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Abstract. Herein we propose a non-negative real parametric generalization of Baskakov
operators and call them α-Baskakov operators. We show that α-Baskakov operators can
be expressed in terms of divided differences. Then, we obtain the nth order derivative of
α-Baskakov operators in order to obtain its new representation as powers of independent
variable x.
In addition, we obtain Korovkins-type approximation properties of α-Baskakov operators.
Moreover, by using the modulus of continuity, we obtain the rate of convergence. Numerical
results presented show that depending on the value of the parameter α, an approximation
to a function improves compared to classical Baskakov operators.
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1. Introduction

Polynomial approximation theory deals with the approximation of real-valued con-
tinuous functions by algebraic polynomials. In 1957, Baskakov [4] introduced a
sequence of positive linear operators, called Baskakov operators, on the unbounded
interval [0,∞) for suitable functions defined on the interval [0,∞). Later, Baskakov
operators are studied by many researches. In 1984, Pethe [11] studied approximation
properties of Baskakov operators. In 1994, Gupta [8] studied the rate of convergence
of Baskakov type operators. In 1998, Mihesan [10] constructed the generalization
of Baskakov operators and the convergence rate of the generalization obtained in
[12]. Moreover, the preservation properties of Baskakov-Kantorovich operators are
considered in [13].

On the other hand, q-analogues to Baskakov operators were introduced by Aral
and Gupta in [2]. The same authors introduced another q-analogues to Baskakov
operators and studied the convergence rate in weighted norm and some shape pre-
serving properties in [3].

In this paper, motivated by the α-Bernstein operator by Chen and et al. [5], we
propose a non-negative real parametric generalization of Baskakov operators and call
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them α-Baskakov operators. When α = 1, the operators reduce to classical Baskakov
operators. We also represent higher order derivatives of α-Baskakov operators in
terms of forward divided differences. Then, we express α-Baskakov operators in
terms of forward divided differences. Later, we study convergence and approximation
properties of α-Baskakov operators in weighted spaces including Voronovskaya type
formulation. α-Baskakov operators converge uniformly in the polynomial weighted
space for any α ∈ [0, 1]. Even though convergence is independent of the parameter
α, the approximation errors depend on α, the larger the value of α, the smaller the
upper bound for the approximation error. We present some numerical results that
correct the theoretical results.

The rest of the paper is organised as follows. In Section 2, we recall classical
Baskakov operators. Later, we define α-Baskakov operators, establish their moments
and represent them in terms of divided differences. Section 3 presents convergence
properties of α-Baskakov operators.

2. α-Baskakov operator

Recall that for every f ∈ CB[0,∞), classical Baskakov operators are defined as

Bn(f ;x) =

∞
∑

k=0

f(
k

n
)Pn,k(x), (1)

where n ≥ 1, x ∈ [0,∞) and

Pn,k(x) =

(

n+ k − 1

k

)

xk

(1 + x)k+n
. (2)

Now, for every f ∈ CB[0,∞), we define the parametric generalization of Baskakov
operators as

Ln,α(f ;x) =

∞
∑

k=0

f(
k

n
)P

(α)
n,k(x), (3)

where n ≥ 1, x ∈ [0,∞) and

P
(α)
n,k(x) =

xk−1

(1 + x)n+k−1

{

αx

1 + x

(

n+ k − 1

k

)

− (1− α)(1 + x)

(

n+ k − 3

k − 2

)

+ (1 − α)x

(

n+ k − 1

k

)}

,

(4)

with

(

n− 3

−2

)

=

(

n− 2

−1

)

= 0.

We call these operators α-Baskakov operators.
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Observe that for α = 1, we have

Ln,1(f ;x) =

∞
∑

k=0

f(
k

n
)P

(1)
n,k(x)

=
∞
∑

k=0

f(
k

n
)

(

n+ k − 1

k

)

xk

(1 + x)n+k

= Bn(f ;x).

So, α-Baskakov operators reduce to the classical Baskakov operators.

Simple calculation yields

k

n− 1

(

n+ k − 2

k

)

=

(

n+ k − 2

k − 1

)

(5)

and

(1 +
k

n− 1
)

(

n+ k − 2

k

)

=

(

n+ k − 1

k

)

. (6)

Theorem 1. The α-Baskakov operator for f(x) can be expressed as

Ln,α(f ;x) =(1 − α)
∞
∑

k=0

gk

(

n+ k − 2

k

)

xk

(1 + x)n+k−1

+ α

∞
∑

k=0

f(
k

n
)

(

n+ k − 1

k

)

xk

(1 + x)n+k
,

(7)

where

gk = f(
k

n
)(1 +

k

n− 1
)− f(

k + 1

n
)

k

n− 1
. (8)

Proof. From the definition of the α-Baskakov operator in equations (3) and (4),
one can write

Ln,α(f ;x) = (1− α)(k1 − k2) + α

∞
∑

k=0

f(
k

n
)

(

n+ k − 1

k

)

xk

(1 + x)n+k
,

where

k1 =
∞
∑

k=0

f(
k

n
)

(

n+ k − 1

k

)

xk

(1 + x)n+k−1
.

Using equation (6) and adjusting the summation limits yield

k1 =

∞
∑

k=0

f(
k

n
)(1 +

k

n− 1
)

(

n+ k − 2

k

)

xk

(1 + x)n+k−1
. (9)
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And similarly,

k2 =

∞
∑

k=2

f(
k

n
)

(

n+ k − 3

k − 2

)

xk−1

(1 + x)n+k−2

=

∞
∑

k=1

f(
k + 1

n
)

(

n+ k − 2

k − 1

)

xk

(1 + x)n+k−1
.

Again, using equation (5) and adjusting the summation limits yield

k2 =

∞
∑

k=0

f(
k + 1

n
)

k

n− 1

(

n+ k − 2

k

)

xk

(1 + x)n+k−1
. (10)

Subtracting (10) from (9), we obtain

k1 − k2 =

∞
∑

k=0

{

f(
k

n
)(1 +

k

n− 1
)− f(

k + 1

n
)

k

n− 1

}(

n+ k − 2

k

)

xk

(1 + x)n+k−1

=

∞
∑

k=0

gk

(

n+ k − 2

k

)

xk

(1 + x)n+k−1
,

which completes the proof.

Lemma 1. For n ∈ N, the α-Baskakov operator has the following identities:

1. Ln,α(1;x) = 1,

2. Ln,α(t;x) = x+ 2
n (α− 1)x,

3. Ln,α(t
2;x) = x2 + 4α−3

n x2 + x
n2 (n+ 4α− 4).

Proof. The proof of the parts follows from a straightforward (yet tedious) calcula-
tion, so we just prove part 1 and skip parts 2 and 3.

In part 1 f(x) = 1; then it follows from equation (8) that gk = 1. Thus, we have

Ln,α(1;x) = (1− α)

∞
∑

k=0

(

n+ k − 2

k

)

xk

(1 + x)n+k−1
+ α

∞
∑

k=0

(

n+ k − 1

k

)

xk

(1 + x)n+k

= (1− α)Bn−1(1;x) + αBn(1;x).

On the other hand, sinceBn−1(1;x) = Bn(1;x) = 1, we obtain the desired result.

From Lemma 1, we obtain the following immediate result.

Remark 1. The classical Baskakov operator reproduces a linear polynomial, that is,

Bn(at+ b;x) = ax+ b, a and b constants.

However, α-Baskakov operator does not have this property.
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To represent the rth derivative of α-Baskakov operators in terms of forward
divided differences, we need the following auxilary results.

Lemma 2. The higher order forward difference of gk in equation (8) can be expressed
in the form

∆rgk = (1 +
k

n− 1
)∆rf(

k

n
)− k + r

n− 1
∆rf(

k + 1

n
). (11)

Proof. The proof is by induction on r. For the inductive step, let us assume that

∆r−1gk = (1 +
k

n− 1
)∆r−1f(

k

n
)− k + r − 1

n− 1
∆r−1f(

k + 1

n
). (12)

Then,

∆rgk = ∆
(

∆r−1gk
)

= ∆

(

(1 +
k

n− 1
)∆r−1f(

k

n
)− k + r − 1

n− 1
∆r−1f(

k + 1

n
)

)

. (13)

Thus, applying the difference formula

∆ (ukvk) = vk∆(uk) + uk+1∆(vk)

to each term in the expression in (13) yields

∆rgk =
1

n− 1
∆r−1f(

k

n
) + (1 +

k + 1

n− 1
)∆rf(

k

n
)

−{ 1

n− 1
∆r−1f(

k + 1

n
) +

k + r

n− 1
∆rf(

k + 1

n
)}

= (1 +
k

n− 1
)∆rf(

k

n
)− k + r

n− 1
∆rf(

k + 1

n
),

which completes the proof.

Theorem 2. The rth order derivative of α-Baskakov operators can be expressed in
terms of higher order forward divided differences as

L(r)
n,α(f ;x) = (1− α)

(n+ r − 2)!

(n− 2)!

∞
∑

k=0

∆rgkPn−1+r,k(x)

+α
(n+ r − 1)!

(n− 1)!

∞
∑

k=0

∆rf(
k

n
)Pn+r,k(x).

Proof. Let us assume that, by using equation (7),

Ln,α(f ;x) = (1− α)T1 + αT2,

where

T1 =

∞
∑

k=0

(

n+ k − 2

k

)

xk

(1 + x)n+k−1
,
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and

T2 =

∞
∑

k=0

(

n+ k − 1

k

)

xk

(1 + x)n+k
.

Then, the rth derivative of Ln,α(f ;x) becomes

L(r)
n,α(f ;x) = (1− α)T

(r)
1 + αT

(r)
2 .

We prove that

T
(r)
1 =

(n+ r − 2)!

(n− 2)!

∞
∑

k=0

∆rgkPn−1+r,k(x). (14)

The proof is by induction on r. When r = 1, then the derivative of T1 becomes

T
′

1 =

∞
∑

k=1

gkk

(

n+ k − 2

k

)

xk−1

(1 + x)n+k−1

−
∞
∑

k=0

gk(n+ k − 1)

(

n+ k − 2

k

)

xk

(1 + x)n+k

=

∞
∑

k=0

gk+1(k + 1)

(

n+ k − 1

k

)

xk

(1 + x)n+k

−
∞
∑

k=0

gk(n+ k − 1)

(

n+ k − 2

k

)

xk

(1 + x)n+k
.

Since

(k + 1)

(

n+ k − 1

k + 1

)

= (n− 1)

(

n+ k − 1

k

)

and

(n+ k − 1)

(

n+ k − 2

k

)

= (n− 1)

(

n+ k − 1

k

)

,

we have

T
′

1 = (n− 1)

∞
∑

k=0

[gk+1 − gk]

(

n+ k − 1

k

)

xk

(1 + x)n+k

= (n− 1)

∞
∑

k=0

∆gkPn,k(x).

For the inductive step, assume that equation (14) holds for some r ∈ N. We now
prove that the equation holds with r replaced by r + 1, which means taking the
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derivative of (14) . Thus,

T
(r+1)
1 =

(n+ r − 2)!

(n− 2)!

∞
∑

k=0

∆rgkP
′

n−1+r,k(x)

=
(n+ r − 2)!

(n− 2)!

∞
∑

k=1

∆rgkk

(

n+ r + k − 2

k

)

xk−1

(1 + x)n+r+k−1

− (n+ r − 2)!

(n− 2)!

∞
∑

k=0

∆rgk(n+ r + k − 1)

(

n+ r + k − 2

k

)

xk

(1 + x)n+r+k

=
(n+ r − 2)!

(n− 2)!

∞
∑

k=0

∆rgk+1(k + 1)

(

n+ r + k − 1

k + 1

)

xk

(1 + x)n+r+k

− (n+ r − 2)!

(n− 2)!

∞
∑

k=0

∆rgk(n+ r + k − 1)

(

n+ r + k − 2

k

)

xk

(1 + x)n+r+k
.

Since

(k + 1)

(

n+ r + k − 1

k + 1

)

= (n+ r − 1)

(

n+ r + k − 1

k

)

and

(n+ r + k − 1)

(

n+ r + k − 2

k

)

= (n+ r − 1)

(

n+ r + k − 1

k

)

,

we obtain

T
(r+1)

1 =
(n+ r − 1)!

(n− 2)!

∞
∑

k=0

[∆rgk+1 −∆rgk]

(

n+ r + k − 1

k

)

xk

(1 + x)n+r+k

=
(n+ r − 1)!

(n− 2)!

∞
∑

k=0

∆r+1gkPn+r,k(x).

Similarly, we obtain

T
(r)

2 =
(n+ r − 1)!

(n− 1)!

∞
∑

k=0

∆rf(
k

n
)Pn+r,k(x).

Theorem 3. The α-Baskakov operator can be expressed in terms of forward divided
differences and powers of x as

Ln,α(f ;x) = (1− α)

∞
∑

r=0

(n+ r − 2)!

(n− 2)!

[

∆rf(0)− r

n− 1
∆rf(

1

n
)

]

xr

r!

+α

∞
∑

r=0

(n+ r − 1)!

(n− 1)!
∆rf(0)

xr

r!
.
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Proof. Taylor expansion of the α-Baskakov operator along with Theorem 2 yields

Ln,α(f ;x) =
∞
∑

r=0

L(r)
n,α(f ;x)

∣

∣

∣

x=0

xr

r!

= (1− α)

∞
∑

r=0

(n+ r − 2)!

(n− 2)!

[

∆rf(0)− r

n− 1
∆rf(

1

n
)

]

Pn−1+r,0(0)
xr

r!

+α

∞
∑

r=0

(n+ r − 1)!

(n− 1)!
∆rf(0)Pn+r,0(0)

xr

r!

Since Pn−1+r,0(0) = Pn+r,0(0) = 1,

= (1− α)
∞
∑

r=0

(n+ r − 2)!

(n− 2)!

[

∆rf(0)− r

n− 1
∆rf(

1

n
)

]

xr

r!

+α

∞
∑

r=0

(n+ r − 1)!

(n− 1)!
∆rf(0)

xr

r!
.

This completes the proof.

Using the following forward divided difference formula, one can write the α-
Baskakov operator as in the following corollary:

nr∆
rf(0)

r!
= f

[

0,
1

n
,
2

n
, · · · , r

n

]

. (15)

Corollary 1. The α-Baskakov operator can be expressed as

Ln,α(f ;x) = (1− α)

∞
∑

r=0

(n+ r − 2)!

nr(n− 2)!

(

f

[

0,
1

n
,
2

n
, · · · , r

n

]

− r

n− 1
f

[

1

n
,
2

n
, · · · , r

n
,
r + 1

n

])

xr

+α

∞
∑

r=0

(n+ r − 1)!

nr(n− 1)!
f

[

0,
1

n
,
2

n
, · · · , r

n

]

xr.

3. Convergence properties of α-Baskakov operators

Throughout this section, we argue that α-Baskakov operators can be used to approx-
imate functions defined on the unbounded infinite interval [0,∞). Recall that an
immediate analog of the Bohman-Korovkin theorem does not hold in the unbounded
interval, so some restrictions are needed. Now, we present these restrictions and no-
tations.

Let B2[0,∞) be the space of all functions f defined on the unbounded interval
[0,∞) satisfying the inequality

|f(x)| ≤ Mf (1 + x2),
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where Mf is a positive constant only depending on function f . Also, let us define
the spaces

C2[0,∞) = B2[0,∞) ∩ C[0,∞)

and

C∗
2 [0,∞) =

{

f ∈ C2[0,∞) : lim
x→∞

|f(x)|
1 + x2

= kf < ∞
}

and endow them with the norm

‖f‖2 = sup
x∈[0,∞)

|f(x)|
1 + x2

.

Remember that, as it follows from articles [6] and [7] by Gadjiev, the Korovkin-
type theorems for positive linear operators do not hold in the space C2[0,∞) but
hold in the space of C∗

2 [0,∞) with the previous norm. In addition to the assumption
of the function f being positive, from now on, we assume that gk is positive as well.

Theorem 4. For each f ∈ C∗
2 [0,∞), we have

lim
n→∞

‖Ln,α(f)− f‖2 = 0.

Proof. From [7], we observe that it is sufficient to verify the following three condi-
tions:

lim
n→∞

‖Ln,α(t
ν ;x)− xν‖2 = 0, ν = 0, 1, 2. (16)

Since Ln,α(1;x) = 1, condition (16) holds for ν = 0. From Lemma 1 we have

‖Ln,α(t;x)− x‖2 =
2

n
(1− α) sup

x∈[0,∞)

x

1 + x2

≤ 2

n
(1− α) ,

which implies that the condition in (16) holds for ν = 1.
Similarly, we can write

∥

∥Ln,α(t
2;x)− x2

∥

∥

2
=

|4α− 3|
n

sup
x∈[0,∞)

x2

1 + x2
+

n+ 4α− 4

n2
sup

x∈[0,∞)

x

1 + x2

≤ |4α− 3|
n

+
n+ 4α− 4

n2

which implies that the condition in (16) holds for ν = 2.
This completes the proof of the theorem.

Lemma 3. For n ∈ N, the α-Baskakov operator has the following identities:

1. nLn,α((t− x)2;x) = x(1 + x) + 4x
n (α− 1),
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2. n2Ln,α((t− x)4;x) = 3x2(1 + x)2 − x
n (10x

4 + 36x2 + 25x− 1)

+ αx2

n (16x2 + 48x+ 32) + 16x
n2 (α− 1).

Theorem 5. For any function f ∈ C2[0,∞), we have

lim
n→∞

sup
x∈[0,∞)

|Ln,α(f ;x) − f(x)|
(1 + x2)3/2

= 0.

Proof. Since f is continuous and also uniformly continuous on any closed interval,
there exists a positive number σ, depending on ε and f , for |t− x| < σ, and we have

|f(t)− f(x)| < ε

Since f ∈ B2[0,∞), for |t− x| ≥ σ,

|f(t)− f(x)| ≤ Af (σ)
{

(t− x)2 + (1 + x2) |t− x|
}

,

where Af (σ) is a positive constant depending on f and σ.
Combining the above results yields

|f(t)− f(x)| < ε+Af (σ)
{

(t− x)2 + (1 + x2) |t− x|
}

,

where t, x ∈ [0,∞). Thus, we obtain

|Ln,α(f ;x)− f(x)| < ε+Af (σ)
{

Ln,α((t− x)2;x) + (1 + x2)Ln,α(|t− x|;x)
}

< ε+Af (σ)
{

Ln,α((t− x)2;x) + (1 + x2)(Ln,α((t− x)2;x))1/2
}

.

From Lemma 3, we obtain the desired result.

Theorem 6. Let f ∈ C2[0,∞) and also let f
′′ ∈ C2[0,∞). Then

lim
n→∞

n [Ln,α(f ;x) − f(x)] = x(x + 1)f
′′

(x) + 2(1− α)f
′

(x).

Proof. We observe that

Ln,α(1;x) = 1.

Moreover, for any x ≥ 0, using Lemma 1, we have

lim
n→∞

nLn,α(t− x;x) = 2(1− α).

Using Lemma 3, we obtain

lim
n→∞

nLn,α((t− x)2;x) = x(1 + x),

and

lim
n→∞

n2Ln,α((t− x)4;x) = 3x2(x+ 1)2.

Thus, the proof follows from [1, Proposition 5.1].
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Recall that the weighted modulus of smoothness is denoted by Ω(f ;σ) and de-
fined by

Ω(f ;σ) = sup
0≤h<σ,x∈[0,∞)

|f(x+ h)− f(x)|
(1 + h2)(1 + x2)

. (17)

for f ∈ C⋆
2 [0,∞) (see [9]).

We know that for every function f ∈ C⋆
2 [0,∞), the weighted modulus of smooth-

ness has the following properties:

lim
σ→0

Ω(f ;σ) = 0 (18)

and
Ω(f ;λσ) ≤ 2(1 + λ)(1 + σ2)Ω(f ;σ), λ > 0. (19)

Thus, combining these two results yields

|f(y)− f(x)| ≤ (1 + (y − x)2)(1 + x2)Ω(f ; |y − x|)

≤ 2(1 +
|y − x|

σ
)(1 + σ2)Ω(t;λσ)(1 + (y − x)2)(1 + x2). (20)

Theorem 7. If f ∈ C⋆
2 [0,∞) then, for large enough n, we have

|Ln,α(f ;x) − f(x)|
(1 + x2)3

≤ 32 Ω(f ;
1√
n
).

Proof. Using inequality (20), we have

|f(y)− f(x)| ≤
{

4(1 + σ2)2(1 + x2)Ω(f ;σ), if |y − x| < σ

4(1 + σ2)2(1 + x2) (y−x)4

σ4 Ω(f ;σ), if |y − x| ≥ σ
.

By choosing σ < 1, we obtain

|f(y)− f(x)| ≤ 4(1 + σ2)2(1 + x2)Ω(f ;σ)(1 +
(y − x)4

σ4
)

≤ 16(1 + x2)Ω(f ;σ)(1 +
(y − x)4

σ4
).

Using the above inequaity with y = k
n , we deduce that

|Ln,α(f ;x)− f(x)| ≤
∣

∣

∣

∣

∣

∞
∑

k=0

f(
k

n
)P

(α)
n,k (x)− f(x)

∣

∣

∣

∣

∣

≤
∞
∑

k=0

∣

∣

∣

∣

f(
k

n
)− f(x)

∣

∣

∣

∣

P
(α)
n,k (x)

≤ 8(1 + x2)Ω(f ;σ)(1 +
1

σ4
Ln,α((t− x)4;x).

Thus, using Lemma 3 and choosing σ = 1√
n
yield the desired result.
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4. Numerical results

In this section, we present some numerical results obtained by using Matlab. Fig-
ure 1 shows the plot of f(x) = x2 along with L20,α(f ;x) for different values of
α = 0.1, 0.5, 0.7 and 1.0 on the interval [0, 1]. Note that when α = 0.5, α-Baskakov
approximation outperforms others. In this case, the graphs of f(x) and L20,α(f ;x)
are almost indistinguishable. However, unlike others, α = 0.1 leads to underestima-
tion.
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Figure 1: k ∈ [0,∞), x = 0 : 1/10 : 1, n = 20 and f(x) = x2

On the other hand, Figure 2 presents similar plots for f(x) = expx, but x ∈ [0, 5].
When we examine the figure, we observe that the best approximation is achieved
when α = 0.1.
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Figure 2: k ∈ [0,∞), x = 0 : 1/10 : 5, n = 20 and f(x) = exp x
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5. Conclusion

We constructed sequences of non-negative parametric α-Baskakov operators. We
expressed α-Baskakov operators in terms of forward divided differences and powers
of x, and their higher order derivatives in terms of forward divided differences.

On the other hand, we obtained Korovkin type of approximation properties of
the operators. Moreover, we obtained the convergence rate of α-Baskakov operators
by using the modulus of continuity. We also presented some simulation results
which say, depending on the value of the parameter α, the quaity of approximating
a function improves compared to classical Baskakov operators.
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