

C4 : =
(∫ ∞

0
W

q
p−q (x)

[
sup

x�τ<∞

[
sup

τ�y<∞

B(y)
φα(y)V 2(y)

](∫ τ

0
V

p
p−α v

) p−α
p

] pq
α(p−q)

w(x)dx

) p−q
pq

,

and in this case ‖Mφ ,Λα (b)‖Λp(v)→Λq(w) ≈ C1 +C2 +C3 +C4;
(iv) q < α = p and D1 +D2 +D3 +D4 < ∞ , where

D1 : =
(∫ ∞

0

(∫ ∞

x
φ−q(t)w(t)dt

) q
p−q

φ−q(x)
(

sup
0<y�x

B(y)
V (y)

) pq
α(p−q)

w(x)dx

) p−q
pq

,

D2 : =
(∫ ∞

0
W

q
p−q (x)

[
sup

x�τ<∞
φ−α(τ)

(
sup

0<y�τ

B(y)
V (y)

)] pq
α(p−q)

w(x)dx

) p−q
pq

,

D3 : =
(∫ ∞

0

(∫ ∞

x

[
sup

t�τ<∞

B(τ)
φα (τ)V 2(τ)

] q
α
w(t)dt

) q
p−q

×
[

sup
x�τ<∞

B(τ)
φα (τ)V 2(τ)

] q
α
V

pq
α(p−q) (x)w(x)dx

) p−q
pq

,

D4 : =
(∫ ∞

0
W

q
p−q (x)

[
sup

x�τ<∞

[
sup

τ�y<∞

B(y)
φα (y)V 2(y)

]
V (τ)

] pq
α(p−q)

w(x)dx

) p−q
pq

,
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and in this case ‖Mφ ,Λα (b)‖Λp(v)→Λq(w) ≈ D1 +D2 +D3 +D4;
(v) p � min{α,q} and E1 +E2 < ∞ , where

E1 : = sup
x>0

(
φ−q(x)W (x)+

∫ ∞

x
φ−q(t)w(t)dt

) 1
q

sup
0<y�x

B
1
α (y)

V
1
p (y)

,

E2 : = sup
x>0

([
sup

x�y<∞

B
1
α (y)

φ(y)V
2
p (y)

]q

W (x)+
∫ ∞

x

[
sup

t�y<∞

B
1
α (y)

φ(y)V
2
p (y)

]q

w(t)dt

) 1
q

V
1
p (x),

and in this case ‖Mφ ,Λα (b)‖Λp(v)→Λq(w) ≈ E1 +E2;
(vi) q < p � α and F1 +F2 +F3 +F4 < ∞ , where

F1 : =
(∫ ∞

0
W

q
p−q (x)

[
sup

x�τ<∞
φ−q(τ)

(
sup

0<y�τ

B(y)

V
α
p (y)

)] pq
α(p−q)

w(x)dx

) p−q
pq

,

F2 : =
(∫ ∞

0

(∫ ∞

x
φ−q(t)w(t)dt

) q
p−q

[
sup

0<τ�x

B(τ)

V
α
p (τ)

] pq
α(p−q)

φ−q(x)w(x)dx

) p−q
pq

,

F3 : =
(∫ ∞

0
W

q
p−q (x)

(
sup

x�τ<∞

[
sup

τ�y<∞

B
1
α (y)

φ(y)V
2
p (y)

]
V

1
p (τ)

) pq
p−q

w(x)dx

) p−q
pq

,

F4 : =
(∫ ∞

0

(∫ ∞

x

[
sup

t�y<∞

B
1
α (y)

φ(y)V
2
p (y)

]q

w(t)dt

) q
p−q

[
sup

x�y<∞

B
1
α (y)

φ(y)V
2
p (y)

]q

×V
q

p−q (x)w(x)dx

) p−q
pq

,

and in this case ‖Mφ ,Λα (b)‖Λp(v)→Λq(w) ≈ F1 +F2 +F3 +F4.

Proof. The statement follows from Theorems 3.13 and 2.3. �

3.2. Boundedness of Mφ ,Λα (b) : Λp(v) → Λq,∞(w) , 0 < p, q < ∞

THEOREM 3.15. Let 0 < p,q < ∞ , 0 < α � r < ∞ and v, w ∈ W (0,∞) . Assume
that φ ∈Qr is a quasi-increasing function. Moreover, assume that b∈W (0,∞) is such
that 0 < B(t) < ∞ for all t > 0 , B(∞) = ∞ , B ∈ Δ2 and B(t)/tα/r is quasi-increasing.
Then Mφ ,Λα (b) is bounded from Λp(v) to Λq,∞(w) , that is, the inequality

‖Mφ ,Λα (b)‖Λq,∞(w) � C‖ f‖Λp(v)

holds for all f ∈ M(Rn) if and only if the inequality

‖TB/φ α ,bψ‖∞,Wα/q,(0,∞) � Cα‖ψ‖p/α ,v,(0,∞) (3.10)

holds for all ψ ∈ M+((0,∞);↓) .
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Proof. The statement follows from Theorem 1.2, (b), when X = Λα(b) . �

THEOREM 3.16. Let 0 < p,q < ∞ , 0 < α � r < ∞ and v, w ∈ W (0,∞) . Assume
that φ ∈Qr is a quasi-increasing function. Moreover, assume that b∈W (0,∞) is such
that 0 < B(t) < ∞ for all t > 0 , B(∞) = ∞ , B ∈ Δ2 and B(t)/tα/r is quasi-increasing.
Then Mφ ,Λα (b) is bounded from Λp(v) to Λq,∞(w) if and only if the following holds:

(i) α < p and G1 +G2 < ∞ , where

G1 : = sup
x>0

[
sup

x�t<∞

W
1
q (t)

φ(t)

](∫ x

0

(
B(y)
V (y)

) p
p−α

v(y)dy

) p−α
pα

,

G2 : = sup
x>0

[
sup

x�t<∞

W
1
q (t)B

1
α (t)

φ(t)V
2
α (t)

](∫ x

0
V

p
p−α v

) p−α
pα

,

and in this case ‖Mφ ,Λα (b)‖Λp(v)→Λq,∞(w) ≈ G1 +G2;
(ii) p � α and H1 +H2 < ∞ , where

H1 : = sup
x>0

(
sup

0<y�x
B

1
α (y)

[
sup

y�t<∞

W
1
q (t)

φ(t)

])
V− 1

p (x),

H2 : = sup
x>0

[
sup

x�t<∞

W
1
q (t)

φ(t)

]
B

1
α (x)

V
1
p (x)

,

and in this case ‖Mφ ,Λα (b)‖Λp(v)→Λq,∞(w) ≈ H1 +H2.

Proof. The statement follows by Theorems 3.15 and 2.6. �

3.3. Boundedness of Mφ ,Λα (b) : Λp,∞(v) → Λq,∞(w) , 0 < p, q < ∞

THEOREM 3.17. Let 0 < p,q < ∞ , 0 < α � r < ∞ and v, w ∈ W (0,∞) . Assume
that φ ∈Qr is a quasi-increasing function. Moreover, assume that b∈W (0,∞) is such
that 0 < B(t) < ∞ for all t > 0 , B(∞) = ∞ , B ∈ Δ2 and B(t)/tα/r is quasi-increasing.
Then Mφ ,Λα (b) is bounded from Λp,∞(v) to Λq,∞(w) , that is, the inequality

‖Mφ ,Λα (b)‖Λq,∞(w) � C‖ f‖Λp,∞(v)

holds for all f ∈ M(Rn) if and only if the inequality

‖TB/φ α ,bψ‖∞,Wα/q,(0,∞) � Cα‖ψ‖∞,Vα/p,(0,∞)

holds for all ψ ∈ M+((0,∞);↓) .

Proof. The statement follows from Theorem 1.2, (c), when X = Λα(b) . �
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THEOREM 3.18. Let 0 < p,q < ∞ , 0 < α � r < ∞ and v, w ∈ W (0,∞) . Assume
that φ ∈Qr is a quasi-increasing function. Moreover, assume that b∈W (0,∞) is such
that 0 < B(t) < ∞ for all t > 0 , B(∞) = ∞ , B ∈ Δ2 and B(t)/tα/r is quasi-increasing.
Then Mφ ,Λα (b) is bounded from Λp,∞(v) to Λq,∞(w) if and only if

I := sup
x>0

(∫ x

0

b(y)

V
α
p (y)

dy

) 1
α W

1
q (x)

φ(x)
< ∞.

Moreover, ‖Mφ ,Λα (b)‖Λp,∞(v)→Λq,∞(w) ≈ I .

Proof. The statement follows by Theorems 3.17 and 2.7. �

3.4. Boundedness of Mφ ,Λα (b) : Λp,∞(v) → Λq(w) , 0 < p, q < ∞

THEOREM 3.19. Let 0 < p,q < ∞ , 0 < α � r < ∞ and v, w ∈ W (0,∞) . Assume
that φ ∈Qr is a quasi-increasing function. Moreover, assume that b∈W (0,∞) is such
that 0 < B(t) < ∞ for all t > 0 , B(∞) = ∞ , B ∈ Δ2 and B(t)/tα/r is quasi-increasing.
Then Mφ ,Λα (b) is bounded from Λp,∞(v) to Λq(w) , that is, the inequality

‖Mφ ,Λα (b)‖Λq(w) � C‖ f‖Λp,∞(v)

holds for all f ∈ M(Rn) if and only if the inequality

‖TB/φ α ,bψ‖q/α ,w,(0,∞) � Cα‖ψ‖∞,Vα/p,(0,∞)

holds for all ψ ∈ M+((0,∞);↓) .

Proof. The statement follows from Theorem 1.2, (d), when X = Λα(b) . �

THEOREM 3.20. Let 0 < p,q < ∞ , 0 < α � r < ∞ and v, w ∈ W (0,∞) . Assume
that φ ∈Qr is a quasi-increasing function. Moreover, assume that b∈W (0,∞) is such
that 0 < B(t) < ∞ for all t > 0 , B(∞) = ∞ , B ∈ Δ2 and B(t)/tα/r is quasi-increasing.
Then Mφ ,Λα (b) is bounded from Λp,∞(v) to Λq(w) if and only if

J :=
(∫ ∞

0

(
sup

x�τ<∞

1
φα (τ)

∫ τ

0

b(y)

V
α
p (y)

dy

) q
α
w(x)dx

) 1
q

< ∞.

Moreover, ‖Mφ ,Λα (b)‖Λp,∞(v)→Λq(w) ≈ J .

Proof. The statement follows by Theorems 3.19 and 2.8. �
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[7] M. J. CARRO, A. GOGATISHVILI, J. MARTÍN AND L. PICK, Weighted inequalities involving two
Hardy operators with applications to embeddings of function spaces, J. Operator Theory 59 (2008),
no. 2, 309–332, MR2411048.

[8] M. J. CARRO AND ORTIZ-CARABALLO, Boundedness of integral operators on de-
creasing functions, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), no. 4, 725–744,
doi:10.1017/S0308210515000098, MR3371573.

[9] M. CARRO, L. PICK, J. SORIA AND V. D. STEPANOV, On embeddings between classical Lorentz
spaces, Math. Inequal. Appl. 4 (2001), no. 3, 397–428, doi:10.7153/mia-04-37, MR1841071
(2002d:46026).

[10] M. J. CARRO, J. A. RAPOSO AND J. SORIA, Recent developments in the theory of Lorentz
spaces and weighted inequalities, Mem. Amer. Math. Soc. 187 (2007), no. 877, xii+128,
doi:10.1090/memo/0877, MR2308059 (2008b:42034).

[11] M. J. CARRO AND J. SORIA, Boundedness of some integral operators, Canad. J. Math. 45 (1993), no.
6, 1155–1166, doi:10.4153/CJM-1993-064-2, MR1247539.

[12] M. J. CARRO AND J. SORIA, Weighted Lorentz spaces and the Hardy operator, J. Funct. Anal. 112
(1993), no. 2, 480–494, doi:10.1006/jfan.1993.1042, MR1213148 (94f:42025).

[13] M. J. CARRO AND J. SORIA, The Hardy-Littlewood maximal function and weighted Lorentz
spaces, J. London Math. Soc. (2) 55 (1997), no. 1, 146–158, doi:10.1112/S0024610796004462,
MR1423292.

[14] K. M. CHONG AND N. M. RICE, Equimeasurable rearrangements of functions, Queen’s University,
Kingston, Ont., 1971, Queen’s Papers in Pure and Applied Mathematics, no. 28, MR0372140 (51
#8357).

[15] A. CIANCHI, R. KERMAN, B. OPIC AND L. PICK, A sharp rearrangement inequality for the frac-
tional maximal operator, Studia Math. 138 (2000), no. 3, 277–284, MR1758860 (2001h:42029).

[16] M. CWIKEL AND E. PUSTYLNIK, Weak type interpolation near “endpoint” spaces, J. Funct. Anal.
171 (2000), no. 2, 235–277, doi:10.1006/jfan.1999.3502, MR1745635 (2001b:46118).

[17] R. YA. DOKTORSKII,Reiterative relations of the real interpolation method, Dokl. Akad. Nauk SSSR
321 (1991), no. 2, 241–245 (Russian), English transl., Soviet Math. Dokl. 44, (1992), no. 3, 665–669,
MR1153547 (93b:46143).

[18] D. E. EDMUNDS AND B. OPIC, Boundedness of fractional maximal operators between clas-
sical and weak-type Lorentz spaces, Dissertationes Math. (Rozprawy Mat.) 410 (2002), 50,
doi:10.4064/dm410-0-1, MR1952673 (2004c:42040).

[19] D. E. EDMUNDS AND B. OPIC, Alternative characterisations of Lorentz-Karamata spaces,
Czechoslovak Math. J. 58 (133) (2008), no. 2, 517–540, doi:10.1007/s10587-008-0033-8,
MR2411107 (2009c:46044).

[20] W. D. EVANS AND B. OPIC, Real interpolation with logarithmic functors and reiteration, Canad. J.
Math. 52 (2000), no. 5, 920–960, doi:10.4153/CJM-2000-039-2, MR1782334 (2001i:46115).



850 R. CH. MUSTAFAYEV AND N. BILGIÇLI
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