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Abstract.
In this paper, we investigate general helices with lightlike slope axis. We give necessary and sufficient

conditions for a general helix to have a lightlike slope axis. We obtain parametric equation of all general
helices with lightlike slope axis. Also we give a nice relation between helix with lightlike slope axis and
biharmonic curves in Minkowski 3-space E3

1.

1. Introduction

Without any doubt, helix is one of the most fascinating curve in science and nature. Scientist have long
held a fascination, sometimes bordering on mystical obsession, for helical structures in nature. Helices arise
in nanosprings, carbon nanotubes, DNA double and collagen triple helix, lipid bilayers, bacterial flagella
in Salmonella and Escherichia coli, aerial hyphae in actinomycetes, bacterial shape in spirochetes, horns,
tendrils, vines, screws, springs, helical staircases and sea shells (helico-spiral structures). Also we can
easily see the helix curve or helical structures in fractal geometry, in the fields of computer aided design and
computer graphics. Helices can be used for the tool path description, the simulation of kinematic motion
or the design of highways, etc.(see [3, 11, 17, 27]).

From the view of differential geometry, a helix is a geometric curve with non- vanishing constant
curvature (or first curvature) k1 and non-vanishing constant torsion (or second curvature) k2. Indeed a helix
is a special case of the general helix. A curve of constant slope or general helix in Euclidean 3-space E3, is
defined by the property that the tangent makes a constant angle with a fixed straight line (the axis of the
general helix). A classical result stated by M. A. Lancret in 1802 and first proved by B. de Saint Venant in 1845
(for details see [25, 26] ) is: A necessary and sufficient condition that for a curve to be a general helix is that
the ratio of curvature to torsion is constant. If both k1 and k2 are non-zero constants, it is a general helix.
We call it a circular helix. It is known that straight line and circle are degenerate-helix examples (k1 = 0, if
the curve is straight line and k2 = 0, if the curve is a circle).

The Lancret theorem was revisited and solved by Barros ([5]) in 3-dimensional real space forms by
using killing vector fields along curves. Also in the same space-forms, a characterization of helices and
Cornu spirals is given by Arroyo, Barros and Garay in [1]. In [12], the author define a general helix in
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a Lie group with a bi-invariant metric as a curve whose tangent vector makes a constant angle with a
left-invariant vector field. Also, helices or more generally general helices are studied by many authors in
different view point in different spaces for example, in Euclidean n-space [8, 18], in Lorentzian space forms
[4, 15], in Lorentz-Minkowski spaces [2, 14, 16, 23], in Riemannian manifolds and submanifolds [21], in
semi-Riemannian manifolds and submanifolds [13, 22].

On the other hand, with the help of position vector, some properties of helix were studied in [23] and
[24].

In [10] (page 714, lemma 3.1), the authors claim that there is no timelike general helix or spacelike general
helix of type 1 (spacelike general helix with spacelike principal normal N) in Minkowski 3-space satisfying
the condition|k1(s)/k2(s)| = 1.However, we know that, in [19], Inoguchi proved that every biharmonic Frenet
curve in Minkowski 3-space E3

1 is a helix whose curvature κ and torsion τ satisfy k2
1 = k2

2. Thus we easily
see that there are helices in Minkowski 3-space E3

1 satisfying the condition |k1(s)/k2(s)| = 1.
In this paper, we investigate general helices in E3

1 with lightlike slope axis. We give necessary and
sufficient conditions for a general helix to have a lightlike slope axis. We obtain parametric equation of all
general helices with lightlike slope axis. Also we give a nice relation between helix with lightlike slope axis
and biharmonic curves in E3

1. Thus we prove that there exist general helices with the curvatures satisfying
|k1(s)/k2(s)| = 1.

2. Basic Concepts

The Minkowski 3-space E3
1 is the 3-dimensional linear space provided with the standard flat metric

given by

1 = −dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of E3
1. Recall that a vector v ∈ E3

1\{0} is said to be
spacelike if 1(v, v) > 0 , timelike if 1(v, v) < 0 and null (lightlike) if 1(v, v) = 0 and v , 0. In particular, the vector
v = 0 is called a spacelike vector. The norm of a vector v is given by ||v|| =

√
|1(v, v)|, and two vectors v and

w are said to be orthogonal, if 1(v,w) = 0. An arbitrary curve α(s) in E3
1, can locally be spacelike, timelike or

null (lightlike), if all its velocity vectors α′(s) are respectively spacelike, timelike or null ([25]). A spacelike
curve in E3

1 is called pseudo null curve if its principal normal vector N is null [6]. A null curve α is said
to be parameterized by pseudo-arc s if 1(α′′(s), α′′(s)) = 1. A spacelike or a timelike curve α is said to be
parameterized by arc-length s if 1(α′(s), α′(s)) = ±1 ([6]).

Let {T,N,B} be the moving Frenet frame along a curve α in E3
1, consisting of the tangent, the principal

normal and the binormal vector fields, respectively. Depending on the causal character of α, the Frenet
equations have the following forms.

Case 1. If α is a non-null curve, the Frenet equations are given by ([25]):

T′(s) = k1(s)N(s),

N′(s) = −ε0ε1k1(s)T(s) + k2(s)B(s),

B′(s) = −ε1ε2k2(s)N(s),

(1)

where k1 and k2 are the first and the second curvature of the curve respectively. Moreover, the following
conditions hold:

1(T,T) = ε0 = ±1, 1(N,N) = ε1 = ±1, 1(B,B) = ε2 = −ε0ε1

and

1(T,N) = 1(T,B) = 1(N,B) = 0.
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Case 2. If α is a pseudo null curve, the Frenet formulas have the form ([7])

T′(s) = k1(s)N(s),

N′(s) = k2(s)N(s),

B′(s) = −k1(s)T(s) − k2(s)B(s),

(2)

where the first curvature k1 = 0 if α is straight line, or k1 = 1 in all other cases. In particular, the following
conditions hold:

1(N,N) = 1(B,B) = 1(T,N) = 1(T,B) = 0, 1(T,T) = 1(N,B) = 1.

Case 3. If α is a null curve, the Frenet equations are given by ([6])

T′(s) = N(s),

B′(s) = k2(s)N(s),

N′(s) = −k2(s)T(s) − B(s),

(3)

where the first curvature k1 = 0 if α is straight line, or k1 = 1 in all other cases. In particular, the following
conditions hold:

1(T,T) = 1(B,B) = 1(T,N) = 1(N,B) = 0, 1(N,N) = 1(T,B) = 1.

3. General Helices with Lightlike Slope Axis in Minkowski 3-Space

In this section, we obtain the necessary and sufficient conditions for a general helix in E3
1 to have a

lightlike slope axis. Also, we give the parametric equations of a general helix with lightlike slope axis.
According to the causal character of the curve α (s), we have the following cases.
Case 1. Let α(s) be a spacelike curve. According to the causal character of principal normal vector field N,

we have the following subcases.
Case 1.1. Let α(s) be a spacelike curve in E3

1 with a spacelike principal normal vector field N.
In the following theorem, the necessary and sufficient conditions for a spacelike general helix with

spacelike principal normal to have lightlike slope axis are given.

Theorem 3.1. Let α(s) be a unit speed spacelike general helix in E3
1 with a spacelike principal normal N and the

curvature functions k1(s), k2(s). The slope axis of α(s) is a constant lightlike vector if and only if |k1(s)| = |k2(s)| .

Proof. Let α (s) be a spacelike general helix in E3
1 with a spacelike principal normal vector field N and the

curvature functions k1(s), k2(s). We assume that α(s) has constant lightlike slope axis U given by

U = a(s)T(s) + b(s)N(s) + c(s)B(s), (4)

where a(s) = 1(U,T(s)), b(s) = 1(U,N(s)) and c(s) = −1(U,B(s)). Since α (s) is a general helix, we have

1(U,T(s)) = a(s) = a (constant). (5)

Here we see that a , 0. Differentiating (4) with respect to s and using (1) for ε0 = 1, ε1 = 1 and ε2 = −1, we
easily obtain

b(s) = 1(U,N(s)) = 0, c′ = 0, and ak1(s) + c(s)k2(s) = 0. (6)

By using (6) , from (4) , we get

U = aT(s) −
ak1(s)
k2(s)

B(s). (7)
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Since U is a lightlike vector, we have 1(U,U) = 0 which implies that

|k1(s)| = |k2(s)| . (8)

Conversely, let α (s) be a spacelike general helix in E3
1 with a spacelike principal normal vector field N and

the curvature functions k1(s), k2(s). By using |k1(s)| = |k2(s)| in (7), we find that the slope axis is a lightlike
vector. This completes the proof of the theorem.

In the following theorem, we give the parametric equation of a spacelike general helix with a spacelike
principal normal vector field N and a constant lightlike slope axis.

Theorem 3.2. Let α (s) be a unit speed spacelike general helix in E3
1 with a spacelike principal normal N and a

constant lightlike slope axis U. The parametric equation of α(s) = (α1(s), α2(s), α2(s)) is given by

α1(s) =

∫
σ(s)ds + c1,

α2(s) = cosϕ
∫
σ(s)ds + sλ cosϕ − sinϕ

∫ √
1 − λ2 − 2λσ(s)ds + c2,

α3(s) = sinϕ
∫
σ(s)ds + sλ sinϕ + cosϕ

∫ √
1 − λ2 − 2λσ(s)ds + c3,

and the lightlike slope axis is given by U = (u1,u1 cosϕ,u1 sinϕ) where c0, c1, c2, c3, ϕ ∈ R,λ ∈ R/ {0} , ε0 =
±1 and

σ(s) =
−1
2λ

(ε0

∫
k1(s)ds + λc0

)2

+ λ2
− 1

 .
Proof. Let α(s) = (α1(s), α2(s), α3(s)) be a unit speed spacelike general helix in E3

1 with a spacelike principal
normal vector field N and the curvature functions k1(s) = 1, k2(s). We assume that α (s) has constant lightlike
slope axis U = (u1,u2,u3). Since α(s) is a unit speed curve, then its tangent vector field T is given by

T(s) = α′(s) =
(
α′1(s), α′2(s), α′3(s)

)
, (9)

Since 1 (T (s) ,T (s)) = 1, we have

−

(
α′1(s)

)2
+

(
α′2(s)

)2
+

(
α′3(s)

)2
= 1. (10)

Putting σ(s) = α′1(s) in (10), we get

α′2(s) =
√

1 + σ2(s) cosθ, (11)

α′3(s) =
√

1 + σ2(s) sinθ

where θ = θ(s). On the other hand, since U is a constant lightlike vector, we have −u2
1 + u2

2 + u3
3 = 0, which

implies that

u2 = u1 cosϕ, (12)
u3 = u1 sinϕ

where ϕ ∈ R. Since α(s) is a general helix, we have

1(U,T) = −u1α
′

1(s) + u2α
′

2(s) + u3α
′

3(s) = c (13)
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where c ∈ R/ {0}. By using (11) and (12) in (13), we find

cos
(
θ − ϕ

)
=

u1σ(s) + c

u1
√

1 + σ2(s)
,

Putting λ = c/u1, we get

cos
(
θ − ϕ

)
=

σ(s) + λ√
1 + σ2(s)

(14)

and

sin
(
θ − ϕ

)
=

√
1 − λ2 − 2λσ(s)√

1 + σ2(s)
. (15)

Considering (14) and (15) together, we obtain

cosθ =
σ(s) + λ√
1 + σ2(s)

cosϕ −

√
1 − λ2 − 2λσ(s)√

1 + σ2(s)
sinϕ, (16)

sinθ =
σ(s) + λ√
1 + σ2(s)

sinϕ +

√
1 − λ2 − 2λσ(s)√

1 + σ2(s)
cosϕ.

Thus we get

α′1(s) = σ(s),

α′2(s) = (σ(s) + λ) cosϕ −
(√

1 − λ2 − 2λσ(s)
)

sinϕ, (17)

α′3(s) = (σ(s) + λ) sinϕ +
(√

1 − λ2 − 2λσ(s)
)

cosϕ.

We know that k1(s) = ‖α′′(s)‖ . If we use the equalities given in (17), we obtain

k2
1(s) =

(σ′(s))2 λ2

1 − λ2 − 2λσ(s)

and

ε0
k1(s)
λ

=
σ′(s)√

1 − λ2 − 2λσ(s)
(18)

where ε0 = ±1. By integrating (18), we find

σ(s) =
−1
2λ

(ε0

∫
k1(s)ds + λc0

)2

+ λ2
− 1


where c0 ∈ R. By integrating (17), we find

α1(s) =

∫
σ(s)ds + c1,

α2(s) = cosϕ
∫
σ(s)ds + sλ cosϕ − sinϕ

∫ √
1 − λ2 − 2λσ(s)ds + c2,

α3(s) = sinϕ
∫
σ(s)ds + sλ sinϕ + cosϕ

∫ √
1 − λ2 − 2λσ(s)ds + c3,

where c0, c1, c2, c3, ϕ ∈ R, λ ∈ R/ {0}. This completes the proof of the theorem.
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Case 1.2. Let α(s) be a spacelike curve in E3
1 with a timelike principal normal vector field N. Then we

give the following theorem:

Theorem 3.3. There exists no unit speed spacelike general helix in E3
1 with a timelike principal normal N and a

constant lightlike slope axis.

Proof. Assume that α(s) = (α1(s), α2(s), α3(s)) is a unit speed spacelike general helix in E3
1 with a timelike

principal normal vector field N and a constant lightlike slope axis U = (u1,u2,u3). Then U is given by

U = a(s)T(s) + b(s)N(s) + c(s)B(s) (19)

where a(s) = 1(U,T(s)), b(s) = −1(U,N(s)) and c(s) = 1(U,B(s)). Since α(s) is a general helix, we have

1(U,T(s)) = a(s) = a (constant , 0). (20)

Differentiating (19) with respect to s and using (1) for ε0 = 1, ε1 = −1 and ε2 = 1, we easily obtain

b(s) = −1(U,N(s)) = 0, c′ = 0, and a(s)k1(s) + c(s)k2(s) = 0. (21)

By using (21) , from 19, we get

U = a(s)T(s) −
ak1(s)
k2(s)

B(s).

Since U is a null vector, we have 1(U,U) = 0. This gives(
k1(s)
k2(s)

)2

= −1,

which is contradiction. This completes the proof of the theorem.

Case 1.3. Let α(s) be a spacelike curve inE3
1 with a lightlike principal normal vector field N (these curves

are also known as pseudo null curves). Then we give the following theorem:

Theorem 3.4. Let α(s) be a unit speed pseudo null general helix in E3
1 with the curvature functions k1(s) = 1,

k2(s). The slope axis of α(s) is a lightlike vector if and only if the binormal component of the slope axis is given by
1(U,B) = c0e−

∫
k2(s)ds, c0 ∈ R/ {0} .

Proof. Let α (s) be a unit speed pseudo null general helix in E3
1 with the curvature functions k1(s) = 1, k2(s).

We assume that α (s) has constant lightlike slope axis U given by

U = a(s)T(s) + b(s)N(s) + c(s)B(s), (22)

where a(s) = 1(U,T(s)), b(s) = 1(U,B(s)) and c(s) = 1(U,N(s)). Since α is a helix, we have

1(U,T(s)) = a(s) = a (constant). (23)

Differentiating (23) with respect to s and using (2), we easily obtain c(s) = 1(U,N(s)) = 0.Also U is a lightlike
vector, we get ‖U‖ = a = 0. Thus the constant null slope axis U has the following form:

U = b(s)N(s). (24)

Differentiating (24) with respect to s and using (2), we obtain that
db(s)

ds
+ k2(s)b(s) = 0. Thus we get

b(s) = 1(U,B) = c0e−
∫

k2(s)ds, c0 ∈ R/ {0} .

The converse of the proof is clear.
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In the following theorem, we obtain the parametric equation of a pseudo null general helix with a
constant lightlike slope axis.

Theorem 3.5. Let α (s) be a unit speed pseudo null general helix in E3
1 with the curvature functions k1(s) = 1, k2(s)

and a constant lightlike slope axis. The parametric equation of α(s) = (α1(s), α2(s), α2(s)) is given by

α1(s) =

∫
σ (s) ds + c1,

α2(s) = cosϕ
∫
σ (s) ds −

(
sinϕ

)
s + c2, (25)

α3(s) = sinϕ
∫
σ (s) ds +

(
cosϕ

)
s + c3

where σ (s) is a differentiable function, ϕ, c1, c2, c3 ∈ R and the lightlike slope axis U = (1, cosϕ, sinϕ).

Proof. Let α(s) = (α1(s), α2(s), α3(s)) be a unit speed pseudo null general helix in E3
1 with the curvature

functions k1(s) = 1, k2(s). We assume that α (s) has constant lightlike slope axis U = (u1,u2,u3). Then we find

−

(
α′1(s)

)2
+

(
α′2(s)

)2
+

(
α′3(s)

)2
= 1. (26)

and

−u2
1 + u2

2 + u3
3 = 0. (27)

Putting σ(s) = α′1(s) in (26), we get

α′2(s) =
√

1 + σ2 (s) cosθ (s) ,

α′3(s) =
√

1 + σ2 (s) sinθ (s) ,

where θ (s) is a differentiable function. From (27), we have

u2 = u1 cosϕ,
u3 = u1 sinϕ

where ϕ ∈ R. Since 1 (U,T) = 0, then

−u1α
′

1(s) + u2α
′

2(s) + u3α
′

3(s) = 0

which implies that

cos
(
θ (s) − ϕ

)
=

σ (s)√
1 + σ2 (s)

,

sin
(
θ (s) − ϕ

)
=

1√
1 + σ2 (s)

.

From above, we find

cosθ (s) =
σ (s)√

1 + σ2 (s)
cosϕ −

1√
1 + σ2 (s)

sinϕ,

sinθ (s) =
σ (s)√

1 + σ2 (s)
sinϕ +

1√
1 + σ2 (s)

cosϕ.
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Then

α′1(s) = σ (s) ,
α′2(s) = σ (s) cosϕ − sinϕ,
α′3(s) = σ (s) sinϕ + cosϕ.

Differentiating above equations, we obtain

α′′1 (s) = σ′ (s) ,
α′′2 (s) = σ′ (s) cosϕ,
α′′3 (s) = σ′ (s) sinϕ,

which implies that−
(
α′′1 (s)

)2
+
(
α′′2 (s)

)2
+
(
α′′3 (s)

)2
= 0. Then the parametric equation of a pseudo null general

helix with a lightlike slope axis can be given as

α1(s) =

∫
σ (s) ds + c1,

α2(s) = cosϕ
∫
σ (s) ds −

(
sinϕ

)
s + c2,

α3(s) = sinϕ
∫
σ (s) ds +

(
cosϕ

)
s + c3

where c1, c2, c3 ∈ R. Also the lightlike slope axis U = (1, cosϕ, sinϕ).

Corollary 3.6. Let α (s) = (α1(s), α2(s), α2(s)) be a pseudo null general helix in E3
1 parametrized by (25) . Then

k2 (s) =
σ′′ (s)
σ′ (s)

.

Case 2. Let α(s) be a timelike curve in E3
1. Then we give the following theorems without their proofs

since they are similar to above proofs.

Theorem 3.7. Let α(s) be a unit speed timelike general helix in E3
1 with the curvature functions k1(s), k2(s). The

slope axis of α is a lightlike vector if and only if |k1| = |k2| .

Theorem 3.8. Let α(s) be a unit speed timelike general helix in E3
1 with the curvature functions k1(s), k2(s) and a

constant lightlike slope axis. The parametric equation of α (s) = (α1(s), α2(s), α2(s)) is given by

α1(s) =

∫
σ(s)ds + c1,

α2(s) = cosϕ
∫
σ(s)ds + sλ cosϕ − sinϕ

∫ √
−1 − λ2 − 2λσ(s)ds + c2,

α3(s) = sinϕ
∫
σ(s)ds + sλ sinϕ + cosϕ

∫ √
−1 − λ2 − 2λσ(s)ds + c3,

and the constant lightlike slope axis U is given by U = (1, cosϕ, sinϕ) where

σ(s) =
−1
2λ

(ε0

∫
k1(s)ds + λc0

)2

+ λ2 + 1

 ,

and c0, c1, c2, c3, ϕ ∈ R, λ ∈ R/ {0} .

Case 3. Let α(s) be a Cartan null curve in E3
1. Then we give the following theorems:
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Theorem 3.9. Let α(s) be a null Cartan general helix in E3
1 parameterized by pseudo arc s with the curvature

functions k1 = 1 and k2. The slope axis of α (s) is a lightlike vector if and only if k2 = 0.

Therefore, the slope axis of a null Cartan general helix is a lightlike vector if and only if it is the
generalized null cubic.

Theorem 3.10. Let α(s) be a null Cartan general helix in E3
1 parameterized by pseudo arc s with a constant lightlike

slope axis. The parametric equation of α(s) = (α1(s), α2(s), α2(s)) is given by

α1(s) = −
c

2u1
s −

u1

6c
s3 + c1,

α2(s) =
( c

2u1
s −

u1

6c
s3
)

cosϕ +
m
2

s2 sinϕ + c2,

α3(s) =
( c

2u1
s −

u1

6c
s3
)

sinϕ −
m
2

s2 cosϕ + c3

and the lightlike slope axis U is given by U = (u1,u1 cosϕ,u1 sinϕ) where c1, c2, c3, c, u1 ∈ R and m = |cu1| /cu1.

Proof. Let α(s) = (α1(s), α2(s), α3(s)) be a null Cartan general helix in E3
1 parameterized by pseudo arc s with

the curvature functions k1(s) = 1, k2(s). We assume that α (s) has constant lightlike slope axis U = (u1,u2,u3).
Then we find

−

(
α′1(s)

)2
+

(
α′2(s)

)2
+

(
α′3(s)

)2
= 0 (28)

and

−u2
1 + u2

2 + u3
3 = 0. (29)

Putting σ(s) = α′1(s) in (28), we get

α′2(s) = σ(s) cosθ (s) ,
α′3(s) = σ(s) sinθ (s) ,

where θ (s) is a differentiable function. From (29), we have

u2 = u1 cosϕ,
u3 = u1 sinϕ

where ϕ ∈ R. Since 1 (U,T) = c (constant), then

−u1α
′

1(s) + u2α
′

2(s) + u3α
′

3(s) = c

which implies that

cos
(
θ (s) − ϕ

)
=

c + σ (s) u1

σ (s) u1
,

sin
(
θ (s) − ϕ

)
=

m1
√
−2cu1σ (s) − c2

σ (s) u1

where m1 = |σ (s) u1| /σ (s) u1. From above, we find

cosθ (s) =
c + σ (s) u1

σ (s) u1
cosϕ −

m1
√
−2cu1σ (s) − c2

σ (s) u1
sinϕ,

sinθ (s) =
c + σ (s) u1

σ (s) u1
sinϕ +

m1
√
−2cu1σ (s) − c2

σ (s) u1
cosϕ.



Ç. Camcı, K. İlarslan, A. Uçum / Filomat 32:2 (2018), 355–367 364

Then

α′1(s) = σ (s) ,

α′2(s) =
c + σ (s) u1

u1
cosϕ −

m1
√
−2cu1σ (s) − c2

u1
sinϕ,

α′3(s) =
c + σ (s) u1

u1
sinϕ +

m1
√
−2cu1σ (s) − c2

u1
cosϕ.

Differentiating above equations, we obtain

α′′1 (s) = σ′ (s) ,

α′′2 (s) = σ′ (s) cosϕ +
cm1σ′ (s)√
−2cu1σ (s) − c2

sinϕ,

α′′3 (s) = σ′ (s) sinϕ −
cm1σ′ (s)√
−2cu1σ (s) − c2

cosϕ.

Since −
(
α′′1 (s)

)2
+

(
α′′2 (s)

)2
+

(
α′′3 (s)

)2
= 1, we find

σ (s) = −
c2 + u2

1s2

2cu1
.

Then the parametric equation of a null helix with a constant lightlike slope axis can be given as

α1(s) = −
c

2u1
s −

u1

6c
s3 + c1,

α2(s) =
( c

2u1
s −

u1

6c
s3
)

cosϕ +
m
2

s2 sinϕ + c2,

α3(s) =
( c

2u1
s −

u1

6c
s3
)

sinϕ −
m
2

s2 cosϕ + c3

where m = |cu1| /cu1, c1, c2, c3 ∈ R. Also the lightlike slope axis U = (1, cosϕ, sinϕ).

4. Relation Between Biharmonic Curves and Helices with Lightlike Slope Axis

It is well-known that a unit speed curve γ : I→M in a Lorentz 3-manifold M is said to be biharmonic if
∆H = 0, where H is the mean curvature vector field. If M is the semi-Euclidean 3-space, then γ is biharmonic
if and only if ∆∆γ = 0 [19]. Chen and Ishikawa [9] classified biharmonic curves in semi-Euclidean space
En

v and they showed that every biharmonic curve lies in a three dimensional totally geodesic subspace. All
kinds of biharmonic curves in Minkowski 3-space were classified by Inoguchi [19, 20]. He has shown that
every biharmonic curve in E3

1 is a helix whose curvature k1 and torsion k2 satisfy k2
1 = k2

2.

Corollary 4.1. [19, 20] Let γ be a Frenet curve in a Lorentz 3-manifold. Then, γ is a nongeodesic biharmonic curve
if and only if one of the following holds:
(i) γ is a spacelike helix with a spacelike principal normal such that k1 = ±k2(=constant).
(ii) γ is a spacelike helix with a lightlike principal normal such that k′2 + k2

2 = 0.
(iii) γ is a timelike helix such that k1 = ±k2(=constant).

In this section, we show that there is an interesting relation between biharmonic curves and helix with
lightlike axis. We give the following corollaries to show the relations.

Corollary 4.2. Let α be a spacelike helix inE3
1 with a spacelike principal normal. Then the slope axis of α is a lightlike

vector if and only if α is a biharmonic curve in E3
1.
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Proof. By assuming that k1 and k2 are constants, from theorem 3.1 and corollary 4.1, the proof is clear.

Corollary 4.3. Let α be a timelike helix in E3
1. Then the slope axis of α is a lightlike vector if and only if α is a

biharmonic curve in E3
1.

Proof. By assuming that k1 and k2 are constants, from theorem 3.7 and corollary 4.1, the proof is clear.

In the following corollary, we obtain the parametric equation of a bihormanic helix with lightlike slope
axis

Corollary 4.4. Letα (s) = (α1(s), α2(s), α2(s)) be a pseudo null helix inE3
1 parametrized by (25) .Thenα is biharmonic

if and only if the function σ (s) in theorem 3.5 satisfies σ (s) = As2 +Bs+C where A,B,C ∈ R and (A,B,C) , (0, 0, 0) .

Proof. α is biharmonic if and only if k′2 (s) + (k2 (s))2 = 0 if and only if σ (s) = As2 + Bs + C where A,B,C ∈ R
and (A,B,C) , (0, 0, 0) .

5. Examples

In this section, we give some helix examples for the above theorems.

Example 5.1. Taking c0 = c1 = c2 = c3 = 0, ϕ = 0, k1(s) = s and ε0 = 1, λ = 1 in theorem 3.2, we find the
parametric equation of the spacelike general helix with a spacelike principal normal and a lightlike slope axis as follows

γ1(s) =

(
−s5

40
,
−s5

40
+ s,

s3

6

)
.

It is easily seen that the second curvature of γ1(s) is k2(s) = s and its constant lightlike axis is U = (1, 1, 0).

Example 5.2. If we take c1 = c2 = c3 = 0, σ(s) = cos s and ϕ = 0 in theorem 3.5, we find the parametric equation of
pseudo null helix with a lightlike slope axis U = (1, 1, 0) as follows

γ2(s) = (sin s, sin s, s) .

It is easily seen that the second curvature of γ2(s) is k2(s) = cot s.
If we take c1 = c2 = c3 = 0, σ(s) = s2 and ϕ = π/4 in theorem 3.5, we find the parametric equation of pseudo null
helix with a lightlike slope axis U = (1, 1

√
2
, 1
√

2
) as follows

γ3(s) =

(
s3

3
,

1
√

2

(
s3

3
− s

)
,

1
√

2

(
s3

3
+ s

))
.

It is easily seen that k2 = 1/s and k′2 +k2
2 = 0 which implies that γ3(s) is a biharmonic pseudo null helix with a lightlike

slope axis.

Example 5.3. Putting c0 = c1 = c2 = c3 = 0, ϕ = 0, k1(s) = s and ε0 = 1, λ = 1 in theorem 3.7, we find the
parametric equation of the timelike general helix with a lightlike slope axis as follows

γ4(s) =

(
−s5

40
− s,
−s5

40
,

s3

6

)
.

It is easily seen that the second curvature of γ4(s) is k2(s) = s and its constant lightlike axis is U = (1, 1, 0).

Example 5.4. Taking ϕ = π
2 , c = 2

3 ,u1 = 1 and c1 = c2 = c3 = 0 in theorem 3.9, we find the parametric equation of
the null helix with lightlike slope axis as follows

γ5(s) =

(
−

s3

4
−

s
3
,

s2

2
,−

s3

4
+

s
3

)
.

It is easily seen that the second curvature of γ5(s) is k2(s) = 0 and its constant lightlike axis is U = (1, 0, 1).
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Figure 1: The graphic is for the curve γ1(s).

Figure 2: The graphic on the left is for the curve γ2(s) and the graphic on the right is for the curve γ3(s).

Figure 3: The graphic on the left is for the curve γ4(s) and the graphic on the right is for the curve γ5(s).
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[2] H. Balgetir, M. Bektaş, M. Ergüt, On a characterization of null helix, Bull. Inst. Math. Acad. Sinica 29(1) (2001) 71–78.
[3] M. Barros, A. Ferrández, A conformal variational approach for helices in nature, J. Math. Phys. 50(10) (2009) 1–20.
[4] M. Barros, A. Ferrández, P. Lucas, M. A. Meroño, General helices in the three-dimensional Lorentzian space forms, Rocky

Mountain J. Math. 31(2) (2001) 373–388.
[5] M. Barros, General helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125(5) (1997) 1503–1509.
[6] W. B. Bonnor, Null curves in a Minkowski space-time, Tensor 20 (1969) 229–242.
[7] W. B. Bonnor, Curves with null normals in Minkowski space-time, A random walk in relativity and cosmology, Wiley Easten

Limitid (1985) 33–47.
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