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Abstract. In this paper, we present some fixed point theorems for multivalued mappings of Feng-Liu type on complete M-
metric spaces. Some illustrative examples are also provided to support our main results.
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1. INTRODUCTION-PRELIMINARIES

Let (X ,d) be a metric space. Denote by P(X), the family of all nonempty subsets of X , C(X) the
family of all nonempty closed subsets of X , CB(X) the family of all nonempty closed and bounded
subsets of X . For A,B ∈C(X), define

H(A,B) = max{sup
xεA

d(x,B),sup
yεB

d(y,A)}.

Then H is called the generalized Pompeiu-Hausdorff distance on C(X). It is known that H is a metric on
CB(X); see [1, 2] and the references therein.

Let T : X → CB(X) be a multivalued mapping. Then T is called a multivalued contraction if there
exists λ ∈ (0,1) such that

H(T x,Ty)≤ λd(x,y)

for all x,y∈ X . In 1969, Nadler [3] proved that if (X ,d) is a complete metric space and T is a multivalued
contraction mapping, then T has a fixed point in X , that is, there exists z ∈ X such that z ∈ T z. This is
the first fixed point result for multivalued mappings on metric spaces. Following Nadler, many authors
have studied and developed fixed point theory for multivalued mappings on both complete metric spaces
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and some other abstract spaces; see, for examples, [4, 5, 6, 7, 8] and the references therein. In particular,
Feng and Liu [9] generalized the Nadler’s result without using the Pompeiu-Hausdorff metric as follows
(moreover the mapping T is a C(X) valued mapping in Feng-Liu’s result).

Theorem 1.1. Let (X ,d) be a complete metric space and T : X →C(X) be a multivalued mapping. If
for all x ∈ X there exists y ∈ Ix

b satisfying

d(y,Ty)≤ cd(x,y),

where

Ix
b = {y ∈ T x : bd(x,y)≤ d(x,T x)} .

Then T has a fixed point in X provided that 0 < c < b < 1 and the function f (x) = d(x,T x) is lower
semicontinuous.

On the other hand, in 1994, Matthews [10] introduced the notion of the partial metric space, which is
more general than the metric space, and presented a fundamental fixed point theorem on partial metric
spaces. Subsequently, many authors studied fixed point problems for both single valued and multivalued
mappings on partial metric spaces; [11, 12, 13, 14, 15] and the references therein.

Recently, Asadi, Karapınar and Salimi [16] extended the concept of partial metric spaces to M-metric
spaces. They obtained some fixed point theorems for single valued mappings on M-metric spaces.

In this paper, we discuss the topological structure of M-metric spaces and take into account a family
of all nonempty closed subsets of a M-metric space. We also obtain some fixed point theorems for
multivalued mappings of Feng-Liu type on M-metric spaces.

Now, we recall the concepts of the M-metric on a nonempty set X and their properties. For a function
m : X×X → [0,∞), as an abbreviation, we will represent the following

mxy = min{m(x,x),m(y,y)},

Mxy = max{m(x,x),m(y,y)}.

Definition 1.2 ([16]). Let X be a nonempty set. A function m : X ×X → [0,∞) is called a M-metric if
the following conditions are satisfied, for all x,y,z ∈ X

m1) m(x,x) = m(y,y) = m(x,y)⇔ x = y,
m2) mxy ≤ m(x,y),
m3) m(x,y) = m(y,x),
m4) m(x,y)−mxy ≤ m(x,z)−mxz +m(z,y)−mzy.

Then (X ,m) is called a M-metric space.

It is clear that every standard metric and every partial metric on a nonempty set X is also a M-metric.
Some examples, which show that the converse may not be true, can be found in [16].

After that, Asadi, Karapınar and Salimi [16] presented the following three fundamental concepts of
contractive type fixed point theory on M-metric spaces. Let (X ,m) be a M-metric space, and let {xn} be
a sequence in X and x ∈ X . Then

(1) {xn} is said to be M-convergent to x if and only if

lim
n→∞

(m(xn,x)−mxnx) = 0.
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(2) {xn} is said to be an M-Cauchy sequence if

lim
n,m→∞

[m(xn,xm)−mxnxm ] and lim
n→∞

[Mxnxm−mxnxm ]

exist and finite.
(3) (X ,m) is said to be M-complete if every M-Cauchy sequence M-converges to a point x ∈ X such

that
lim
n→∞

[m(xn,x)−mxnx] = 0 and lim
n→∞

[Mxnx−mxnx] = 0.

2. MAIN RESULTS

Let (X ,m) be a M-metric space and let U ⊆ X . We say that U is sequentially open if every sequence
{xn} in X such that limn→∞ m(xn,x) = 0, ∀x ∈U is eventually in U , that is, U is sequentially open if and
only if for all x ∈U and for all {xn} in X such that limn→∞ m(xn,x) = 0, then there exists n0 ∈ N such
that xn ∈U for all n≥ n0. Let τs be the family of all sequentially open subsets of X . We can show that τs

is a topology on X . The closure of a subset A of X with respect to τs is denoted by As.
On the other hand, the open ball with centered x ∈ X and radius ε > 0 in a M-metric space is denoted

by
B(x,ε) = {y ∈ X : m(x,y)< mxy + ε} .

We call a subset U of X is open if and only if for every x ∈U there exists ε > 0 such that B(x,ε)⊆U.

In this case, the family of all open subsets of X is another topology on X which we will represent it
as τm. The closure of a subset A of X with respect to τm is denoted by Am. It is clear that As ⊆ Am.
Although every partial metric p on a nonempty set X generates a T0 topology on X , the topology τm

which is generated by a M-metric m on X may not be T0 topology. For example, let X = [0,1] and
m(x,y) = min{x,y}. Then m is a M-metric on X . In this case, for every ε > 0, we have

B(x,ε) = {y ∈ X : m(x,y)< mxy + ε}

= {y ∈ X : 0 < ε}

= X

for all x ∈ X . Therefore τm = { /0,X}, which is not T0 topology.
Now, we claim that τm ⊆ τs but the converse is not true. Let U ∈ τm, x ∈U and {xn} ⊆ X such that

limn→∞ m(xn,x) = 0. Since U ∈ τm and x ∈U , one sees that there exists ε > 0 such that B(x,ε)⊆U. On
the other hand, since limn→∞ m(xn,x) = 0, there exists n0 ∈ N such that m(xn,x) < ε ≤ mxnx + ε for all
n≥ n0. Thus, xn ∈ B(x,ε)⊆U for all n≥ n0. It follows that U ∈ τs.

Now, we give an example which shows that τs * τm.

Example 2.1. Let X = {0}∪ [1,∞) and define m(x,y) = x+y
2 . Then (X ,m) is a M-metric space. It is clear

that every single point subset of X is sequentially open. Therefore τs is a discrete topology on X . Now,
letting x ∈ X and ε > 0, one sees that B(x,ε) = (x−2ε,x+2ε)∩X . Thus for x 6= 0 the single point {x}
is not open with respect to τm.

Remark 2.2. We can show that the M-convergence of a sequence on a M-metric space coincides with
the convergence with respect to τm. Indeed, let (X ,m) be a M-metric space and let {xn} be a sequence in
X . Suppose that the sequence {xn} M-converges to x ∈ X . Then limn→∞(m(xn,x)−mxnx) = 0. Now, we
take U ∈ τm such that x ∈U. Since U ∈ τm and x ∈U, there exists ε > 0 such that B(x,ε)⊆U. Because



4 I. ALTUN, H. SAHIN, D. TURKOGLU

limn→∞(m(xn,x)−mxnx) = 0, there exists n0 ∈ N such that m(xn,x)−mxnx < ε for all n ≥ n0. It follows
that xn ∈ B(x,ε) ⊆U for all n ≥ n0. Hence, the sequence {xn} converges to x with respect to τm on X .
Similarly, it can be shown that if the sequence {xn} converges to x respect to the topology τm then it
M-converges to x.

Now, let (X ,m) be a M-metric space. Define the class of all nonempty closed subsets of X with respect
to τm by Cm(X) and the class of all nonempty closed subsets of X with respect to τs by Cs(X). It is clear
that Cm(X) ⊆Cs(X). Let T : X →Cs(X) be a multi-valued mapping. For a positive constant b ∈ (0,1)
and x ∈ X , we define a set

T x
b (m) = {y ∈ T x : bm(x,y)≤ m(x,T x)} ,

where
m(x,T x) = inf{m(x,y) : y ∈ T x}.

If m(x,T x)> 0, then T x
b (m) is nonempty for all b ∈ (0,1). However if m(x,T x) = 0, then T x

b (m) can be
empty.

Example 2.3. Let X = {−1,−1+ 1
n : n > 1,n ∈ N} and define a M-metric on X as

m(x,y) =

{
1, x = y =−1,

|x− y| , otherwise.

Let T : X → Cs(X) as T x = X . Now, for x = −1, we have m(x,T x) = 0, m(x,y) > 0 for all y ∈ T x. It
follows that T x

b (m) = /0, ∀b ∈ (0,1).

Proposition 2.4. Let (X ,m) be a M-metric space. Let A⊆ X and x∈ X. If m(x,A) = 0, then x∈ As ⊆ Am.

Proof. Let m(x,A) = 0 and U ∈ τs such that x ∈ U . Then for all n ∈ N, there exists xn ∈ A such that
m(x,xn) <

1
n . In this case, since limn→∞ m(xn,x) = 0, U ∈ τs and x ∈U , there exists n0 ∈ N such that

xn ∈U for all n≥ n0. Thus xn ∈ A∩U for all n≥ n0. Hence, x ∈ As. �

Remark 2.5. Note that, if x ∈ Am
, then m(x,A) may not be 0. For example, let (X ,m) be a M-metric

space as in Example 2.1, A = [1,2) and x = 1. Then x ∈ Am, but m(x,A)> 0.

Proposition 2.6. Let (X ,m) be a M-metric space, A⊆ X and x ∈ X. Then, inf{m(x,y)−mxy : y ∈ A}= 0
if and only if x ∈ Am.

Proof. Let inf{m(x,y)−mxy : y ∈ A} = 0 and r > 0. From the definition of the infimum, there exists
yr ∈ A such that m(x,yr)−mxyr < r. In this case yr ∈ B(x,r). So yr ∈ A∩B(x,r). Therefore x ∈ Am. Now,
let x ∈ Am. There exists yn ∈ A such that m(x,yn)−mxyn <

1
n for all n ∈ N. Since inf{m(x,y)−mxy : y ∈

A} ≤ m(x,yn)−mxyn <
1
n for all n ∈ N, we get that inf{m(x,y)−mxy : y ∈ A}= 0. �

Now, we are in a position to give our main result.

Theorem 2.7. Let (X ,m) be a M-complete M-metric space and let T : X → Cm(X) be a multivalued
map. If there exists a constant c ∈ (0,1) such that for any x ∈ X with m(x,T x) > 0, there is y ∈ T x

b (m)

satisfying
m(y,Ty)≤ cm(x,y).

Then T has a fixed point in X provided that c < b and the function f (x) = m(x,T x) is lower semicontin-
uous with respect to τm.
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Proof. Let x0 ∈ X be an arbitrary point. If m(x0,T x0) = 0, then x0 ∈ T x0
m
= T x0, that is, x0 is a fixed

point of T . Assume that m(x0,T x0)> 0. Since T x0
b (m) is nonempty, there exist x1 ∈ T x0

b (m) such that

m(x1,T x1)≤ cm(x0,x1).

If m(x1,T x1) = 0, then x1 is a fixed point of T . Assume that m(x1,T x1) > 0. Then, there exists x2 ∈
T x1

b (m) such that

m(x2,T x2)≤ cm(x1,x2).

Continuing this process, we can generate a sequence {xn} in X such that m(xn,T xn)> 0, xn+1 ∈ T xn
b (m)

and

m(xn+1,T xn+1)≤ cm(xn,xn+1). (2.1)

for all n ∈ N. Since xn+1 ∈ T xn
b (m), we have

bm(xn,xn+1)≤ m(xn,T xn). (2.2)

for all n ∈ N. From (2.1) and (2.2), we get

m(xn,T xn)≤ (
c
b
)nm(x0,T x0) (2.3)

and

m(xn,xn+1)≤ (
c
b
)nm(x0,x1) (2.4)

for all n ∈ N. Furthermore, from (2.3) and (2.4), we get

lim
n→∞

m(xn,T xn) = lim
n→∞

m(xn,xn+1) = 0.

For m,n ∈ N with m > n, we have

m(xn,xm)−mxnxm ≤ (m(xn,xn+1)−mxnxn+1)+(m(xn+1,xm)−mxn+1xm)

≤ (m(xn,xn+1)−mxnxn+1)+(m(xn+1,xn+2)−mn+1xn+2)

+(m(xn+2,xm)−mxn+2xm)

...

≤ (m(xn,xn+1)−mxnxn+1)+ · · ·+(m(xm−1,xm)−mxm−1xm)

≤ m(xn,xn+1)+ · · ·+m(xm−1,xm)

≤ (
c
b
)nm(x0,x1)+ · · ·+(

c
b
)m−1m(x0,x1)

≤
( c

b)
n

1− c
b

m(x0,x1).

Since c < b, we get

lim
n,m→∞

(m(xn,xm)−mxnxm) = 0. (2.5)

On the other hand, one has

0≤ lim
n→∞

mxnxn+1 = lim
n→∞

min{m(xn,xn),m(xn+1,xn+1)} ≤ lim
n→∞

m(xn,xn+1) = 0,

which implies that

lim
n,m→∞

(Mxnxm−mxnxm) = 0. (2.6)
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From (2.5) and (2.6), we find that {xn} is a M-Cauchy sequence. Because X is M-complete, one sees
that there exists z ∈ X such that

lim
n→∞

(m(xn,z)−mxnz) = 0,

that is, {xn} converges to z with respect to τm. Now, we show that z is fixed point of T . From (2.1)
and (2.2), we can say that the sequence {m(xn,T xn)} converges 0. Since f (x) = m(x,T x) is lower
semicontinuous with respect to τm, we get

0≤ m(z,T z) = f (z)≤ lim inf
n→∞

f (xn)≤ lim inf
n→∞

m(xn,T xn) = 0,

that is, m(z,T z) = 0. Hence z ∈ T mz = T z. This completes the proof. �

Now we introduce the following definition.

Definition 2.8. Let (X ,m) be a M-metric space. X is said to be S-complete if every M-Cauchy sequence
converges to a point of X with respect to τs.

Remark 2.9. It is clear that every S-complete M-metric space is also M-complete, but the converse may
not be true.

If we consider Cs(X) instead of Cm(X) and the lower semicontinuity with respect to τs instead of the
lower semicontinuity with respect to τm of f (x) we get the following result. Since the class Cs(X) is
larger than Cm(X), the following theorem is significant.

Theorem 2.10. Let (X ,m) be a S-complete M-metric space and let T : X → Cs(X) be a multivalued
map. If there exists a constant c ∈ (0,1) such that for all any x ∈ X with m(x,T x)> 0, one has y ∈ T x

b (m)

satisfying
m(y,Ty)≤ cm(x,y).

Then T has a fixed point in X provided that c < b and the function f (x) = m(x,T x) is lower semicontin-
uous with respect to τs.

Proof. As in the proof of Theorem 2.7, we can get a M-Cauchy sequence {xn} in X . Since X is S-
complete, there exists z ∈ X such that {xn} converges to z with respect to τs. Similarly, from (2.1)
and (2.2), we can say that the sequence {m(xn,T xn)} converges to 0. Since f (x) = m(x,T x) is lower
semicontinuous with respect to τs, we get

0≤ m(z,T z) = f (z)≤ lim inf
n→∞

f (xn)≤ lim inf
n→∞

m(xn,T xn) = 0,

that is, m(z,T z) = 0. Hence z ∈ T sz = T z. This completes the proof. �

Since every metric space and every partial metric space are M-metric space, we can get following
results as corollaries of Theorem 2.7.

Corollary 2.11 (Feng-Liu’s fixed point theorem). Let (X ,d) be a complete metric space and let T : X→
C(X) be a multivalued mapping. If there exist a constant c ∈ (0,1) such that there is y ∈ T x

b (d) satisfying

d(y,Ty)≤ cd(x,y)

for all x ∈ X. Then T has a fixed point in X provided that c < b and the function f (x) = d(x,T x) is lower
semicontinuous.
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Corollary 2.12. Let (X , p) be a complete partial metric space and let T : X →C(X) be a multivalued
mapping. If there exists a constant c ∈ (0,1) such that there is y ∈ T x

b (p) satisfying

p(y,Ty)≤ cp(x,y)

for all x ∈ X. Then T has a fixed point in X provided that c < b and the function f (x) = p(x,T x) is lower
semicontinuous.

Now, we give two examples comparing the above theorems.

Example 2.13. Let X = {0}∪ [1,∞) and m(x,y) = x+y
2 . Then, by taking into account Lemma 2.1 (2) of

[16], we can see that (X ,m) is M-complete M-metric space. Now define T : X →Cm(X) by

T x =

{
{0,1}, x ∈ {0}∪ [1,2],
{ x

2 ,x}, x > 2.

It is clear that f (x) = m(x,T x) is lower semicontinuous with respect to τm, which is usual topology on
X . On the other hand, for all x ∈ X with m(x,T x)> 0, there exists y ∈ T x

0,75(m) such that

m(y,Ty)≤ cm(x,y) with c = 0,5.

Using Theorem 2.7, we find that T has a fixed point in X .
Although Cm(X) ⊆ Cs(X), we can not apply Theorem 2.10 to this example since (X ,m) is not S-

complete. To see this, let us consider the M-Cauchy sequence defined as xn = 1 + 1
n , which is not

convergent with respect to τs.

Example 2.14. Let be X = {0,1}∪{ 1
n : n> 1,n∈N} and m(x,y) =min{x,y}. Then (X ,m) is S-complete

M-metric space. Define a mapping T : X →Cs(X) by

T x =

{
{1

2 ,
1
3}, x = 0,

X , otherwise.

It is clear that f (x) = m(x,T x) is lower semicontinuous with respect to τs. On the other hand, for all
x ∈ X with m(x,T x)> 0 there exists y ∈ T x

0,7(m) such that

m(y,Ty)≤ cm(x,y) with c = 0,25.

Using Theorem 2.10, we find that T has a fixed point in X .
Although S-completeness implies M-completeness, we can not apply Theorem 2.7 to this example

since T is not Cm(X) valued. To see this, let us consider x = 0. Then T x = {1
2 ,

1
3} is not closed with

respect to τm.
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[5] Lj. B. Ćirić, Multi-valued nonlinear contraction mappings, Nonlinear Anal. 71 (2009), 2716-2723.
[6] T. Kamran, Q. Kiran, Fixed point theoremsfor multi-valued mappings obtained by altering distances, Math. Comput.

Modelling, 54 (2011), 2772-2777.



8 I. ALTUN, H. SAHIN, D. TURKOGLU

[7] N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complerte metric spaces, J. Math. Anal.
Appl. 141 (1989),177-188.

[8] S. Reich, , Some problems and results in fixed point theory, Topological Methods in Nonlinear Functional Analysis
(Toronto, Ont., 1982), 179-187, Contemp. Math., 21, Amer. Math. Soc., Providence, RI, 1983.

[9] Y. Feng, S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J.
Math. Anal. Appl. 317 (2006), 103-112.

[10] S.G. Matthews, Partial metric topology. Ann. New York Acad. Sci. 728. Proc. 8th Summer Conference on General Topol-
ogy and Applications pp. 183-197, 1994.

[11] R.P. Agarwal, M. A. Alghamdi, N. Shahzad, Fixed point theory for cyclic generalized contractions in partial metric spaces,
Fixed Point Theory Appl. 2012 (2012), Article ID 40.

[12] M.A. Alghamdi, N. Shahzad, O. Valero, On fixed point theory in partial metric spaces, Fixed Point Theory Appl. 2012
(2012), Article ID 175.

[13] I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topology Appl. 157 (2010), 2778-2785.
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