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Abstract
The current paper introduces a new flexible probability distribution model called transmuted XGamma distribution which 
pullulates from the XGamma distribution and possesses the characteristics of XGamma distribution in special cases. In the 
paper, we obtain the explicit expressions for some important statistical properties of the introduced distribution such as haz-
ard rate and survival functions, mean residual life, moment-generating function, moments, skewness, kurtosis, distribution 
of its order statistics, Lorenz and Bonferroni curves. Besides obtaining the various effective estimators for the parameters 
of the distribution, estimation performances of these estimators are comparatively examined with a series of Monte Carlo 
simulations. Furthermore, to demonstrate the modeling ability of the proposed distribution on real-world phenomena, an 
illustrative example is performed by using an actual data set in connection with the field of the lifetime.
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Introduction

The performances of the statistical analyses of real-world 
phenomena depend on whether the distributions chosen as 
the models are appropriate for the phenomena. Although 
famous distribution families are often used for the modeling 
of a wide range of events, the modeling performances of 
these distribution families may not always reach the desired 
level. In recent two decades, to overcome this problem, many 
researchers have introduced new distribution families for 
optimally modeling of the real-world phenomena by using 
some generalization of the available families or the new dis-
tribution generating methodologies. In the literature, several 
techniques are available for generating a new distribution. 
One of these is the method of quadratic rank transmutation 
map (QRTM) proposed by Shaw and Buckley [1]. The newly 
derived distribution by this method, called transmuted distri-
bution, depends on a baseline distribution. In addition to pos-
sessing the features of baseline distributions, the transmuted 

distributions are always being more flexible than the baseline 
distributions. In the literature, one can find a number of pub-
lished papers showing the importance of the QRTM method 
and derived distributions by this method, see [2–7]. A trans-
muted probability model can be easily derived by applying 
the following definition to an available probability model.

Definition 1  Suppose X be a random variable with cumu-
lative distribution function G(x) and probability density 
function g(x) , and � be a real constant such that |�| ≤ 1 . By 
these notations, the transmuted cdf F(x) corresponding to 
the baseline cdf G(x) is given by

and the corresponding pdf to the transmuted cdf F(x) is

The parameter � is called the transmutation parameter, 
and when � = 0 , the transmuted cdf F and the baseline cdf 
G are the same [1].

Recently, the XGamma distribution is introduced by Sen 
et al. [8] as the probability distribution model with a sin-
gle shape parameter. The XGamma, which has many useful 

(1)F(x) = (1 + �)G(x) − �G(x)2, |�| ≤ 1,

(2)f (x) = g(x)[(1 + �) − 2�G(x)],
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statistical features, is a probability distribution that could 
have the potential use for the modeling of lifetime data from 
a wide range of the field of science. Sen et al. [8] have stud-
ied many useful features of XGamma distribution. Although 
it has nice statistical properties, it is a disadvantage of 
XGamma that the distribution has only one parameter which 
plays a crucial role in determining the various behaviors 
of the distribution. Until today, various attempts have been 
made by several researchers to eliminate this disadvantage 
of the distribution, see [9–14]. However, the XGamma dis-
tribution needs to be improved in an aspect of the ability to 
a model for a wide variety of data types, especially the data 
with the hazard rates in different forms.

The aim of this study is to derive an alternative distribu-
tion for modeling data sets with various hazard rates. In this 
context, we introduce a new probability distribution model 
called the transmuted XGamma (TXG) distribution by fol-
lowing the idea of an extension of the distribution families 
with the QRTM method. The derived distribution has a more 
general form than the XGamma distribution and provides a 
better fit than the XGamma distribution for data sets with 
more various forms of the hazard rates.

The rest of the paper is organized as follows: In “TXG 
distribution” section, the TXG distribution is derived and its 
reliability properties are comprehensively investigated. For 
the moments and moment-based measures of the TXG dis-
tribution, some explicit expressions are given in “Moments 
of the TXG distribution” section. Section “Lorenz and Bon-
ferroni curves” discusses the Lorenz and Bonferroni curves 
of the TXG distribution. The distributions of the order sta-
tistics of the TXG distribution are given in “Order statis-
tics” section. In “Inference” section, the statistical inference 
problem for the TXG distribution is investigated by using the 
maximum likelihood (ML) and least-square (LS) methodolo-
gies. In “Simulation study” section, some numerical studies 
are performed to compare the estimation performances of 
the estimators performed in “Inference” section. To exem-
plify how the TXG distribution works in practice as a model, 
we analyze a real-world dataset in “Data analysis” section. 
Finally, “Conclusion” section concludes the study.

TXG distribution

In this section, we derive the TXG distribution by applying 
Definition 1 to the XGamma distribution as a baseline dis-
tribution. Before progressing to derivation, let us recall the 
pdf and cdf of the XGamma distribution.

The pdf of the XGamma distribution is given by

and the corresponding cdf is given by

(3)g(x;𝜃) =
𝜃2

𝜃 + 1

(
1 +

𝜃x2

2

)
e−𝜃x, x > 0

where 𝜃 > 0 is the shape parameter of the distribution [8]. 
Hence, considering Definition 1, the pdf (3) and cdf (4), the 
TXG distribution is described by the following definition.

Definition 2  If a random variable X has the TXG distribu-
tion with parameters 𝜃 > 0 , and −1 ≤ � ≤ 1 , then its cdf is

and pdf of the TXG is expressed by

As in the XGamma distribution, parameter 𝜃 > 0 controls 
the shape of the distribution. In addition to the role of the 
parameter � in determining the behavior of the distribution, 
parameter � , (|�| ≤ 1) contributes to the flexibility of the 
distribution. In the remainder of the paper, we will use the 
notation X ∼ TXG(�, �) to indicate a random variable X from 
TXG distribution with parameters � and �.

For the TXG distribution, we now derive the main con-
stituent elements of the reliability analysis, such as survival 
function, hazard rate function and mean residual lifetime.

When the random variable X is described as the lifetime 
of a unit, the survival function is a function that gives the 
probability P(X > t) for any certain time t ≥ 0 . It is clear 
from the definition that the survival function is a probability 
computed as S(t) = 1 − F(t) . Thus, the survival function of 
the TXG distribution, S(t) , is expressed as

(4)G(x;𝜃) = 1 −

(
1 + 𝜃 + 𝜃x +

𝜃2x2

2

)
e−𝜃x

𝜃 + 1
, x > 0,

(5)

F(x;𝜃, 𝜆) = (𝜆 + 1)

⎛
⎜⎜⎜⎝
1 −

�
1 + 𝜃 + 𝜃x +

𝜃2x2

2

�
e−𝜃x

𝜃 + 1

⎞
⎟⎟⎟⎠

− 𝜆

⎛
⎜⎜⎜⎝
1 −

�
1 + 𝜃 + 𝜃x +

𝜃2x2

2

�
e−𝜃x

𝜃 + 1

⎞
⎟⎟⎟⎠

2

, x > 0,

(6)

f (x;𝜃, 𝜆)

=

𝜃2
(
1 +

𝜃x2

2

)(
1 + 𝜆 − 2𝜆

(
1 −

e−𝜃x
(
1+𝜃+𝜃x+

𝜃2x2

2

)

𝜃+1

))
e−x𝜃

𝜃 + 1
,

x > 0.

(7)

S(t) = �

⎛⎜⎜⎜⎝
1 −

�
1 + � + �t +

�2t2

2

�
e−�t

� + 1

⎞⎟⎟⎟⎠

2

− (� + 1)

⎛
⎜⎜⎜⎝
1 −

�
1 + � + �t +

�2t2

2

�
e−�t

� + 1

⎞
⎟⎟⎟⎠
+ 1.
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As a second constituent element of the reliability analysis, 
the general form of the hazard rate function, also known as 
failure rate, is defined by

Following the general form of the hazard rate function given 
by Eq. (8), the hazard rate function of the TXG distribution 
can be immediately expressed in a closed form as

Now, we obtain the mean residual life function, m(x),  of 
the TXG distribution. The mean residual life function of a 
continuous random variable is defined by

By considering the survival function of the TXG distribu-
tion given by (7), the mean residual life function of the TXG 
distribution is easily obtained as

Plots of the pdf and hazard rate function of the TXG dis-
tribution for several combinations of the parameter values 
are displayed in Fig. 1 in order to exemplify its distribu-
tional behavior. From the plots, it is lucidly seen that the 
density of TXG distribution is right-skewed and also its 
hazard rate function can be in the different forms such as 
increasing, decreasing–increasing, and decreasing–increas-
ing - decreasing.

(8)h(t) =
f (t)

1 − F(t)
=

f (t)

S(t)
.

(9)h(t) =

�2e−�t)
�
1 +

�t2

2

��
1 + � − 2�

�
1 −

�
1+�+�t+

�2 t2

2

�
e−�t

�+1

��

(� + 1)

⎛
⎜⎜⎝
�

�
1 −

�
1+�+�t+

�2 t2

2

�
e−�t

�+1

�2

− (� + 1)

�
1 −

�
1+�+�t+

�2 t2

2

�
e−�t

�+1

�
+ 1

⎞
⎟⎟⎠

(10)m(x) = E(X − x|X ≥ x) =
1

S(x) �
∞

x

S(t)dt

(11)

m(x) =

2(� + 1)(1 − �)e�x
(
3 + � + 2�x +

�2x2

2

)

�

(
1 + � + �x +

�2x2

2

)(
2�

(
1 + � + �x +

�2x2

2

)
+ 2(� + 1)(1 − �)e�x

)

+
�
(
2�4x4 + �2

(
34x2 + 24x + 8

)
+ �3

(
12x3 + 8x2

)
+ �(50x + 28) + 33

)

8�

(
1 + � + �x +

�2x2

2

)(
2�

(
1 + � + �x +

�2x2

2

)
+ 2(� + 1)(1 − �)e�x

) .

Moments of the TXG distribution

In this section, we derive the some basic statistical measures 
of the TXG distribution such as moments, skewness and 
kurtosis coefficients.

The moment-generating function, MX(t) , following the 
general definition MX(t) = E

(
etX

)
 , is obtained as

The rth non-central moment is obtained for the TXG distri-
bution, using Eq. (6), as follows:

MX(t) = ∫
∞

0

etxf (x, �, �)dx

=
�2

(� + 1)2

{
�2
(
�

(
−

4

(t − 2�)3
+

6

(t − 2�)4

+
1

(t − �)3

)
+

1

(� − t)3

)

+ �

(
�

(
1

(t − �)3
−

2

t − 2�
+

2

(t − 2�)2

−
2

(t − 2�)3
+

1

t − �

)
+

1

� − t
+

1

(� − t)3

)

−
�t + t − 2�

2�2 + t2 − 3�t
−

12�3�

(t − 2�)5

}

�r = E(Xr) =
(1 − �)

�r−1(� + 1)

(
Γ(r + 3)

2
+ �Γ(r + 1)

)

+
�

2r�r(� + 1)
2

[
Γ(r + 5)

26
+

Γ(r + 4)

24

+
Γ(r + 3)

23
+

�Γ(r + 3)

22
+

�Γ(r + 2)

2

+�(� + 1)Γ(r + 1)

]
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See “Appendix” for calculation of the rth non-central 
moment of the TXG distribution.

By using the expression of the rth moment, the first and 
second moments of the TXG distribution are, respectively, 
obtained as

and

Hence, by Eqs. (12) and (13), the variance of the TXG dis-
tribution is easily written as

(12)� = E(X) =
16(� + 1)(� + 3) − (4�(2� + 9) + 15)�

16�(� + 1)2

(13)
�2 = E(X2) =

32(� + 1)(� + 6) − 3
(
8�2 + 60� + 35

)
�

16�2(� + 1)2

The skewness and kurtosis coefficients for the TXG distribu-
tion can be calculated from the expressions

where

(14)

Var(X) = �2 =
1

256�2(� + 1)4

[
256(�(� + 8) + 3)(� + 1)2

− 16
(
�
(
8�2 + 84� + 39

)
+ 15

)
(� + 1)�

−(4�(2� + 9) + 15)2�2
]

(15)Skewness =
�3 − 3�2� + 2�3

�3
,

(16)Kurtosis =
�4 − 4�3�1 + 6�2�

2 − 3�4

�4
,

(17)�3 =
192(� + 1)(� + 10) − 3(8�(7� + 80) + 455)�

32�3(� + 1)2

Fig. 1   Plots of the pdf and hazard rate functions of the TXG distribution for the different � and � values
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and

Figure 2 illustrates the skewness and kurtosis behavior of 
the TXG distribution at different values of the parameters � 
and � . For considered values of the parameters, minimum 
values of the skewness and kurtosis are computed as 0.9275 
and 4.3385, respectively.

Lorenz and Bonferroni curves

Following the general definition of the Lorenz index L(p), 
the Lorenz index of the TXG distribution is obtained as

where � indicates the expectation of the TXG distribu-
tion and q = F−1(p) . Thus, the Lorenz curve of the TXG 

(18)�4 =
384(� + 1)(� + 15) − 15(8�(3� + 49) + 315)�

16�4(� + 1)2
.

L(p) =
1

�

q

∫
0

xf (x)dx

=
1

�

e−2�q

16�(� + 1)2

[
8(� + 1)(� − 1)e�q

(
�3q3 + �2q(3q + 2) + �(6q + 2) + 6

)

− �
(
4�5q5 + 2�4q3(9q + 8) + 4�3q

(
11q2 + 10q + 4

)

+�2
(
66q2 + 56q + 8

)
+ �(66q + 28) + 33

)

+
(
−8�2(� − 2) + �(64 − 36�) − 15� + 48

)
e2�q

]

distribution can be drawn plotting the L(p) against the cdf 
of the TXG distribution.

Similarly, the Bonferroni index of TXG distribution is 
also obtained as

Order statistics

Let X1,X2,… ,Xn be a random sample drawn from the 
TXG(�, �, �, �) distr ibution and X(1) ≤ X(2) ≤ ⋯ ≤ Xn 
implies its order statistic. By these assumptions, the density 
of the order statistic X(i), i = 1, 2,… , n is given by

By using the pdf (6) and cdf (5) in Eq. (19), density of the ith 
order statistic of the TXG distribution is easily obtained as

B(p) =
1

p�

q

∫
0

xf (x)dx

=
1

�

e−2�q

16�(� + 1)2

[
8(� + 1)(� − 1)e�q

(
�3q3 + �2q(3q + 2) + �(6q + 2) + 6

)

− �
(
4�5q5 + 2�4q3(9q + 8) + 4�3q

(
11q2 + 10q + 4

)

+�2
(
66q2 + 56q + 8

)
+ �(66q + 28) + 33

)

+
(
−8�2(� − 2) + �(64 − 36�) − 15� + 48

)
e2�q

]

(19)fX(i)
(X) =

n!

(i − 1)!(n − i)!
F(x)i−1f (x)(1 − F(x))n−i

Fig. 2   Plots of skewness and kurtosis of the TXG distribution for different values of the parameters � and �
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Specifically, the densities of the smallest and largest order 
statistics of the TXG distribution are, respectively, given by

and

(20)

f (x) =
n!

(i − 1)!(n − i)!

⎡
⎢⎢⎢⎢⎢⎣

�2e−�x
�

�x2

2
+ 1

��
1 + � − 2�

�
1 −

e−�x
�
�+

�2x2

2
+�x+1

�

�+1

��

� + 1

⎤
⎥⎥⎥⎥⎥⎦

⎧
⎪⎨⎪⎩
(� + 1)

⎛
⎜⎜⎜⎝
1 −

e−�x
�
� +

�2x2

2
+ �x + 1

�

� + 1

⎞
⎟⎟⎟⎠
− �

⎛
⎜⎜⎜⎝
1 −

e−�x
�
� +

�2x2

2
+ �x + 1

�

� + 1

⎞
⎟⎟⎟⎠

2⎫
⎪⎬⎪⎭

i−1

⎧
⎪⎨⎪⎩
1 −

⎡
⎢⎢⎢⎣
(� + 1)

⎛
⎜⎜⎜⎝
1 −

e−�x
�
� +

�2x2

2
+ �x + 1

�

� + 1

⎞
⎟⎟⎟⎠
− �

⎛
⎜⎜⎜⎝
1 −

e−�x
�
� +

�2x2

2
+ �x + 1

�

� + 1

⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

⎫
⎪⎬⎪⎭

n−i

(21)

fX(1)
(x) = n

�2e−�x
�

�x2

2
+ 1

��
� − 2�

�
1 −

e−�x
�
�+

�2x2

2
+�x+1

�

�+1

�
+ 1

�

� + 1

⎧⎪⎨⎪⎩
1 − (� + 1)

⎛⎜⎜⎜⎝
1 −

e−�x
�
� +

�2x2

2
+ �x + 1

�

� + 1

⎞⎟⎟⎟⎠

+ �

⎛
⎜⎜⎜⎝
1 −

e−�x
�
� +

�2x2

2
+ �x + 1

�

� + 1

⎞
⎟⎟⎟⎠

2⎫
⎪⎬⎪⎭

n−1

(22)

fX(n)
(x) = n

�2e−�x
�

�x2

2
+ 1

��
1 + � − 2�

�
1 −

e−�x
�
�+

�2x2

2
+�x+1

�

�+1

��

� + 1

⎧⎪⎨⎪⎩
(� + 1)

⎛⎜⎜⎜⎝
1 −

e−�x
�
� +

�2x2

2
+ �x + 1

�

� + 1

⎞⎟⎟⎟⎠

− �

⎛
⎜⎜⎜⎝
1 −

e−�x
�
� +

�2x2

2
+ �x + 1

�

� + 1

⎞
⎟⎟⎟⎠

2⎫
⎪⎬⎪⎭

n−1

.

Inference

ML estimation

Let X1,X2,… ,Xn be a random sample drawn from TXG(�, �) 
distribution. The logarithmic likelihood function of the ran-
dom variables Xi, i = 1, 2,… , n is, considering the pdf (6), 
easily written as

By deriving the logarithmic likelihood function given by Eq. 
(23) with respect to parameters � and � , and equated them to 
zero, we have the following likelihood equations:

(23)

lnL(�, �) = 2n ln(�) − n ln(� + 1) +
n∑
i=1

ln

�
1 +

�x2
i

2

�

−�
n∑
i=1

xi+

n∑
i=1

ln

�
1 + � − 2�

�
1 −

e−�xi
�
�+

1

2
�2x2

i
+�xi+1

�

�+1

��

(24)
�L

��
=

n∑
i=1

1 − 2

(
1 −

e−�xi
(
�+

1

2
�2x2

i
+�xi+1

)

�+1

)

1 + � − 2�

(
1 −

e−�xi
(
�+

1

2
�2x2

i
+�xi+1

)

�+1

) = 0
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The ML estimators of the parameters � and � are obtained 
solution of nonlinear equation system given by Eqs. 
(24)–(25). There is no analytical solution of this nonlinear 
equation system. However, the ML estimates of the param-
eters � and � , say 𝜃̂ML and 𝜆̂ML , respectively, can be easily 
obtained using a numerical technique such as the method 
of Newton.

LS estimation

The LS estimation is a relatively new method from the ML 
estimation. The method introduced by Swain et al. [15] can 

(25)

�L

��
=

2n

�
−

n

� + 1
−

n∑
i=1

xi +

n∑
i=1

x2
i

2

(
�x2

i

2
+ 1

)

−

n∑
i=1

2�

(
xie

−�xi

(
�+

1

2
�2x2

i
+�xi+1

)

�+1
+

e−�xi
(
�+

1

2
�2x2

i
+�xi+1

)

(�+1)2
−

e−�xi(�x2i +xi+1)
�+1

)

1 + � − 2�

(
1 −

e−�xi
(
�+

1

2
�2x2

i
+�xi+1

)

�+1

) = 0

be easily applied to the statistical inference problem for a 
specific distribution family by using notations of the [15].

Let us assume that X1,… ,Xn is a random sample drawn 
from TXG distribution and X(1) ≤ X(2) ⋯ ≤ X(n) is its order 
statistic. By these notations, the LS estimators of the param-
eters � and � , say 𝜃̂LS and 𝜆̂LS , respectively, can be easily 
obtained by minimizing the nonlinear function

(26)Q(𝜃, 𝜆) =

n∑
i=1

(
F
(
X(i)

)
− F̂

(
x(i)

))2
,

Table 1   Simulated means, biases and MSEs for the ML and LS estimators of the parameters � and �

� n Method � = 0.5 � = 1.5

𝜃̂ |Bias 𝜃̂| MSE 𝜃̂ 𝜆̂ |Bias 𝜆̂| MSE 𝜆̂ 𝜃̂ |Bias 𝜃̂| MSE 𝜃̂ 𝜆̂ |Bias 𝜆̂| MSE 𝜆̂

− 0.75 30 ML 0.4946 0.0054 0.0040 − 0.6812 0.0688 0.1220 1.5445 0.0445 0.0401 − 0.7785 0.0285 0.0832
LS 0.4765 0.0235 0.0052 − 0.6003 0.1497 0.1796 1.4701 0.0299 0.0452 − 0.6589 0.0911 0.1195

50 ML 0.4954 0.0046 0.0023 − 0.6966 0.0534 0.0994 1.5032 0.0032 0.0244 − 0.7608 0.0108 0.0570
LS 0.4857 0.0143 0.0034 − 0.6835 0.0665 0.1444 1.4791 0.0209 0.0277 − 0.6776 0.0724 0.0674

100 ML 0.4986 0.0014 0.0009 − 0.7541 0.0041 0.0260 1.5085 0.0085 0.0096 − 0.7414 0.0086 0.0244
LS 0.4910 0.0090 0.0015 − 0.7152 0.0348 0.0540 1.4917 0.0083 0.0142 − 0.7138 0.0362 0.0350

− 0.25 30 ML 0.5280 0.0280 0.0077 − 0.3661 0.1161 0.2103 1.5879 0.0879 0.0719 − 0.3880 0.1380 0.1703
LS 0.5483 0.0483 0.0089 − 0.3687 0.1187 0.2137 1.4657 0.0343 0.0766 − 0.2054 0.0446 0.2118

50 ML 0.4991 0.0009 0.0053 − 0.2261 0.0239 0.1539 1.4895 0.0105 0.0689 − 0.2319 0.0181 0.1978
LS 0.4762 0.0238 0.0057 − 0.2130 0.0370 0.1820 1.4764 0.0236 0.0728 − 0.2163 0.0337 0.1890

100 ML 0.4927 0.0073 0.0038 − 0.2290 0.0210 0.1261 1.4908 0.0092 0.0392 − 0.2263 0.0237 0.1129
LS 0.4864 0.0136 0.0038 − 0.2803 0.0303 0.1161 1.4791 0.0209 0.0446 − 0.2236 0.0264 0.1312

0.25 30 ML 0.5432 0.0432 0.0163 0.1838 0.0662 0.2230 1.6327 0.1327 0.1465 0.2985 0.0485 0.2492
LS 0.5273 0.0273 0.0113 0.1751 0.0749 0.1532 1.6820 0.1820 0.1382 0.1852 0.0648 0.2080

50 ML 0.5301 0.0301 0.0086 0.2025 0.0475 0.1876 1.5453 0.0453 0.1455 0.2571 0.0071 0.2156
LS 0.5267 0.0267 0.0074 0.2261 0.0239 0.1528 1.6081 0.1081 0.1344 0.2237 0.0263 0.1755

100 ML 0.5222 0.0222 0.0053 0.2378 0.0122 0.1357 1.5042 0.0042 0.0541 0.2474 0.0026 0.1347
LS 0.5244 0.0244 0.0055 0.2304 0.0196 0.1283 1.5084 0.0084 0.0675 0.2413 0.0087 0.1227

0.75 30 ML 0.4998 0.0002 0.0065 0.7845 0.0345 0.0647 1.6509 0.1509 0.0896 0.8113 0.0613 0.1797
LS 0.6442 0.1442 0.0419 0.6219 0.1281 0.1985 1.6946 0.1946 0.6697 0.8626 0.1126 0.2480

50 ML 0.5002 0.0002 0.0059 0.7754 0.0254 0.0570 1.5982 0.0982 0.0779 0.7801 0.0301 0.0535
LS 0.6448 0.1448 0.0362 0.7198 0.0302 0.1851 1.6151 0.1151 0.3126 0.8405 0.0905 0.2049

100 ML 0.5002 0.0002 0.0044 0.7619 0.0119 0.0591 1.5237 0.0237 0.0553 0.7537 0.0037 0.0569
LS 0.6163 0.1163 0.0226 0.7303 0.0197 0.1349 1.5981 0.0981 0.2731 0.8358 0.0858 0.1300
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with respect to � and � . By considering that F(x) = 1 − S(x) 
the quadratic form Q(�, �) can also be written as

where Ŝ
(
x(i)

)
 can be easily estimated by

By Eq. (28), we have

where SXG(x) indicates the survival function of the XGamma 
distribution. By deriving the quadratic form Q(�, �) with 
respect to parameters and equated them to zero, we achieve 
the following nonlinear equations:

(27)Q(𝜃, 𝜆) =

n∑
i=1

(
S
(
X(i)

)
− Ŝ

(
x(i)

))2
,

(28)Ŝ
(
x(i)

)
= 1 −

i

n + 1
= u(i), i = 1, 2,… , n.

(29)

Q(𝜃, 𝜆) =

n∑
i=1

(
S
(
X(i)

)
− Ŝ

(
x(i)

))2

=

n∑
i=1

[
(1 − 𝜆)SXG

(
x(i)

)
+ 𝜆

(
SXG

(
x(i)

))2
− u(i)

]2
,

(30)

�Q(�, �)

��
= 2

n∑
i=1

[
(1 − �)SXG

(
x(i)

)
+ �

(
SXG

(
x(i)

))2
− u(i)

]

×
[
S2
XG

(
x(i)

)
− SXG

(
x(i)

)]
= 0

here

Therefore, the LS estimates 𝜃̂LS and 𝜆̂LS are obtained from 
solution of Eqs. (30) and (31).

Simulation study

In this section, a Monte Carlo simulation study is carried 
out to show and compare the estimation performances of the 
ML and LS estimators obtained in “Inference” section. In the 
simulation study, the parameter � is set as 0.5 and 1.5, and the 
transmutation parameter � is set as −0.75,−0.25, 0.25 and 
0.75. For both estimators, estimation (means), bias and mean 
square error (MSE) values are calculated through the different 
sample of sizes n = 30, 50, 100 . The simulation study results 
obtained by 1000 repetitions are shown in Table 1. From the 
results given in Table 1, it is lucidly seen that the bias and 
MSE values of both estimators decrease when the sample size 
increases. Essentially, this is an expected conclusion for the 
ML estimators since the ML estimators are asymptotically 
unbiased and consistent. In addition to these conclusions, it 
is clearly seen from the results tabulated by Table 1 that the 
ML estimators outperform the LS with smaller bias and MSE 
values. Therefore, we can say that the estimation performance 
of the ML estimators is better than LS estimators.

Data analysis

In this section, a data modeling is provided on a real data 
set called the Kevlar 49 / epoxy data set to show the mod-
eling capability of the TXG distribution and compare it with 
XGamma distribution as a sub-model.

(31)

�Q(�, �)

��
= 2

n∑
i=1

[
(1 − �)SXG

(
x(i)

)
+ �

(
SXG

(
x(i)

))2
− u(i)

]

×
�

��

[
(1 − �)SXG

(
x(i)

)
+ �

(
SXG

(
x(i)

))2]
= 0 ,

�

��

[
(1 − �)SXG

(
x(i)

)
+ �

(
SXG

(
x(i)

))2]

= −
�x(i)e

−2�x(i)

2(� + 1)3

{(
�

(
(� + 1)x2

(i)
+ x(i) + 2

)
+ 4

)

×
(
�(�(x(i)(�x(i) + 2) + 2) + 2) − (� + 1)(� − 1)e�x(i)

)}

Fig. 3   TTT plot of the Kevlar 49/epoxy data

Table 2   Parameter estimates, 
K–S and AIC values for the 
Kevlar 49/epoxy data

Model ML estimates K–S p value Neg.L AIC cAIC

TXG 𝜃̂
ML

= 1.17095 0.08047 0.50450 102.91464 209.82929 209.9517

𝜆̂
ML

= 0.82216

XGamma 𝜃̂
ML

= 1.69775 0.08272 0.46927 104.10074 210.20148 210.2621
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The Kevlar 49/epoxy data set [16] includes 101 observa-
tions which represent the failure times of Kevlar 49/epoxy 
strands which were subjected to constant sustained pressure 
at the 90% stress level until all had failed. The data could 
be seen in [16].

The total time on test (TTT) plot, see [17], is a commonly 
used tool in determining the underlying distribution of the 
data with a suitable hazard rate function. TTT plot of the 
Kevlar 49/epoxy data set is shown in Fig. 3. Lucidly from 
Fig. 3, the data set has a decreasing–increasing–decreas-
ing hazard rate function and TXG distribution is a suitable 
model for these data.

For the Kevlar 49/epoxy data set, ML estimates of the 
model parameters, Kolmogorov–Smirnov (K–S) statistics 
and the corresponding p values, negative log-likelihood 
(Neg.L) values, Akaike information criterion (AIC), and 
consistent Akaike information criterion (cAIC) values are 

tabulated in Table 2. According to K–S statistics provided in 
Table 2, both models are appropriate for modeling the Kev-
lar 49/epoxy data. Besides, the TXG distribution is a more 
appropriate model than XGamma distribution with smaller 
Neg.L, AIC and cAIC values. Thus, it can be concluded that 
the derived model TXG by this paper is to gain a modeling 
performance to the baseline distribution XGamma. When 
the TXG distribution is selected as a model for the Kevlar 
49/epoxy data set, we also present Fig. 4 which shows the 
Q–Q plot of the data, the fitted cdf with together empirical 
cumulative distribution function (ECDF) of the data, and 
the fitted pdf with together histogram of the data. As can be 
clearly seen from the Q–Q plot of the data given by Fig. 4a, 
the data points fall approximately on the straight line and the 
fitted cdf provided in Fig. 4b closely follows the empirical 
cdf. Furthermore, fitted pdf provided by Fig. 4c closely imi-
tates the behavior of the data histogram. To test that TXG for 

Fig. 4   Q–Q plots, empirical and fitted cdfs and fitted pdfs for the Kevlar 49/epoxy data
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this data set is a more suitable model than XGamma, it can 
also be developed a statistic for discriminating between the 
TXG and XGamma distributions by following the methods 
used in [18, 19].

Figure 5 shows the fitted hazard rate functions with the 
TXG and XGamma distributions. Although both distribu-
tions are appropriate models for modeling the Kevlar 49/
epoxy data set as a result of the model selection criteria, haz-
ard rate function of the optimal model must have a decreas-
ing–increasing–decreasing ID form based on the result of 
TTT plot given by Fig. 3. As can be clearly seen from Fig. 5, 
the fitted hazard rate function of the TXG distribution is 
consistent with the TTT graph of the data, but XGamma is 
not consistent. Therefore, it is concluded that the TXG distri-
bution is an optimal model for the Kevlar 49/epoxy data set.

Conclusion

In this paper, we have introduced a new two-parameter 
probability distribution model called the TXG by following 
extensions of the distributions with QRTM method. In the 
paper, important statistical properties of the TXG distribu-
tion such as hazard rate and survival function, moments, 
moment-generating function, skewness, kurtosis, distribu-
tion of its order statistics, and Lorenz and Bonferroni curves 
have been obtained in closed forms. This feature facilitates 
the applicability of distribution for practitioners from dif-
ferent fields of science. Besides obtaining the ML and LS 
estimators to estimate the unknown model parameters � 
and � , we in the paper have compared the estimation per-
formances of them by an extensive numerical simulation 
study on the different sample of sizes—small, moderate and 

large. By the numerical study results, we conclude the per-
formances of both estimators are satisfactory, and the bias 
and MSE values of them are decreasing when the sample 
size is increasing. Thus, we can say that both estimators are 
asymptotically unbiased and consistent. By Fig. 1 given in 
the paper, the pdf and hazard rate behaviors of the distribu-
tion have lucidly exemplified, and it is plain that the TXG 
distribution is a more possible model than the XGamma 
distribution in an aspect of modeling ability of various data 
types. This conclusion is supported by the application on 
Kevlar 49/epoxy data set given in the paper. According to 
the model selection criteria K–S, AIC, cAIC, and Neg.L, the 
TXG distribution provides better data fit than the XGamma 
distribution. In addition, while the fitted hazard rate function 
of the XGamma distribution does not consistent with the 
TTT plot of the data, the fitted hazard rate function of the 
TXG distribution is closely related to the behavior of TTT 
plot of the data set. Therefore, it can be concluded that the 
TXG distribution has capable of modeling more data types 
than the baseline distribution XGamma.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Appendix: Calculation of the rth non‑central 
moment of the TXG distribution

Considering the pdf of the TXG distribution and formal defi-
nition of the expectation, we can write

After simplifications on Eq. 32, we have

(32)

E(Xr) =

∞∫
0

xrf (x)dx

=

∞∫
0

xr
1

�+1
�2e−x�

(
�x2

2
+ 1

)
[
� + 1 − 2�

(
1 −

e−�x
(
1+�+�x

�2x2

2

)

�+1

)]
dx.

(33)

E(Xr) =

∞∫
0

xr(1 − �)
�2

�+1

(
1 +

�x2

2

)
e−x�dx+

+

∞∫
0

xr
2�

�+1
�2
(
1 +

�x2

2

)
(
1 + � + �x +

�2x2

2

)
e−2x�dx.

Fig. 5   Fitted hazard rate functions with TXG and XGamma distribu-
tions

http://creativecommons.org/licenses/by/4.0/
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Let us divide the integral given by 33 into two parts as 

I1 =

∞∫
0

xr(1 − �)
�2

�+1

(
�x2

2
+ 1

)
e−x�dx  and I

2
=

∞∫
0

xr
2�

�+1
�2

(
�x2

2
+ 1

)(
1 + � + �x +

�2x2

2

)
e−2x�dx and then solve them 

separately.
Now we calculate the integral I1 . By considering the 

transformation u = �x , integral I1 can be immediately writ-
ten as

By applying the gamma function in the last equation, I1 is 
easily obtained as

Now, we calculate the integral I2 . By considering the 
u = 2�x transformation, I2 can be easily written as

Applying the gamma function in the last equation, we have

I1 = (1 − �)
�1−r

� + 1

∞

∫
0

�
ur+2

2�
+ ur

�
e−udu

= (1 − �)
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� + 1

⎛
⎜⎜⎝

∞

∫
0
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⎞
⎟⎟⎠
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I2 =

∞

∫
0

2�
�2

2�(� + 1)
2

�
u

2�

�r
�
�u2

8�
+ 1

�

�
1 + � +

u

2
+

u2

8

�
e−udu

=
��

2r�r(� + 1)
2

∞

∫
0

�
ur+2

8�
+ ur

��
1 + � +

u

2
+

u2

8

�
e−udu

=
��

2r�r(� + 1)
2

⎡⎢⎢⎣

∞

∫
0

ur+2

8�
e−udu +

∞

∫
0

ur+2

8
e−udu

+

∞

∫
0

ur+3

16�
e−udu +

∞

∫
0

ur+4

64�
e−udu

+

∞

∫
0

ure−udu +

∞

∫
0

�ure−udu +

∞

∫
0

ur+1

2
e−udu

+

∞

∫
0

ur+2

8
e−udu

⎤⎥⎥⎦
.
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2r�r(� + 1)
2

[
Γ(r + 5)
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8

+
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4
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2
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]
.

Finally, considering the solutions of the integrals I1 and I2 , 
rth non-central moment of the TXG distribution is obtained 
as
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