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Abstract: In the modeling of successive arrival times with a monotone trend, the alpha-series
process provides quite successful results. Both selecting the distribution of the first arrival time
and making an optimal statistical inference play a crucial role in the modeling performance of the
alpha-series process. In this study, when the distribution of the first arrival time is the generalized
Rayleigh, the problem of statistical inference for the α, β, and λ parameters of the alpha-series
process is considered. Further, in order to obtain optimal modeling performance from the mentioned
alpha-series process, various estimators for the model parameters are obtained by employing different
estimation methodologies such as maximum likelihood, modified maximum spacing, modified
least-squares, modified moments, and modified L-moments. By a series of Monte Carlo simulations,
the estimation efficiencies of the obtained estimators are evaluated through the different sample
sizes. Finally, two real datasets are analyzed to illustrate the importance of modeling with the
alpha-series process.

Keywords: alpha-series process; geometric process; maximum likelihood estimate; modified
maximum spacing estimate; modified least-squares estimate

1. Introduction

Currently, modeling the failure times of an engineering product or a system is quite important in
terms of reliability. It is a general approach to use the renewal process in modeling the non-trending
times of successive failures (successive arrival times) of repairable systems. However, in most cases,
successive arrival times for repairable systems may include a trend due to the effects of accumulated
wear, aging, or unknown reasons such as changing the maintenance unit and quality of replacement
parts. In this case, it would be more appropriate to consider a model with monotonic behavior, which
takes into account the trend in the data [1].

Lam [2] introduced the geometric process (GP) for modeling the successive arrival times with
a monotone trend. In the literature, there is a wide range of studies to show the main characteristics
of the GP and its performance in the modeling of successive arrival times with a trend; see [1,3–17].
If the GP cannot model the data, the alpha-series process (ASP) can be employed for modeling the
successive arrival times. The ASP was introduced as a strong alternative to the GP by Braun et al. [18]
and is described by the following definition.

Definition 1. Let Xk be the interarrival time of the (k− 1)th and kth events of a counting process {N(t), t ≥ 0}
for k = 1, 2, .... The process {Xk, k = 1, ..., n} is said to be an ASP with parameter α if there exists a real number
such that the random variables:

Yk = kαXk, k = 1, 2, ... (1)

are independently and identically distributed (iid) with the distribution function F; see [19].
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The parameter α manages the monotonic behavior of the ASP. For the different values of the
parameter α, the behavior of the ASP is illustrated in Figure 1.
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Figure 1. Behavior of the alpha-series process (ASP).

As can be clearly seen from Figure 1, the behavior of the ASP is monotonically decreasing
when α > 0, monotonically increasing with decreasing slope when −1 < α < 0, and monotonically
increasing with increasing slope when α < −1. If α = 0, then the ASP is equivalent to the renewal
process (RP). In this context, ASP is a more capable model than the GP for more various data types;
because the GP does not have the capability of modeling data that are monotonically increasing with
decreasing slope. Furthermore, some useful properties and theoretical results for the ASP can be found
in [18,20].

An ASP contains two types of parameters, which are process parameter α and the distributional
parameters of the first arrival time X1. Estimation of these parameters is quite important since they
determine the mean and variance of random variable Xk, (k = 1, 2, · · · , ) in such a way that:

E (Xk) =
µ

kα
k = 1, 2, ... (2)

Var (Xk) =
σ2

k2α
, k = 1, 2, ..., (3)

where µ and σ2 are the expectation and variance of the first arrival time X1, respectively. Although the
ASP given by Definition 1 has many useful properties and superior data modeling capability, it has not
been able to achieve its deserved position in the literature due to the popularity of the GP in reliability
and scheduling problems. Nevertheless, one can find several papers on statistical inference for the
ASP; see [19,21,22].

The main goal of the present study is to examine the solution of the parameter estimation problem
for ASP under assumption that the first arrival time X1 is distributed generalized Rayleigh, which
is a possible alternative to popular reliability distributions such as Weibull, gamma, and log normal.
The generalized Rayleigh distribution has special importance among of lifetime distributions since its
hazard rate function can be either a bathtub type or an increasing function, depending on the shape
parameter. The hazard function of the distribution is a bathtub type when its shape parameter is less
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than or equal to 1/2 and is an increasing function when its shape parameter is greater than 1/2 [23].
Therefore, it can be applied to many life testing experiments in which the aging effect is expected [3].

The rest of this paper is organized as follows: in Section 2, estimators for the parameters of ASP
with the generalized Rayleigh distribution are obtained using the different estimation methodologies
such as maximum likelihood (ML), modified maximum spacing (MMSP), modified least-squares
(MLS), modified moments (MM), and modified L-moments (MLM). Some Monte Carlo simulation
results, which compare the estimation efficiencies of the estimators obtained in Section 2, are presented
in Section 3. Section 4 includes two real data applications that show the superiority of the ASP with
the generalized Rayleigh distribution according to both the RP and the various ASPs with the gamma,
Weibull, log normal, and inverse Gaussian. Section 5 concludes the study.

2. Estimation of the Parameters of ASP with the Generalized Rayleigh Distribution

In this section, we consider the parameter estimation problem for ASP with the generalized
Rayleigh distribution by using the different estimation procedures such as the ML, MMSP, MLS, MM,
and MLM.

Before progressing to the estimation stage, let us recall the generalized Rayleigh distribution,
also known as two-parameter Burr Type X distribution [23]. The probability density function of the
generalized Rayleigh distribution is:

f (x, β, λ) = 2βλ2xe−(λx)2 (
1− e−(λx)2)β−1

, x > 0, (4)

and the corresponding cumulative distribution function (cdf) is:

F (x, β, λ) =
(

1− e−(λx)2)β
x > 0, (5)

where β > 0 and λ > 0 are the shape and scale parameters of the distribution, respectively. From now
on, the generalized Rayleigh distribution with parameters β and λ will be indicated as GR (β, λ).

Shannon entropy is a very important inferential measure to explain the variability or uncertainty
of a random variable. The Shannon entropy for a random variable X with pdf f is given by (see [24,25]),

H (X) = E {−ln f (x)} . (6)

Using the pdf (4) in the equation (6), the Shannon entropy of the generalized Rayleigh distribution is
found as:

H (X) = −
∞∫
0

ln
(

2βλ2xe−(λx)2
(

1− e−(λx)2
)β−1

)
f (x) dx

= −
(

ln 2 + ln β + 2 ln λ− λ2
∞∫
0

x2 f (x) dx +
∞∫
0
(ln x) f (x) dx + (β− 1)

∞∫
0

ln
(

1− e−(λx)2
)

f (x) dx

)

= −
(

ln 2 + ln β + 2 ln λ− λ2 (Ψ(β+1)−Ψ(1))
λ2 +

∞∫
0
(ln x) f (x) dx + (β− 1)

∞∫
0

ln
(

1− e−(λx)2
)

f (x) dx

)

= (Ψ (β + 1)−Ψ (1)) +
(

β−1
β

)
− ln 2− ln β− 2 ln λ− κ,

(7)
where f (x) is the pdf of the generalized Rayleigh distribution, κ = E (lnX), and Ψ (.) is the digamma
function [26]. For illustrative purposes, we present Figure 2 where the plots of the Shannon entropy of
the generalized Rayleigh distribution are displayed for different values of the parameters.

See also [23,27–29] in the context of theoretical properties and estimation problems for the
generalized Rayleigh distribution.
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Figure 2. Shannon entropy of the generalized Rayleigh distribution for different values of
the parameters.

2.1. Maximum Likelihood Estimation

Let X1, X2, ..., Xn be a random sample from the ASP with parameter α and X1 ∼ GR(β, λ) with
the pdf (4). The log-likelihood function ln L(α, β, λ) of the random variables Xk, (k = 1, 2, ..., n) can be
written as:

ln L(α, β, λ) = n (ln 2 + ln β + 2 ln λ) + 2α ln (Γ (n + 1)) +
n
∑

k=1
ln xk − λ2

n
∑

k=1
(kαxk)

2 + (β− 1)
n
∑

k=1
ln
(

1− e−(λkαxk)
2
)

.
(8)

By deriving the (8) log-likelihood function with respect to parameters α, β, and λ, the three normal
equations become:

∂ ln L(α,β,λ)
∂α = 2 ln Γ (n + 1)− 2λ2

n
∑

k=1
(kαxk)

2 (ln k) +

2λ2 (β− 1)
n
∑

k=1

(kαxk)
2e−(λkα xk)

2
(ln k)

1−e−(λkα xk)
2 = 0

(9)

∂ ln L(α,β,λ)
∂λ = 2n

λ + 2λ(β− 1)
n
∑

k=1

(kαxk)
2e−(λkα xk)

2

1−e−(λkα xk)
2 − 2λ

n
∑

k=1
(kαxk)

2 = 0 (10)

∂ ln L(α,β,λ)
∂β = n

β +
n
∑

k=1
ln
(

1− e−(λkαxk)
2
)
= 0. (11)

Unfortunately, these normal equations cannot be solved with respect to the corresponding
parameters, and explicit expressions of the ML estimators cannot be obtained from these normal
equations. However, Equations (9)–(11) can be solved simultaneously by using a numerical method.
Newton’s method is a commonly-used numerical method to investigate the solution of likelihood
functions that cannot be solved analytically. Now, let us investigate the ML estimates of the parameters
α, β, and λ employing Newton’s method.

Newton’s iterative formula is given by:

θ̂j+1 = θ̂j − H−1 (θ̂j
)
∇
(
θ̂j
)

, (12)
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where j is the iteration number, θ̂j is the estimation of the parameter vector in the jth iteration, ∇
(
θ̂j
)

is the corresponding gradient, and H
(
θ̂j
)

is the corresponding Hessian matrix. For our problem, θ̂j,
∇
(
θ̂j
)
, and H

(
θ̂j
)

are defined as:

θ̂j =

 âj
λ̂j
β̂ j

 ,

∇
(
θ̂j
)
=


∂ ln L(a,λ,β)

∂a
∂ ln L(a,λ,β)

∂λ
∂ ln L(a,λ,β)

∂β


a=âj ,λ=λ̂j ,β=β̂ j

and:

H
(
θ̂j
)
=


∂2 ln L(a,λ,β)

∂a2
∂2 ln L(a,λ,β)

∂a∂λ
∂2 ln L(a,λ,β)

∂a∂β
∂2 ln L(a,λ,β)

∂a∂λ
∂2 ln L(a,λ,β)

∂λ2
∂2 ln L(a,λ,β)

∂λ∂β
∂2 ln L(a,λ,β)

∂a∂β
∂2 ln L(a,λ,β)

∂λ∂β
∂2 ln L(a,λ,β)

∂β2


a=âj ,λ=λ̂j ,β=β̂ j

,

respectively. The elements of the gradient vector ∇ (θ) are given in Equations (9)–(11). The elements
of the matrix H (θ), say hij (i, j = 1, 2, 3), are obtained as:

h11 = ∂2 ln L
∂α2 = −4λ2 ∑n

k=1 (k
αxk)

2 (ln k)2−

4λ2 (β− 1)
n
∑

k=1

(kαxk)
2e−(λkα xk)

2
(ln k)2(

e−(λkα xk)
2
−1
)2

(
e−(λkαxk)

2
+ (λkαxk)

2 − 1
)

h12 = h21 = ∂2 ln L
∂α∂λ = −4λ

n
∑

k=1
(kαxk)

2 (ln k)−

4λ (β− 1)

 n
∑

k=1

λ2(kαxk)
4e−(λkα xk)

2
(ln k)(

e−(λkα xk)
2
−1
)2 +

n
∑

k=1

(kαxk)
2e−k2αλ2x2

k (ln k)

e−(λkα xk)
2
−1


h13 = h31 = ∂2 ln L

∂α∂β = −2λ2
n
∑

k=1

(kαxk)
2e−(λkα xk)

2
(ln k)

e−(λkα xk)
2
−1

h22 = ∂2 ln L
∂λ2 = − 2n

λ2 − 4λ2 (β− 1)
n
∑

k=1

(kαxk)
4e−(λkα xk)

2(
e−(λkα xk)

2
−1
)2−

2 (β− 1)
n
∑

k=1

(kαxk)
4e−(λkα xk)

2(
e−(λkα xk)

2
−1
)2 − 2

n
∑

k=1
(kαxk)

2

h23 = h32 = ∂2 ln L
∂λ∂β = −2λ ∑n

k=1
(kαxk)

2e−(λkα xk)
2

e−(λkα xk)
2
−1

h33 = ∂2 ln L
∂β2 = − n

β2
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Note that H is a symmetrical matrix. We can also compute the inverse of the matrix H by:

H−1 =
1

Det (H)

 h22h33 − h23h32 −h12h33 − h13h32 h12h23 − h13h22

−h21h33 − h31h23 h11h33 − h13h31 −h11h23 − h21h13

h21h32 − h22h31 −h11h32 − h12h31 h11h22 − h12h21

 ,

where Det (H) = h11h22h33− h11h23h32− h12h21h33 + h12h31h23 + h21h13h32− h13h22h31. Hence, we can
estimate the parameter vector θ using the iterative method given by Equation (12) with an initial
estimation θ̂0. Then, the ML estimates of the parameters α, λ and β, say α̂ML, λ̂ML and β̂ML, respectively,
are obtained as respective elements of the θ̂m+1.

2.2. Modified Methods

In the problem of estimating the parameters of an ASP, an explicit expression of the parametric
estimator of the parameter α may not always be obtained, as in our case. In such a case, the parameter
α is parametrically estimated using numerical methods. However, some divergence problems may be
encountered in solving the parametric estimator by using numerical methods. In order to avoid
these divergence problems in the parametric estimation of the parameter α and to provide an
appropriate initial value for numerical methods, the parameter α can be estimated non-parametrically
by using equation,

α̂NL =

n
∑

k=1
ln k

n
∑

k=1
ln Xk − n

n
∑

k=1
ln Xk ln k

n
n
∑

k=1
(ln k)2 −

(
n
∑

k=1
ln k
)2 . (13)

For further information on deriving the estimator α̂NP, we refer the readers to [21].
Furthermore, when the α̂NP given by Equation (13) yields Equation (1), we have:

Ŷk = kα̂NL Xk. (14)

Thus, using Equation (14) and the estimator α̂NP, the other distributional parameters of the ASP
can be estimated by using a selected method such as maximum spacing, least-squares, moments,
or L-moments. This estimation rule is known as the modified estimation rule in the literature.

2.2.1. MMSP Estimation

In this subsection, we use a method based on maximizing the spacings to estimate the unknown
parameters λ and β, when the parameter α is estimated by the estimator (13). This method is known as
the maximum spacing (MSP) or maximum product space estimation. The MSP estimators have nice
properties such as consistency and asymptotic unbiasedness. We refer the readers to [30] and [31] for
further information on MSP.

Let X1, X2, · · · , Xn be a random sample from the ASP with the parameter α and X1 ∼ GR(β, λ).
Furthermore, let the parameter α be estimated as αNL by using the estimator (13). Thus, we have
the estimated observations Ŷ1, Ŷ2,. . . , Ŷn from Equation (14). Then, using the same notation as in the
paper [31], the MMSP estimators of the parameters β and λ are obtained maximizing:

n+1
∑

j=1
ln
[

F
(

Ŷ(j), λ, β
)
− F

(
Ŷ(j−1), λ, β

)]

=
n+1
∑

j=1
ln

[(
1− e−(λŷ(j))

2
)β

−
(

1− e−(λŷ(j−1))
2
)β
] (15)
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with respect to parameters λ and β, where F (., λ, β) represent the cdf of the generalized Rayleigh
distribution given by Equation (5), and Ŷ(j)s (j = 1, 2, . . . , n) represent the ordered Ŷjs, (j = 1, 2, . . . , n).
Ŷ(0) = 0 and Ŷ(n+1) = ∞.

2.2.2. MM Estimation

Let X1, X2, · · · , Xn be a random sample from the ASP with parameter α and X1 ∼ GR(β, λ).
In addition, we assume that the parameter α is nonparametrically estimated by (13). By these
assumptions, we have the sample Ŷ1, Ŷ2,. . . , Ŷn estimated with Equation (14).

In a general point of view, the moment estimators are obtained equating the first and second
population moments to the corresponding sample moments for a family of distributions with two
unknown parameters. Unfortunately, the first population moment of the generalized Rayleigh
distribution cannot be obtained analytically. Kundu and Ragab [23] obtained the moments estimators
for the parameters λ and β by equating the second and fourth population moments of the generalized
Rayleigh distribution to the corresponding sample moments. Now, we adapt their approximation
to our problem. For the sample Ŷ1, Ŷ2,. . . , Ŷn, the second and fourth sample moments, m2 and m4,
are calculated by:

m2 =
1
n

n

∑
k=1

k2α̂NP x2
k =

1
n

n

∑
k=1

ŷ2
k (16)

and:

m4 =
1
n

n

∑
k=1

k4α̂NP x4
k =

1
n

n

∑
k=1

ŷ4
k , (17)

respectively. On the other hand, the second and fourth population moments of the distribution
GR(β, λ), say µ2 and µ4, can be easily written as:

µ2 =
1

λ2 (Ψ (β + 1)−Ψ (1)) (18)

and:

µ4 =
1

λ4

(
Ψ′ (1)−Ψ′ (β + 1)

)
+

(
1

λ2 (Ψ (β + 1)−Ψ (1))
)2

, (19)

respectively, where Ψ (.) and Ψ′ (.) indicate the digamma and polygamma functions, respectively.
Then, the MM estimator of the parameter β, β̂MM, can be obtained from the solution of the following
nonlinear equation:

Ψ′ (1)−Ψ′ (β + 1)

(Ψ (β + 1)−Ψ (1))2 −
V
m2

2
= 0 (20)

where V = m4 − m2
2. Furthermore, the MM estimator of the parameter λ, say λ̂MM, based on the

estimation β̂MM is obtained as follows (see [23]),

λ̂MM =

√
Ψ
(

β̂MM + 1
)
−Ψ (1)

m2
. (21)

2.2.3. MLM Estimation

In this subsection, we discuss the L-moments estimators of the parameters λ and β, say β̂MLM and
λ̂MLM, respectively, when the parameter α is non-parametrically estimated by Equation (13) as α̂NL.

The L-moments estimation method was originally introduced by Hosking [32]. The method is
a more robust estimation technique than the method of moments. Some valuable properties of the
L-moments estimators were shown by Hosking [32]. In order to obtain L-moments estimators of the
parameters of a family of distributions with two parameters, as in the moments method, the first two
sample L-moments are equated to the corresponding population L-moments and solved with respect
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to the parameters. However, population L-moments of the generalized Rayleigh distribution cannot
be obtained analytically. By using the quadratic transformation of a generalized Rayleigh random
variable, Kundu and Ragab [23] have obtained the modified L-moments estimator of the parameters β

and λ. Now, let X1, X2, ..., Xn be a random sample from the ASP with parameter α and X1 ∼ GR(λ, β)

and also α estimated by the estimator (13) as αNL. In this situation, we have the sample Ŷ1, Ŷ2..., Ŷn

from Equation (14). By using the sample Ŷk, (k = 1, 2, · · · , n) and following the similar steps of the
“Modified L-Moment Estimators” section given in [23], it can be written that the sample L-moments l1
and l2 are:

l1 =
1
n

n

∑
k=1

ŷ2
(k) (22)

and:

l2 =
2

n (n− 1)

n

∑
k=1

(k− 1) ŷ4
(k) − l1, (23)

respectively. On the other hand, population L-moments L1 and L2 are:

L1 =
1
λ

Ψ (β + 1)−Ψ (1) (24)

and:
L2 =

1
λ

Ψ (2β + 1)−Ψ (β + 1) , (25)

respectively; see [23]. Thus, β̂MLM can be obtained from the solution of the nonlinear equation:

Ψ (2β + 1)−Ψ (β + 1)
Ψ (β + 1)−Ψ (1)

− l2
l1

= 0, (26)

Therefore, using Equations (22) and (24) and estimation β̂MLM, λ̂MLM is:

λ̂MLM =
Ψ
(

β̂MLM + 1
)
−Ψ (1)

l1
, (27)

from [23].

2.2.4. MLS Estimation

In this subsection, when the parameter α is nonparametrically estimated by the estimator (13),
we obtain the least-squares estimators of the λ and β parameters of the ASP with the generalized
Rayleigh distribution. Let X1, X2, · · · , Xn be a random sample of size n from an ASP with the
generalized Rayleigh distribution, and we indicate the estimation of the parameter α as α̂NL. In this
situation, we have the estimated observations Ŷ1, Ŷ2..., Ŷn from Equation (14). Thus, the MLS
estimators of the parameters λ and β, say λ̂MLS and β̂MLS, respectively, can be obtained by minimizing
the equation:

n

∑
j=1

((
1− e−(λŶ(j))

2
)β

− j
n + 1

)2

(28)

with respect to β and λ, where Ŷ(j),(j = 1, 2, · · · , n), indicates the jth ordered observations of the
sample Ŷ1, Ŷ2, · · · , Ŷn.

We refer the readers to [33] for further information on least-squares estimation.
The entropy measure of generalized Rayleigh distribution given by Equation (7) can be easily

computed by using the (plug-in) estimators of the parameters obtained by the methods of ML, MMSP,
MLS, MM, and MLM [24].



Entropy 2019, 21, 451 9 of 20

3. Simulation Study

This section presents the results of some simulation studies that compare the efficiencies of the
ML, MMSP, MLS, MM, and MLM estimators obtained in the previous section. In the simulation studies,
the values of the parameters λ and β were set as 0.5 and 2.0, respectively, without loss of generality.
For the different sample of sizes n (n = 50, 100, 150, ..., 500, 750, 1000) and the different values of the
parameter α (α = −1.0, −0.5, 0.5, 1.0), estimates, biases, and MSE values were simulated by 1000
replicated simulations. The obtained simulation results are visualized by Figures 3–6.

According to the visualized simulation results given by Figures 3–6, the estimates of all estimators
were quite satisfactory. In addition, the results show that when the sample size n increased, the biases
and MSE values decreased for all estimators. Thus, it can be concluded that all estimators were
asymptotically unbiased and consistent. In estimating the α parameter, the MLE estimator provided
better estimation performance than the non-linear estimator α̂NL according to the MSE criteria. Besides,
in the estimation of the parameters λ and β, the MLE and MMSP estimators outperformed the MM,
the MLM, and the MLS estimators with the smallest MSE values.
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Figure 3. Estimates (left), biases (center), and MSE values (right) when the parameters α = −1.0, λ = 0.5, and β = 2.0.
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Figure 4. Estimates (left), biases (center), and MSE values (right) when the parameters α = −0.5, λ = 0.5, and β = 2.0.
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Figure 5. Estimates (left), biases (center), and MSE values (right) when the parameters α = 0.5, λ = 0.5, and β = 2.0.
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Figure 6. Estimates (left), biases (center), and MSE values (right) when the parameters α = 1.0, λ = 0.5, and β = 2.0.
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4. Data Analysis

In this section, we present two practical applications with real-life datasets: the air-conditioning
system and No. 4 datasets. In order to demonstrate the performance of ASP in modeling the successive
arrival times with a monotone trend, the datasets were modeled using both the ASP with the
generalized Rayleigh distribution and the RP. Before the analysis of the datasets, we investigated
whether the data were consistent with a generalized Rayleigh distribution by considering the following
linear regression model derived by taking the logarithm of Equation (1).

ln Xk = τ − α ln k + εk (29)

where τ = E (ln Yk) and εi, (i = 1, 2, ..., n) is the error term; see [19] for further information on deriving
this regression model. According to this regression model, if the exponentiated errors have the
generalized Rayleigh distribution, then the data are consistent with a generalized Rayleigh distribution
with parameters θ and ξ. Considering the parameter α is estimated with Equation (13), the error term
εk in Equation (29) can be estimated by:

ε̂k = ln Xk − τ̂ + α̂NL ln k, (30)

where τ̂ is easily estimated by:

τ̂ =
ln Γ (k + 1)∑n

k=1 ln Xk ln k−∑n
k=1 (ln k)2 ∑n

k=1 ln Xk

(ln Γ (k + 1))2 − n ∑n
k=1 (ln k)2 . (31)

Therefore, the consistency of the exponentiated errors with a generalized Rayleigh distribution
can be tested by using a goodness of fit test such as Kolmogorov–Smirnov (K-S). Besides, to compare
the performance of ASP and RP, we used the mean-squared error (MSE*) given by:

• MSE*= 1
n

n
∑

k=1

(
Xk − X̂k

)2 ,

where X̂k is calculated by:

X̂k =



µ̂(ML)k−α̂ML ASP with the ML estimators,
µ̂(MMSP)k−α̂NL ASP with the MMSP estimators,
µ̂(MLS)k−α̂NL ASP with the MLS estimators,
µ̂(MM)k−α̂NL ASP with the MM estimators,
µ̂(MLM)k−α̂NL ASP with the MLM estimators,

µ̂(ML) RP with the ML estimators,

(32)

where the µ̂(.) notation indicates the estimate of the expected value of X1 with the presented estimators
in Section 2. Furthermore, we define the Sk = X1 + X2 + · · ·+ Xk, k = 1, 2, . . . , n. The random variable

Sk, k = 1, 2, ..., n is easily estimated by using the estimates X̂k as Ŝk =
k
∑

j=1
X̂j. Thus, we can demonstrate

the performances of the RP and five ASPs with the ML, MMSP, MLS, MM, and MLM estimators by
plotting Sk and Ŝk, against k, k = 1, 2, · · · , n.

4.1. Air-Conditioning System Data

This dataset is related to the study of the failure times of an aircraft (Aircraft Number 7912)
air-conditioning system dataset presented by Proschan [34] that includes 30 observations. For this
dataset, estimations for the exponential errors were θ = 0.3188 and ξ = 0.2280 (K-S statistic = 0.1886,
p-value = 0.2083). Hence, we can conclude that the data can be modeled with a generalized Rayleigh
distribution. We also present Figure 7a,b, where Figure 7a illustrates the Q-Q plot of the exponentiated
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errors against the generalized Rayleigh distribution and Figure 7b illustrates plots of the empirical and
the fitted generalized Rayleigh cdf.
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Figure 7. (a) Q-Q plot of the exp(ε̂i) and (b) empirical and fitted cdf of the exp(ε̂i) for the
air-conditioning system data.

The MSE* values and the parameter estimates of the RP and ASPs with different estimators,
the ML, the MMSP, the MLS, the MM, and the MLM, are summarized in Table 1. According to Table 1,
the ASP with the ML estimators gave the best modeling performance with the least MSE* value.
For this dataset, the calculated Shannon entropy with the ML estimators was also−1.2412. The relative
performance of the employed ASPs and RP can clearly be seen from Figure 8, which plots Sk and Ŝk
versus the number of failures k (k = 1, 2, · · · , 30).

Table 1. Parameter estimates and process comparison for the air-conditioning system dataset. MM,
modified moments; MMSP, modified maximum spacing.

Process Method α̂ λ̂ β̂ MSE*/103 SE/102

ASP ML 0.31842 0.31541 0.00354 4.5938 0.1237

LS

0.47753

0.28424 0.00211 5.0634 0.1299
MM 0.26388 0.00225 4.8376 0.1269
MLM 0.20832 0.00203 4.7781 0.1262
MMSP 0.28427 0.00211 5.0629 0.1299

RP ML 1.00000 0.28950 0.00671 5.0451 0.1296
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Figure 8. The plots of Sk and Ŝk against the number of failures for the air-conditioning system data.
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As can be seen in Figure 8, the Ŝks estimated by the ASP with the ML estimators followed the
actual failure times more closely than the other process, as consistent with the Monte Carlo simulation
results presented in the previous section.

Now, let us investigate the optimal ASP considering the popular distribution models such as the
generalized Rayleigh, gamma, log normal, inverse Gaussian, and Weibull distributions for modeling
this dataset. For the different ASP with ML estimators, evaluated MSE* and parameter estimates are
tabulated by Table 2. According to the results given by Table 2, ASP with the generalized Rayleigh
distribution outperformed the other models with the least MSE* values. Therefore, it can be concluded
that the ASP with the generalized Rayleigh distribution is an optimal model of the air-conditioning
system data among the ASPs with the gamma, Weibull, inverse Gaussian, and log normal distribution.

Table 2. Parameter estimates (P. Est.) and evaluated MSE* values of the different ASP models for the
air-conditioning system data.

Model

Generalized Rayleigh Gamma Log Normal Weibull Inverse Gaussian

P. Est. α̂ 0.31842 α̂ 0.47024 α̂ 0.47736 α̂ 0.42010 α̂ 0.57539
λ̂ 0.31541 k̂G 0.88876 µ̂LN 4.54604 θ̂W 149.19408 µ̂IG 233.18956
β̂ 0.00354 θ̂G 201.42145 σ̂LN 1.25729 λ̂W 0.90586 σ̂IG 69.24197

MSE*/103 4.59384 4.79013 5.04469 4.66714 5.31385
SE/102 0.12374 0.12636 0.12967 0.12472 0.13309

4.2. No. 4 Data

The No. 4 dataset is related to unscheduled maintenance actions for the U.S.S. Grampus No. 4
main propulsion diesel engine [35]. The dataset contains 56 observations, which are the times between
successive unscheduled maintenance actions.

As in the previous example, we first explored whether the underlying distribution of the data
was appropriate with a generalized Rayleigh distribution. For this dataset, estimations for the
exponential errors were θ = 0.3188, ξ = 0.2280; the value of the evaluated K-S test was 0.1886; and the
corresponding p-value was 0.2083. By considering the value of the K-S statistic and the corresponding
p-value, we can say that the data are appropriate for the generalized Rayleigh distribution. To support
this conclusion, we present Figure 9a,b, which shows the Q-Q plot of the exponentiated errors (ε̂i)
against the generalized Rayleigh distribution and the empirical and fitted cdf of the generalized
Rayleigh distribution, respectively.

0 1 2 3 4 5 6

Generalized Rayleigh Quantiles

0

2

4

6

8

10

12

Q
u

an
ti

le
s 

o
f 

In
p

u
t 

S
am

p
le

QQ Plot of Sample Data versus Generalized Rayleigh

(a)

0 2 4 6 8 10 12
ǫ̂i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Empirical CDF
Fitted CDF

(b)

Figure 9. (a) Q-Q plot of the exp(ε̂i) and (b) empirical and fitted cdf of the exp(ε̂i) for the No. 4 data.

We can clearly see from Figure 9a that the data points fall approximately on a straight line, and the
fitted cdf of the exponentiated errors closely followed the empirical cdf in Figure 9b. Thus, it can be
concluded that the data can be modeled by a generalized Rayleigh distribution. For the No. 4 dataset,
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the ML, the MLS, the MM, the MLM, and the MMSP estimates of the parameters α, λ and β and the
MSE∗ values of the corresponding processes are tabulated in Table 3.

Table 3. Parameter estimates and process comparison for the No. 4 dataset.

Process Method α̂ λ̂ β̂ MSE*/104 SE/102

ASP ML 0.15930 0.27920 0.00102 6.6508 0.3446

LS

0.29543

0.30790 0.00063 7.0362 0.3544
MM 0.16680 0.00052 6.7735 0.3477
MLM 0.25122 0.00062 6.7581 0.3473
MMSP 0.30783 0.00063 7.0359 0.3544

RP ML 1.00000 0.34345 0.00178 6.8774 0.3504

By Table 3, the ASP with ML estimators is an optimal process for modeling of this dataset because
of it outperformed the RP and the ASPs with other estimators with a smaller MSE* value. Shannon
entropy with the ML estimators was also calculated as −0.2418 for this dataset. Further, the relative
performances of the mentioned ASPs and RP can be seen from Figure 10. Figure 10 plots the Sk and Ŝk
versus the number of unscheduled maintenance actions k (k = 1, 2, · · · , 56).

As can be seen in Figure 10, the ASP with the ML estimators more fairly followed the actual
values than the RP. Thus, according to Figure 10 and Table 3, it is concluded that the ASP provides
a better data fit than RP. In addition, for the No. 4 dataset, the evaluated parameter estimates and
the corresponding MSE* values of the alternative ASPs with the different distribution models are
summarized by Table 4. By Table 4, we can say that the ASP with the generalized Rayleigh distribution
is an optimal model for the No. 4 dataset, since it outperformed other ASPs with the gamma, log
normal, inverse Gaussian, and Weibull distributions with a smaller MSE* value.
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Figure 10. The plots of Sk and Ŝk against the number of maintenance actions for the No. 4 dataset.
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Table 4. Parameter estimates (P. Est.) and evaluated MSE* values of the different ASP models for the
No. 4 dataset.

Model

Generalized Rayleigh Gamma Log Normal Weibull Inverse Gaussian

P. Est. α̂ 0.15930 α̂ 0.14743 α̂ 0.29649 α̂ 0.15118 α̂ 0.97090
λ̂ 0.27920 k̂G 0.94236 µ̂LN 5.88128 θ̂W 420.69967 µ̂IG 5904.50655
β̂ 0.00102 θ̂G 445.14408 σ̂LN 1.38547 λ̂W 0.97900 σ̂IG 667.82473

MSE*/104 6.65086 6.65534 8.67224 6.65311 79.32288
SE/102 0.34462 0.34474 0.39352 0.34468 1.19016

5. Conclusions

In this study, we have investigated the solution of the statistical inference problem for the ASP with
the generalized Rayleigh distribution. The ASP is a useful monotonic stochastic process for successive
arrival times with a trend. In the study, for the different values of the parameter α, the monotonic
behavior of the ASP has been illustrated by Figure 1. In the stage of statistical inference, the estimators
of the ASP parameters have been obtained by using the different estimation methods such as the
ML, the MMSP, the MM, the MLM, and the MLS. To bring into the open the beneficial properties of
the obtained estimators such as bias and MSE, some Monte Carlo simulation results have also been
presented with different scenarios. According to the presented Monte Carlo simulation results, it can be
said that all of the obtained estimators produced acceptable parameter estimates with similar accuracy
from the bias and MSE point of view. In addition, by the results of the Monte Carlo simulations, it can
also be concluded that all the estimators were asymptotically unbiased and consistent since their bias
and MSE values decreased when the sample size increased. In terms of the convergence ratio of the
estimators to the actual parameter values, it has been seen that the ML estimators converged faster to
the actual values of the parameters than the modified estimators.

In the study, the real data modeling behavior of the ASP has been demonstrated with two data
analyses on the air-conditioning system and No. 4 datasets. The ASP with the generalized Rayleigh
distribution presented better data fits for both the air-conditioning system and the No. 4 datasets than
the RP with smaller MSE* values. Besides, for both datasets, the ASP with the generalized Rayleigh
distribution outperformed the alternative ASPs with the gamma, log normal, inverse Gaussian,
and Weibull distributions with smaller MSE* values. Thus, it is concluded that the ASP with the
generalized Rayleigh distribution provides quite satisfactory modeling performance for successive
arrival times with a trend and is a powerful alternative to the ASPs with famous reliability distributions
such as gamma, log normal, inverse Gaussian, and Weibull.
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Gece Publishing: Ankara, Turkey, 2018; Chapter 43, pp. 576–583.

10. Biçer, C.; Biçer, H.D.; Kara, M.; Aydoğdu, H. Statistical inference for geometric process with the Rayleigh
distribution. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019, 68, 149–160. [CrossRef]

11. Biçer, H.D. Statistical inference for geometric process with the Two-Parameter Lindley Distribution.
Commun. Stat. Simul. Comput. 2019, 1–22. [CrossRef]

12. Biçer, H.D.; Biçer, C. Discriminating Between the Gamma and Weibull Distributions for Geometric Process
Data. Int. J. Econ. Adm. Stud. 2018, 18, 239–252. [CrossRef]

13. Biçer, H.D.; Biçer, C. Discrimination Between Gamma and Lognormal Distributions for Geometric Process
Data. In Researches on Science and Art in 21st Century Turkey; Arapgirlioğlu, H., Atik, A., Elliott, R.L.,
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16. Pekalp, M.H.; Aydoğdu, H. An asymptotic solution of the integral equation for the second moment function
in geometric processes. J. Comput. Appl. Math. 2018. [CrossRef]
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19. Kara, M.; Aydoğdu, H.; Şenoğlu, B. Statistical inference for α-series process with gamma distribution.
Commun. Stat. Theory Methods 2017, 46, 6727–6736. [CrossRef]

20. Braun, W.J.; Li, W.; Zhao, Y.Q. Some theoretical properties of the geometric and α-series processes.
Commun. Stat. Theory Methods 2008, 37, 1483–1496. [CrossRef]
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