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STATISTICAL INFERENCE FOR GEOMETRIC PROCESS WITH
THE RAYLEIGH DISTRIBUTION

CENKER BIÇER, HAYRINISA DEMIRCI BIÇER, MAHMUT KARA,
AND HALIL AYDOĞDU

Abstract. The aim of this study is to investigate the solution of the statistical
inference problem for the geometric process (GP) when the distribution of first
occurrence time is assumed to be Rayleigh. Maximum likelihood (ML) estima-
tors for the parameters of GP, where a and λ are the ratio parameter of GP and
scale parameter of Rayleigh distribution, respectively, are obtained. In addi-
tion, we derive some important asymptotic properties of these estimators such
as normality and consistency. Then we run some simulation studies by differ-
ent parameter values to compare the estimation performances of the obtained
ML estimators with the non-parametric modified moment (MM) estimators.
The results of the simulation studies show that the obtained estimators are
more effi cient than the MM estimators.

1. Introduction

Counting process is quite suitable and widely used method for the statistical
analysis of the occurrence times of successive events. Let we consider a set of data
with successive arrival times. Renewal process (RP) can be used for analyzing of
this data, if successive arrival times are independent and identically distributed
(iid). Although this approach seems theoretically convenient, the data set often
contains a monotone trend in real life problems due to the ageing effect and the
accumulated wear [6], i.e., the successive arrival times may be independent but not
identically distributed. There are more possible approaches in the literature for
the analysis of set of successive arrival times with trend, such as non-homogeneous
Poisson process and GP [2,7,17].
GP was firstly introduced by Lam [11,12] as a generalization of a renewal process

and he applied to replacement problems. To understand GP, see the following
definition, [9].
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Definition 1. Let Xi be the interarrival time the (i − 1)th and ith events of a
counting process {N(t), t ≥ 0} for i = 1, 2, .... The counting process {N(t), t ≥ 0}
is said to be a GP with parameter a if there exists a real number a > 0 such that
Yi = ai−1Xi, i = 1, 2, ..., are iid random variables with the distribution function F .

a is the ratio parameter of GP. Obviously, GP is a simple monotonic stochastic
process. The monotonicity of GP according to the ratio parameter a is given in
Table 1.

Table 1. Behavior of GP according to values of the ratio para-
meter a

Parameter Value Behavior of Xi random variables
a > 1 Xi’s are stochasticaly decreasing
a < 1 Xi’s are stochasticaly increasing
a = 1 Xi’s are iid and GP reduces to RP

In the literature, there is a wide range of study on GP. Lam [13], Lam [14], Lam
et al. [15] and Braun et al. [5] investigated some of the basic properties of GP
by their studies. Until now, the problem of parameter estimation for GP has been
solved by assuming that the distribution of the first occurrence time is the Gamma
[6], Weibull [3], log-normal [14] and inverse Gaussian [9] distribution.
Estimation of the mean and variance of the first occurrence time X1 and also

ratio parameter a are very important for GP. Because of the fact that they are
completely determine the mean and variance of Xi, i = 1, 2, .... Let E(X1) = β and
V ar(X1) = θ2 for a GP with the ratio parameter a. The mean and variance of Xi’s
are as below.

E (Xi) =
β

ai−1
i = 1, 2, ... (1.1)

V ar (Xi) =
θ2

a2(i−1)
, i = 1, 2, ... (1.2)

The main objective of this study is to estimate the parameters in GP when the
distribution of first occurrence time X1 is Rayleigh with parameter λ. In fact, the
Rayleigh distribution with parameter λ is a special case of the Weibull distribution
with the shape parameter 2 and the scale parameter λ

√
2. The problem of statistical

inference for GP with the Weibull distribution has been investigated by Aydogdu et
al. [3] within the framework of the modified maximum likelihood method (MML).
But, it is known that the ML method works better than the MML method in the
small sample sizes. As a result of this, evaluating the statistical inference problem
for GP with the Weibull distribution within the ML methodology is quite important.
However, ML estimators for parameters of GP with the Weibull distribution cannot
be obtain explicitly, because of the fact that the first derivatives of the likelihood
function involve power functions of the ratio parameter a and shape parameter
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of Weibull distribution. Due to divergence problems, they cannot also be solved
by numerical methods. Thus, the statistical inference for GP with the Rayleigh
distribution within the framework of the ML methodology is of quite importance.
The main contribution of this paper is obtain the ML estimators for the parameters
of GP with the Rayleigh distribution.
The rest of this paper is organized as follow: Section 2 presents basic information

on the Rayleigh distribution. In Section 3, in accordance with the purpose of this
study, by using the ML method, the estimators of the parameters a and λ in GP are
obtained. Furthermore, asymptotic distributions and consistency properties of ML
estimators of the parameters a and λ are investigated. The numerical simulation for
comparing the effi ciencies of the obtained ML estimators with the MM estimators
is given in Section 4. The conclusions of this study are discussed in Section 5.

2. Overview to Rayleigh distribution

The Rayleigh distribution is frequently used distribution for modelling of positive
data from different areas such as communucation, health, engineering and reliability
etc.. Let X is a Rayleigh distributed random variable with the parameter λ, from
now on, will be indicated as X ∼ R (λ) for brevity. X has the probability density
function (pdf)

f(x;λ) =
x

λ2
e−x

2/2λ2 , x > 0, (2.1)

and cumulative distribution function (cdf)

F (x, λ) = 1− e−x
2/2λ2 , x > 0 (2.2)

where λ is the positive and real valued scale parameter of the distribution [10]. If
λ = 1, then distribution is called the standart Rayleigh distribution. The pdf of
Rayleigh distribution is unimodal and skewed to the right. The expected value and
variance for the Rayleigh distributed random variable X are E (X) = λ

√
π
2 and

V ar (X) = 4−π
2 λ2. Also, the skewness and kurtosis values of X are 2

√
π(π−3)

(4−π)3/2 and

− 6π2−24π+16
(4−π)2 , respectively.

Let us assume that X ∼ R(λ). It can be shown that for a constant c > 0

X ∼ R(λ)⇒ cX ∼ R (cλ) . (2.3)

For more information on the Rayleigh distribution, we refer the readers to [8]
and [10].

3. Inference for GP

Let X1, X2, ..., Xn be a random sample from a GP with ratio a and X1 ∼ R(λ)
with the pdf (2.1). From Equation (2.3), Xi has the distribution R( λ

ai−1 ) for all
i = 1, 2, .... Thus, the likelihood function for Xi, i = 1, 2, ..., n is
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L(a, λ) =
an(n−1)

λ2n

n∏
i=1

xie
−(ai−1xi)

2
/2λ2 . (3.1)

We can write the natural logarithm of the likelihood function given in Equation
(3.1) as shown below.

lnL(a, λ) = n (n− 1) ln a− 2n lnλ+
n∑
i=1

lnxi −
n∑
i=1

(
ai−1xi

)2
2λ2

. (3.2)

If the first derivatives of Equation (3.2) according to a and λ are taken, we reach
to the following likelihood equations.

∂ lnL(a, λ)

∂a
=
n (n− 1)

a
− 1

aλ2

n∑
i=1

(
ai−1xi

)2
(i− 1) = 0 (3.3)

∂ lnL(a, λ)

∂λ
= −2n

λ
+
1

λ3

n∑
i=1

(
ai−1xi

)2
= 0 (3.4)

Then, from the solution of Equations (3.3)-(3.4), the parameter λ is obtained as

λ =

(
1

2n

n∑
i=1

(
ai−1xi

)2)1/2
. (3.5)

By substituting the solution of λ into Equation (3.3), we have

(
n (n− 1)

a

)
−
(
2n

n∑
i=1

(i− 1)x2i a2i−3
)(

n∑
i=1

(
ai−1xi

)2)−1
= 0 (3.6)

Let us denote that the ML estimators of a and λ are âL and λ̂L, respectively. The
âL cannot be obtained analytically from solution of Equation (3.6), because of the
power functions of the parameter a.
Equation (3.6) can be solved by using a numerical method such as the Newton

Raphson method. The Newton-Raphson iterative formula for the solution of (3.6)
is given as

an+1 = an −
f(an)

f ′(an)
(3.7)

where f is considered as an objective function given in Equation (3.6). If we
substitute the numerical solution of âL into Equation (3.5), the ML estimator of λ
is obtained as below.

λ̂ML =

(
1

2n

n∑
i=1

(
âi−1MLXi

)2)1/2
, (3.8)
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The joint distribution of âML and λ̂ML estimators is asymptotically normal with
mean vector (a, λ) and covariance matrix I−1, (see [4]), that is,(

âML

λ̂ML

)
∼ AN

((
a
λ

)
, I−1

)
, (3.9)

where I−1 is the inverse of the Fisher information matrix I, given as

I−1 =

[
3a2

n3
3aλ
2n2

3aλ
2n2

λ2

n

]
. (3.10)

See appendix for the derivation of I−1.
(3.9) yields the marginal distribution of âL and λ̂ML estimators as

âML ∼ AN
(
a,
3a2

n3

)
(3.11)

and

λ̂ML ∼ AN
(
λ,
λ2

n

)
,

respectively.
Hence, both âML and λ̂ML are asymptotically unbiased estimators and they are

also consistent, because the asymptotic variance of each of âML and λ̂ML converges
to zero as n →∞.
Also, by considering (3.11), the following hypothesis

H0 : a = 1 vs. H1 : a 6= 1 (3.12)

can be tested by using the statistic

U =
n3/2 (âML − 1)√

3â2ML

. (3.13)

Here, âML is the ML estimate of the parameter a which is obtained using the
iterative method given by (3.7). Under hypothesis H0 given by (3.12), by Slutsky
theorem, from (3.11) and consistency of âML, the statistic U is asymptotically
normally (AN) distributed with mean zero and variance 1, in other words U ∼
AN (0, 1) . Thus, by using the statistic U , it can be decided whether GP is suitable
or not for given a data set.

4. Monte Carlo simulation study

In this section, a simulation study was performed to evaluate the estimation
performance of the ML estimators obtained in previous section and to compare the
effi ciencies of the obtained estimators and MM estimators given by [6],[16]:

âMM = exp

(
6

(n− 1)n (n+ 1)

n∑
i=1

(n− 2i+ 1) lnXi

)
(4.1)
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and

λ̂MM =

√
2

π

1

n

n∑
i=1

Ŷi, (4.2)

where Ŷi = âi−1MMXi. Throughout the simulation study, the parameter λ was chosen
as 0.5, 1, 1.5, 2, 4. The means, biases and n×MSEs for the ML and MM estimators
were computed for different sample sizes n = 30, 50, 100 and the ratio parameters
a = 0.90, 0.95, 1.05, 1.10. The study results based on [100, 000/n] Monte Carlo
simulations are given in Table 2-6.

Table 2. The simulated means, Biases and nxMSEs for the ML
and MM estimators of the parameters a and λ, when λ = 0.5

â λ̂
a n Method Mean Bias n×MSE Mean Bias n×MSE

0.9 30 ML 0.90012 0.00012 0.00284 1.99992 0.00008 3.84934
MM 0.90000 0.00000 0.00441 2.02659 0.02659 5.80704

50 ML 0.90001 0.00001 0.00104 2.00149 0.00149 4.06576
MM 0.90002 0.00002 0.00161 2.02129 0.02129 6.03156

100 ML 0.89999 0.00001 0.00025 1.99862 0.00138 3.93192
MM 0.89999 0.00001 0.00040 2.00846 0.00846 6.02902

0.95 30 ML 0.95001 0.00001 0.00323 1.99776 0.00224 3.92955
MM 0.95011 0.00011 0.00507 2.03201 0.03201 5.97559

50 ML 0.94998 0.00002 0.00113 1.99656 0.00344 3.98855
MM 0.94996 0.00004 0.00182 2.01547 0.01547 6.03692

100 ML 0.95001 0.00001 0.00027 2.00186 0.00186 3.93329
MM 0.95001 0.00001 0.00044 2.01218 0.01218 5.98921

1.05 30 ML 1.04994 0.00006 0.00380 1.99304 0.00696 3.82719
MM 1.05003 0.00003 0.00587 2.02445 0.02445 5.63419

50 ML 1.05010 0.00010 0.00139 2.00333 0.00333 3.95386
MM 1.05017 0.00017 0.00220 2.02500 0.02500 6.02510

100 ML 1.04999 0.00001 0.00033 1.99805 0.00195 3.86163
MM 1.05000 0.00000 0.00054 2.00818 0.00818 5.85188

1.1 30 ML 1.10006 0.00006 0.00438 1.99817 0.00183 4.00071
MM 1.10025 0.00025 0.00685 2.03509 0.03509 6.16833

50 ML 1.10007 0.00007 0.00151 2.00380 0.00380 4.00610
MM 1.10004 0.00004 0.00237 2.02164 0.02164 5.93794

100 ML 1.09999 0.00001 0.00037 1.99788 0.00212 3.96683
MM 1.09999 0.00001 0.00060 2.00856 0.00856 6.00147

As can be clearly seen from Table 2, when the number of observations n increases,
both bias and n×MSE values decrease for all the estimators of a and λ. This is
an expected result owing to these estimators are both asymptotically unbiased and
consistent. Also, according to the results given in Table 2-6, ML estimators have
smaller MSE values than MM estimators for all cases. Therefore, we can say that
their estimation performance is better than MM estimators. The diagonal elements
in I−1 given in Equation (3.10) are also known as the minimum variance bounds
(MVBs) for estimating a and λ. The simulated variances of the ML estimators and
the corresponding MVB values with a = 1.10 and λ = 2 are presented in Table 7.
From Table 7, the simulated variances of the ML estimators and the corresponding
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Table 3. The simulated means, Biases and nxMSEs for the ML
and MM estimators of the parameters a and λ, when λ = 1

â λ̂
a n Method Mean Bias n×MSE Mean Bias n×MSE

0.9 30 ML 0.90022 0.00022 0.00287 2.00567 0.00567 3.94513
MM 0.90021 0.00021 0.00448 2.03610 0.03610 5.91755

50 ML 0.90005 0.00005 0.00101 2.00182 0.00182 3.91768
MM 0.89999 0.00001 0.00162 2.01929 0.01929 5.94595

100 ML 0.90001 0.00001 0.00025 1.99901 0.00099 4.01014
MM 0.90002 0.00002 0.00040 2.01007 0.01007 5.98562

0.95 30 ML 0.95009 0.00009 0.00323 2.00009 0.00009 3.98117
MM 0.95017 0.00017 0.00497 2.03391 0.03391 5.96713

50 ML 0.95009 0.00009 0.00113 2.00353 0.00353 3.96231
MM 0.95010 0.00010 0.00178 2.02297 0.02297 5.93633

100 ML 0.95003 0.00003 0.00028 2.00233 0.00233 3.99716
MM 0.95002 0.00002 0.00045 2.01124 0.01124 6.10600

1.05 30 ML 1.05019 0.00019 0.00385 2.00108 0.00108 3.92159
MM 1.05024 0.00024 0.00606 2.03296 0.03296 5.91685

50 ML 1.04996 0.00004 0.00140 1.99976 0.00024 3.99969
MM 1.04999 0.00001 0.00223 2.02019 0.02019 6.03730

100 ML 1.05001 0.00001 0.00033 2.00064 0.00064 3.97149
MM 1.05001 0.00001 0.00055 2.01167 0.01167 6.01511

1.1 30 ML 1.09994 0.00006 0.00424 1.99638 0.00362 3.90510
MM 1.09999 0.00001 0.00661 2.02830 0.02830 5.88341

50 ML 1.10001 0.00001 0.00150 2.00082 0.00082 3.92722
MM 1.10002 0.00002 0.00236 2.02124 0.02124 5.95966

100 ML 1.09999 0.00001 0.00037 1.99870 0.00130 4.01233
MM 1.09998 0.00002 0.00059 2.00749 0.00749 5.86874

Table 4. The simulated means, Biases and nxMSEs for the ML
and MM estimators of the parameters a and λ, when λ = 1.5

â λ̂
a n Method Mean Bias n×MSE Mean Bias n×MSE

0.9 30 ML 0.90005 0.00005 0.00284 2.00119 0.00119 3.90264
MM 0.90016 0.00016 0.00439 2.03493 0.03493 5.93560

50 ML 0.89995 0.00005 0.00103 1.99929 0.00071 3.99919
MM 0.89987 0.00013 0.00159 2.01367 0.01367 5.92713

100 ML 0.90000 0.00000 0.00025 2.00045 0.00045 3.89088
MM 0.90000 0.00000 0.00040 2.01035 0.01035 5.89549

0.95 30 ML 0.95001 0.00001 0.00313 1.99717 0.00283 3.82946
MM 0.95013 0.00013 0.00494 2.03151 0.03151 5.84001

50 ML 0.95006 0.00006 0.00111 2.00218 0.00218 3.88205
MM 0.95008 0.00008 0.00180 2.02400 0.02400 5.95549

100 ML 0.95002 0.00002 0.00027 2.00174 0.00174 3.98022
MM 0.95003 0.00003 0.00045 2.01338 0.01338 6.07587

1.05 30 ML 1.04978 0.00022 0.00384 1.99469 0.00531 3.90250
MM 1.04988 0.00012 0.00598 2.02831 0.02831 5.88681

50 ML 1.04999 0.00001 0.00136 1.99626 0.00374 3.88286
MM 1.05000 0.00000 0.00216 2.01569 0.01569 5.84545

100 ML 1.04998 0.00002 0.00034 1.99825 0.00175 3.94494
MM 1.04998 0.00002 0.00055 2.00876 0.00876 5.97694

1.1 30 ML 1.10012 0.00012 0.00431 1.99943 0.00057 3.99093
MM 1.10024 0.00024 0.00659 2.03171 0.03171 5.88111

50 ML 1.10007 0.00007 0.00151 2.00158 0.00158 3.95243
MM 1.10008 0.00008 0.00240 2.02120 0.02120 5.91306

100 ML 1.09997 0.00003 0.00038 1.99582 0.00418 4.09140
MM 1.09997 0.00003 0.00061 2.00666 0.00666 6.08929
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Table 5. The simulated means, Biases and nxMSEs for the ML
and MM estimators of the parameters a and λ, when λ = 2

â λ̂
a n Method Mean Bias n×MSE Mean Bias n×MSE

0.9 30 ML 0.89992 0.00008 0.00284 1.99636 0.00364 3.82012
MM 0.89986 0.00014 0.00442 2.02506 0.02506 5.75547

50 ML 0.90001 0.00001 0.00101 2.00008 0.00008 3.96042
MM 0.89997 0.00003 0.00162 2.01595 0.01595 5.96905

100 ML 0.90001 0.00001 0.00025 2.00088 0.00088 3.95471
MM 0.90001 0.00001 0.00040 2.01110 0.01110 5.98187

0.95 30 ML 0.95016 0.00016 0.00321 2.00324 0.00324 3.92126
MM 0.95024 0.00024 0.00507 2.03673 0.03673 5.98280

50 ML 0.94995 0.00005 0.00109 1.99438 0.00562 3.91541
MM 0.94996 0.00004 0.00175 2.01461 0.01461 5.83645

100 ML 0.95000 0.00000 0.00028 2.00031 0.00031 4.07335
MM 0.95002 0.00002 0.00045 2.01258 0.01258 6.15760

1.05 30 ML 1.05016 0.00016 0.00388 1.99936 0.00064 3.88975
MM 1.05022 0.00022 0.00599 2.03052 0.03052 5.82419

50 ML 1.05005 0.00005 0.00138 2.00267 0.00267 3.98249
MM 1.05010 0.00010 0.00215 2.02408 0.02408 5.92146

100 ML 1.04997 0.00003 0.00033 1.99719 0.00281 3.87698
MM 1.04998 0.00002 0.00054 2.00810 0.00810 5.90144

1.1 30 ML 1.10002 0.00002 0.00422 1.99815 0.00185 3.91876
MM 1.09992 0.00008 0.00653 2.02601 0.02601 5.88347

50 ML 1.10008 0.00008 0.00150 2.00039 0.00039 3.95590
MM 1.10008 0.00008 0.00244 2.01933 0.01933 6.06236

100 ML 1.09998 0.00002 0.00037 1.99797 0.00203 3.92220
MM 1.09998 0.00002 0.00060 2.00836 0.00836 5.99295

Table 6. The simulated means, Biases and nxMSEs for the ML
and MM estimators of the parameters a and λ, when λ = 1

â λ̂
a n Method Mean Bias n×MSE Mean Bias n×MSE

0.9 30 ML 0.90009 0.00009 0.00277 2.00069 0.00069 3.82511
MM 0.90010 0.00010 0.00437 2.03149 0.03149 5.82083

50 ML 0.90005 0.00005 0.00101 2.00240 0.00240 3.98809
MM 0.89998 0.00002 0.00160 2.01773 0.01773 5.97136

100 ML 0.89999 0.00001 0.00025 1.99803 0.00197 3.94618
MM 0.90001 0.00001 0.00040 2.00993 0.00993 5.93718

0.95 30 ML 0.94997 0.00003 0.00324 1.99879 0.00121 3.91719
MM 0.94997 0.00003 0.00503 2.02922 0.02922 5.79434

50 ML 0.94996 0.00004 0.00112 1.99900 0.00100 3.93871
MM 0.94997 0.00003 0.00179 2.01798 0.01798 5.92703

100 ML 0.94999 0.00001 0.00027 1.99956 0.00044 3.91735
MM 0.94997 0.00003 0.00044 2.00791 0.00791 5.95418

1.05 30 ML 1.05019 0.00019 0.00391 2.00269 0.00269 3.87857
MM 1.05021 0.00021 0.00596 2.03344 0.03344 5.80297

50 ML 1.05005 0.00005 0.00139 1.99822 0.00178 4.02246
MM 1.05012 0.00012 0.00219 2.01988 0.01988 5.94967

100 ML 1.04999 0.00001 0.00034 1.99839 0.00161 3.99821
MM 1.04999 0.00001 0.00054 2.00857 0.00857 5.92792

1.1 30 ML 1.10026 0.00026 0.00426 2.00355 0.00355 3.91609
MM 1.10020 0.00020 0.00661 2.03346 0.03346 5.93627

50 ML 1.10001 0.00001 0.00147 1.99938 0.00062 3.87188
MM 1.10000 0.00000 0.00240 2.01862 0.01862 5.91393

100 ML 1.10002 0.00002 0.00037 2.00168 0.00168 3.99584
MM 1.10000 0.00000 0.00060 2.01039 0.01039 6.00551
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Table 7. The simulated variances of the ML estimators and the
corresponding MVB values.

Simulated variances MVB
n a λ a λ
30 1.42603E-04 0.1413 1.34444E-04 0.1333
50 2.99881E-05 0.0819 2.90400E-05 0.0800
100 3.77741E-06 0.0406 3.63000E-06 0.0400

MVB values become close as n increases. It is clear to say that the ML estimators
are highly effi cient estimators.

5. Application

In this section, in order to illustrate the data analysis, a real data set is analysed
by using the ML and MM estimators. This data set is about the coal mining
disaster.
Coal mining disaster data
The coal-mining disaster data set has 190 observations showing that the intervals

in days between successive disasters in Great Britain [1]. To test whether the data
set {X1, X2, ..., Xn} is consistent with the Rayleigh distribution, let’s write Yi =
ai−1Xi, i = 1, 2, ..., n. By taking the logarithm of Yi, we obtain lnYi = (i−1) ln a+
lnXi, i = 1, 2, ..., n. It is known that lnYi’s are iid random variables with extreme
value distribution EV (δ, η) by the pdf f(x) = 1

η exp(
x−δ
η ) exp(− exp(x−δη )), x ∈

R; η > 0, δ ∈ R,where δ = ln(
√
2λ) and η = 0.5. Then, a simple linear regression

model is given by lnXi = µ − (i − 1) ln a + εi, i = 1, 2, ..., n where µ = E (lnYi)
and εi ∼ EV (δ, 0.5). For this data set, it is obtained εi ∼ EV (0.2886, 0.5), where

ε̂i = lnxi − µ̂+ (i− 1) ln âMM , i = 1, 2, ..., n and µ̂ = 2
n(n+1)

n∑
i=1

(2n− 3i+ 2) lnxi.

Thus, to obtain an idea whether the underlying distribution of data set is the
Rayleigh, a Q-Q plot can be constructed by plotting the ordered residuals ε̂i against
the quantiles of the EV (0.2886, 0.5) distribution, see Figure 1.
It is clear from Figure 1 that the data points fall approximately on the straight

line, thus it can be concluded that the Rayleigh is an appropriate distribution for the
coal mining disaster data. This is also supported by the Z* test statistic proposed
by Tiku [18] (Z*=1.0049 and p-value=0.8938). Moreover, for this data set, the
value of statistic U given in Equation 3.13 and respective p-value are calculated as
U = −12.8417 and p-value = 9.5745e − 038, respectively. According to result of
this test, the data follow a GP with a 6= 1. This data was also studied by Lam et.
al (2004) who showed that the data come from a GP and the ratio parameter a is
less than 1. Thus, we can say that the data set can be modeled by a GP with the
Rayleigh distribution.
The estimates of the parameters a and λ when the coal mining disaster data set

is modeled by a GP with Rayleigh distribution are given in Table 8. Values given
in parantheses in Table 8 are the standart errors (SE) of the estimators.
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Figure 1. EV Q-Q plot of the coal mining data.

Table 8. Estimation of parameters for the coal mining disaster data

Method â λ̂
ML 0.9916 91.2931

(6.5425x10-5) (4.6812)
MM 0.9909 62.2422

(0.0018) (12.1883)

6. Conclusion

In this paper, we consider the parameter estimation problem in the GP by as-
suming that distribution of the first occurrence time is Rayleigh with the scale
parameter λ. ML estimators for both the ratio parameter a of GP and scale pa-
rameter λ of Rayleigh distribution are also obtained and it is proved that these
estimators are asymptotically normal distributed and consistent estimators. In ad-
dition, the ML estimators are compared to MM estimators with a simulation study
which evaluates the means, biases and n×MSE for estimators. According to simu-
lated results, ML estimators are more effi cient than MM estimators and they have
smaller n×MSE values.

7. Appendix. The derivation of I−1

The second derivatives of the logaritmic likelihood function given in Equation
(3.2) are
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∂2 lnL

∂a2
= −n (n− 1)

a2
− 1

a2λ2

n∑
i=1

(
ai−1xi

)2
(i− 1) (2i− 3)

∂2 lnL

∂λ2
=
2n

λ2
− 3

λ4

n∑
i=1

(
ai−1xi

)2
∂2 lnL

∂λ∂a
=

2

aλ3

n∑
i=1

(
ai−1xi

)2
(i− 1)

Furthermore, since E
(
ai−1Xi

)
= λ

√
π
2 and E

[(
ai−1Xi

)2]
= 2λ2 the expected

values of the second derivates are obtained as

E

(
−∂

2 lnL

∂a2

)
=

n (n− 1)
a2

+
1

a2λ2

n∑
i=1

E
[(
ai−1Xi

)2]
(i− 1) (2i− 3)

=
n (n− 1)

a2
+

1

a2λ2

n∑
i=1

2λ2 (i− 1) (2i− 3)

=
1

a2

(
4

3
n3 − 3n2 + 5

3
n

)
− 1

a2
(
n2 − n

)
≈ 4

3a2
n3

E

(
−∂

2 lnL

∂λ2

)
= −2n

λ2
+
3

λ4

n∑
i=1

E
[(
ai−1Xi

)2]
= −2n

λ2
+
3

λ4

n∑
i=1

2λ2

=
4n

λ2

E

(
−∂

2 lnL

∂λ∂a

)
= − 2

aλ3

n∑
i=1

E
[(
ai−1Xi

)2]
(i− 1)

= − 2

aλ3

n∑
i=1

2λ2 (i− 1)

= − 2

aλ3
(
n2λ2 − nλ2

)
≈ −2n

2

aλ

where the symbol ≈ stands for ‘asymptotically equivalent’. These are the compo-
nents of the Fisher information matrix I and its inverse is given Equation (3.10).
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