
Research Article
Alternate Low-Rank Matrix Approximation in Latent
Semantic Analysis

Fahrettin Horasan , Hasan Erbay , Fatih Varçın , and Emre Deniz

Computer Engineering Department, Engineering Faculty, Kırıkkale University, Yahşihan, 71450 Kırıkkale, Turkey

Correspondence should be addressed to Fatih Varçın; fatihvarcin@kku.edu.tr

Received 18 June 2018; Accepted 29 November 2018; Published 3 February 2019

Academic Editor: Danilo Pianini

Copyright © 2019 FahrettinHorasan et al.-is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

-e latent semantic analysis (LSA) is a mathematical/statistical way of discovering hidden concepts between terms and documents
or within a document collection (i.e., a large corpus of text). Each document of the corpus and terms are expressed as a vector with
elements corresponding to these concepts to form a term-document matrix. -en, the LSA uses a low-rank approximation to the
term-document matrix in order to remove irrelevant information, to extract more important relations, and to reduce the
computational time. -e irrelevant information is called as “noise” and does not have a noteworthy effect on the meaning of the
document collection. -is is an essential step in the LSA. -e singular value decomposition (SVD) has been the main tool
obtaining the low-rank approximation in the LSA. Since the document collection is dynamic (i.e., the term-document matrix is
subject to repeated updates), we need to renew the approximation. -is can be done via recomputing the SVD or updating the
SVD. However, the computational time of recomputing or updating the SVD of the term-document matrix is very high when
adding new terms and/or documents to preexisting document collection. -erefore, this issue opened the door of using other
matrix decompositions for the LSA as ULV- and URV-based decompositions. -is study shows that the truncated ULV de-
composition (TULVD) is a good alternative to the SVD in the LSA modeling.

1. Introduction

-e latent semantic analysis (LSA) is a mathematical/
statistical method which is used for discovering the exist-
ing latent relationships between terms and documents or
within a collection of documents (i.e., a large corpus of text)
[1]. Although the LSA works especially well on textual data,
it has been very popular in the academic community recently
because of its wide variety of practices in the content in-
formation [2], sociological discourse analysis [3], image
retrieval systems [4], human cognition, and human learning
[5]. -e LSA can be applied to any collection of documents
that is cleaned from the syntactical and grammatical
structure. If the collection of documents contains m terms
and n documents, it is represented by using a matrix A of
dimension m × n and called the term-document matrix.

-e LSA uses a low-rank approximation to the term-
document matrix in order to remove irrelevant information,
to extract more important relations, and to reduce the
computational time. -e irrelevant information is called as

“noise” and does not have a noteworthy effect on the
meaning of the document collection [6].

-e low-rank approximation of the term-document
matrix A is, for a positive constant k≪ min(m, n), the
matrix Ak that satisfies

min A−Ak

����
����,

s.t. rank Ak � k,
(1)

where ‖ · · · ‖ represents either two-norm or Frobenius-norm.
-e existence of such a matrix follows from the singular
value decomposition (SVD) of A. Moreover, with no doubt,
the truncated singular value decomposition is the main tool
for solving the minimization problem given by (1). However,
in the LSA where document collections are dynamic over
time, i.e., the term-document matrix is subject to repeated
updates, the SVD becomes prohibitive due to the high
computational expense. -us, alternative decompositions
have been proposed for these applications such as low-
rank ULV/URV decompositions [7] and truncated ULV

Hindawi
Scientific Programming
Volume 2019, Article ID 1095643, 12 pages
https://doi.org/10.1155/2019/1095643

mailto:fatihvarcin@kku.edu.tr
http://orcid.org/0000-0003-4554-9083
http://orcid.org/0000-0002-7555-541X
http://orcid.org/0000-0002-5100-3012
http://orcid.org/0000-0003-1563-9256
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1095643


decomposition (TULVD) [8]. Recall that, the initial com-
puting cost for the low-rank ULV/URV decompositions and
the TULVD lower is than the SVD [7].

�e manuscript demonstrates that the TULVD is a good
substitute for the SVD in the LSA modeling.

�e rest of the manuscript is organized as follows. In
Section 2, we introduce some notations and cover critical
background materials in numerical linear algebra. In Section
3, we give the main steps of our LSA modeling. �en in
Section 4, we test our model using some commonly used test
collections and present some simulation results. In Section 5,
we comment on simulation results.

2. Notations and Background

2.1. Notations. �roughout the paper, uppercase letters such
as A denote matrices. �e n × n identity matrix is denoted by
In. Moreover, the norm ‖ · · · ‖ denotes the spectral norm, and
‖ · · · ‖F denotes the Frobenius norm. �e notation Rm×n

represents the set of m × n real matrices. An m × n dimen-
sional matrix A is represented as A � [aij] where aij is the
entry of A at i row and j column with 1≤ i≤m and 1≤ j≤ n.

2.2. Orthogonal Matrix Decompositions

De�nition 1 (the singular value decomposition). For a
matrix A ∈ Rm×n with m≥ n, the singular value de-
composition (SVD) is

A �W
∑
0

 YT, (2)

where the left and right singular matrices W and Y are
orthogonal matrices and where ∑ � diag(σ1, . . . , σn) is a
diagonal matrix with the following order:

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. (3)

�e diagonal entries of ∑ are called the singular values
of A.

For a given positive integer k ≪ n ≪ m, we block
partition the SVD in (2) as

A � Wk W0 W⊥( )

∑
k

0

0 ∑
0

0 0




Yk Y0( )T, (4)

where ∑k � diag(σ1, . . . , σk) and ∑0 � diag(σk+1, . . . , σn)
are diagonal matrices containing the k largest and n− k
smallest singular values of A, respectively, (Figure 1). �e
matrix Ak de�ned by

Ak �Wk∑
k

YTk , (5)

is called rank k matrix approximation to A. For some tol-
erance, ϵM is proportional to the machine unit, and if the
singular values satisfy

σ1 ≥ σ2 ≥ · · · ≥ σk≫ εM ≥ σk+1 ≥ · · · σn ≥ 0, (6)

then the value k is called the numerical rank of the matrix
A. However, we are aware that the determination of the
numerical rank is a sensitive computation, especially when
there is no well-de�ned gap between singular values [9, 10].
Moreover, in some situations, like the example in Section
5.4.1 of [10], the tolerance ϵM is chosen slightly bigger. �e
time complexity of obtaining Ak is 6mn2 + 20n3 [7].

Even though the SVD provides accurate subspaces, as we
mentioned above, it is not suitable for dynamic problems
where data changes (i.e., update and/or downdate) due to
high computational demand in both dense [11] or sparse
matrices [12]. Herein, we consider ULV-based TULVD for
approximating the matrix subspaces.

De�nition 2 (the truncated ULV decomposition). For a
matrix A ∈ Rm×n with the numerical rank k≪ n≪m, the
TULVD is

A � ULVT + E, (7)
where L ∈ Rk×k is nonsingular lower triangular matrix,
U1 ∈ Rm×k and V ∈ Rn×k are left orthogonal matrices
(i.e., UTU � VTV � Ik), and E ∈ Rm×n is an error matrix.

�e matrices L and E satisfy

min L−1
����

����F,

s.t. EF
����
���� < ϵM,

UTE � 0.

(8)

To meet these conditions, instead of minimizing ‖L−1‖F,
keep it as small as feasible and always enforce the constraint
on ‖E‖F thereby biasing the algorithm to favor a small
approximation error over ideal conditioning of L.

�e TULVD provides both rank and good approximate
subspaces of the matrix [8, 13] and di�ers from the ULV
decompositions in [14, 15] in two signi�cant respects:

(1) �ematrix E is not stored, instead, L−1F is maintained.
However, by equations in (10) and (11), we are able
to compute the projections Ev or ETu using A andU;
in addition, computational tools for computing them
are provided in Section 2 of [8].

(2) A is either sparse or structured, the matrix-vector
multiplications Av or ATu require less than O(mn).
For example, when A is sparse, the computational
complexity of the matrix-vector product is O(m + n).

Proposition 1. Let A � ULVT + E be a TULVD of the
matrix A ∈ Rm×n with rank k. �en

n – kn

m =

k n – k

n – k

k n
k

Figure 1: Low-rank decomposition.

2 Scienti�c Programming



E � PA,

P � Im −UU
+
,

(9)

where U+ is the pseudoinverse of U.

Proof. See [8].
-en, it follows that

Ev � Im −UU
+

( Av, (10)

E
T
u � A

T
Im −UU

+
( u. (11)

-e computation of TULVD of the matrix A requires
12mnk + 3(m + n)k + 4n2k + (k + 1)W(A) operations where
W(A) represents the average work to estimate the principal
singular triplets of A and takes O(mn) operations [7]. □

3. LSA Modeling

-e LSA relies on some existing latent structure in word
usage in the corpus. It uses statistically derived conceptual
indices instead of individual words for retrieval. -us, it
overcomes the problems of synonymy and polysemy in
lexical matching retrieval methods [16]. Note that the LSA
is an unsupervised learning method.

-e main steps of the LSA modeling is outlined in Al-
gorithm 1.-e LSAmodeling algorithm inputs the corpus of
at least two or more monolingual textual documents. -e
documents may be of different types such as medical, ed-
ucational, computer science, and social science. Moreover,
the corpus may be in any language.

In the LSA modeling, a vector space, so-called “semantic
space,” representation of the document collection is typically
computed and then the inner product or cosine between the
user query vector and/or document vectors is used as a
measure of similarity between the documents. We note that
the similarity estimates derived by the LSA are not simple
contiguity frequencies, co-occurrence counts, or correla-
tions in usage but depend on a powerful mathematical/
statistical analysis that is capable of correctly inferring much
deeper relations [17].

In the following, the main steps of LSA modeling in
Algorithm 1 are explained.

In obtaining the term-document matrix step, first, each
document in the corpus is cleaned from the syntactical and
grammatical structure in order to improve the LSA per-
formance both effectively and efficiently. In the term-
document matrix, each row stands for a unique word and
each column stands for a document in the corpus. Each entry
expresses both the word’s importance in the particular
document and the degree to which the word carries in-
formation in the corpus in general. Mathematically, the
value of the entry aij at the ith row and jth column of the
document-term matrix A is given by

aij � L(i, j) × G(i), (12)

where L(i, j) represents the local weight of the word i in
the document j and G(i) represents the global weight of

the word i. -ere are different local and general weighting
methods defined in the literature; however, in this study,
term frequency (tf) for local weighting and inverse
document frequency (idf) for overall weighting methods
are used to calculate the element A[i, j] of the term-
document matrix A. Other weighting schemes [18, 19]
can be applied to increase/decrease the importance of
terms within and/or among documents. Here we have to
note that equation (12) does not take the word order into
account.

-e main step in LSA modeling is to obtain the low-
rank approximation of the term-document matrix A. It is
computed via both the SVD and the truncated ULV de-
composition. In the former case, the rank k low-
dimensional approximation is the matrix Ak given in
equation (5), whereas in the latter case, it is derived from
equation (7). To be more precise, the singular values L are
close to the k-largest singular values of A, while the col-
umns of matrices U and V are the corresponding ap-
proximate left and right singular vectors of A, respectively
[8]. Recall that the LSA attempts to retrieve a small number
of concepts are important for representing the corpus. -e
matrix L indicates these concepts as good as k, especially
when L is diagonally dominant [20]. On the contrary, in the
LSA applications, the number of important concepts is
much smaller than both the number of terms and docu-
ments, i.e., k≪min(m, n).

Note that in reduced k-dimensional semantic space, the
rows of the matrix Wkk and UL represent the terms, but
the columns of the matrix kYT

k and LVT represent the
documents in the corpus.

3.1.Query. A query consists of words and is considered as a
document and represented in vector space. In other words,
the query composed of the words entered by the user is
translated to an m × 1 dimensional vector q by using the
same weighting process used to construct the term-
document matrix. -en, the query vector q is repre-
sented in the SVD-based vector space given by equation (5)
as

q � q
T
Wk

k

, (13)

and the TULVD-based vector space given by equation (7) as
q � q

T
UL. (14)

By representing the query vector in the corresponding
vector space, all document vectors existing in the vector
space can be compared with the query vector and sorted by
the similarity rank.

-e determination of the exact similarity measurement
method is very important in terms of classification of
documents and performance of information retrieval [21].
In literature, different similarity measures are defined such
as Euclidean distance, cosine similarity, Jaccard coefficient,
Pearson correlation coefficient, and averaged Kullback–
Leibler divergence [22]. In this study, we prefer cosine
similarity.

Scientific Programming 3



4. Application

To test our LSA model, we make use of three commonly used
information retrieval test collections. -ese collections are
American Documentation Institute Reports (ADI), a collec-
tion of articles published in Time magazine (TIME), and a
collection of medline articles (MED). Each of these test col-
lections contain a set of short articles, a set of queries, and a list
indicating which documents are relevant to which queries.-e
performance of the model is evaluated on the basis of this list.

For each collection, stopwords in the documents are
cleaned and stemming is applied before the term-document
matrix of the collection is created. Table 1 presents some
statistics before and after the preprocessing along with the
number of queries.

-us, the term-document matrix A is of size 986 × 82 for
the ADI, 14774 × 424 for the TIME, and 9477 × 1033 for the
MED, and its entries are obtained by using equation (12). -e
local weight L(i, j) of the ith word in the jth document is
obtained by tf, and the overall weighting G(i) of the ith word
is by idf, that is,

L(i, j) � tf(i, j), (15)

where tf(i, j) is the frequency of the word iwithin document
j; on the contrary,

G(i) � log
n

df(i)
 , (16)

where df(i) is the frequency of documents in which the word
i appears at least once.

-e term-document matrix for the MED collection is
given in Table 2. Note that as mentioned above, this matrix is
a sparse matrix.

-e distribution of terms in the data set using the SVD is
given in Figure 2 and using the TULVD in Figure 3. On the
contrary, the distribution of documents using the SVD is
given in Figure 4 and using the TULVD in Figure 5.

When the distributions of terms and documents for both
algorithms are visually examined, it is seen that those re-
alized by the TULVD are distributed over a wider area.
However, when analyzed as an angular perspective, it is
observed that the distributions given for both algorithms are
not identical but show a similar distribution.

Now, we quantitatively compare the performance of the
SVD-based information retrieval and the TULVD-based in-
formation retrieval. -e standard metrics are “recall” and
“precision.” Before we remind their mathematical definitions,
we define some variables. We let A be the set of documents
returned as a result of the query information extraction and
relevant to query. Moreover, let B represent all the documents
accessed in the query result, and C represent all the documents
related to the query in the corpus. -en, the recall is defined as

% input:
% monolingual textual corpus

% output:
% graph of terms and documents

% read the corpus, parse it, and execute the morphological step,
% weight the terms and obtain the term-document matrix
doc_file� ‘files/document.txt’;
stopword_file� ‘files/stopword_en.txt’;
A� doc_term_mat (doc_file, stopword_file, weight);
% apply the SVD decomposition
[W, Sigma, Y]� svd(A);
% obtain the components of A k by the SVD
W_k�W (:, 1 : k);
Sigma_k� Sigma (1 : k, 1 : k);
Y_k�Y(:, 1 : k);
% apply the TULVD
[U, L, V]�TULV(A);
% obtain the components of A_k by the TULVD
U_k�U; L_k� L; V_k�V;
% find term and document vectors in k-space
term_vec�U_k∗ L_k
doc_vec� L_k∗ transpose (V_k)
% represent the query q in k-space
query_vec� query (q, U_k, L_k)
% find semantic relationship in the corpus using cosine similarity
semantic_sim� cosine_sim (query_vec, doc_vec)

ALGORITHM 1: -e LSA modeling.

Table 1: Numbers of documents, queries, and terms in the test
collections.

Collection Number of
documents

Number
of terms

Number of terms
before stemming

Number
of queries

ADI 82 986 1308 35
TIME 424 14774 20853 83
MED 1033 9477 12931 30

4 Scientific Programming



r �
n(A)
n(C)

, (17)

and the precision is de�ned as

p �
n(A)
n(B)

. (18)

A detailed explanation of these quantitative metrics can
be found in [23–25].

Tables 3, 4, and 5 show the results of the SVD and TULVD
methods for the ADI, the MED, and the TIME collections,
respectively, according to di�erent k values. In the tables,
instead of taking all the returned documents after the query,
we only use 10% and 50% to obtain quantitative metrics.
Precision shows the average success of indexed documents for
all queries in these slices. In addition, Min Cosine Similarity
Value shows the average minimum cosine similarity value of
the documents listed in the query result.

Table 3 shows the performance of the ADI collection
according to the rank k value. For k< 40, the performance
of both methods is poor. Indexing accuracy increases until
k is between 50 and 60. However, when k is greater than 70,
the indexing accuracy begins to decrease. Similarly, Table 4
shows the performance of the MED collection according to
the k value, and it is seen that the performance of both
methods is poor for k< 10, increases for k between 20 and
150 and decreases for k> 300. Finally, the performance
analysis of the TIME collection is given in Table 5. �e
performance of both methods is poor for k< 50, increases
when k is between 100 and 200, and decreases when k is
greater than 200.

Tables 6, 7, and 8 show the success of the SVD and the
TULVDmethods applied to the ADI, theMED, and the TIME
collections, respectively, according to the similarity threshold
value. �e results in the tables are obtained by taking the
average of the achievement of the documents listed for all the

x
–10

–10
–8 –6 –4 –2 0 2 4 6 8 10

–8

–6

–4

–2

0

2

4

6

8

10

y

Terms

Figure 2:�e distribution of terms of theMED collection using the
SVD.

x
–20 –15 –10 –5 0 5 10 15 20–20

–15

–10

–5

0

5

10

15

20

y

Terms

Figure 3:�e distribution of terms of theMED collection using the
TULVD.

Documents

x
–10 –8 –6 –4 –2 0 2 4 6 8 10

–10

–8

–6

–4

–2

0

2

4

6

8

10

y

Figure 4: �e distribution of documents of the MED collection
using the SVD.

Table 2: Term-document matrix.

Document ID Term ID Weight
1 1 5.095
1 2 10.278
1 3 10.278
⋮ ⋮ ⋮
2 3 1.713
2 5 0.858
2 9 0.001
⋮ ⋮ ⋮
3 3 6.852
3 14 1.868
3 70 6.333
⋮ ⋮ ⋮
1033 9477 3.014

Scienti�c Programming 5



test questions in the collections. All of the returned documents
are taken into account while calculating the results.

In these tables, performance values corresponding to
a certain cosine threshold value are shown for both
methods. As the cosine threshold increases, in general, the
recall decreases, but the precision increases. Moreover,

decreasing cosine threshold value increases the number of
documents returned as a query result. However, the
proportion of related documents in these documents
increases.

�e coordinates of the documents in the vector space
obtained in the LSA process are used to list those that are

Table 3: �e accuracy of the returned documents by the SVD and the TULVD for the ADI collection.

k
SVD TULVD

Min Cosine Similarity Precision (10%) Precision (50%) Min Cosine Similarity Precision (10%) Precision (50%)
5 0.162 22.3 12.6 0.0884 21.3 14.1
10 0.119 31.1 18.6 0.0225 31.5 17.3
20 0.105 39.4 23.8 0.0101 34.7 19.9
30 0.103 55.3 29.0 0.0086 46.6 20.2
40 0.102 58.9 32.8 0.0071 69.3 32.1
50 0.101 73.5 33.1 0.0034 70.2 37.6
60 0.101 71.2 39.7 0.0008 65.3 37.9
70 0.100 69.2 39.3 0.0007 53.8 36.2
82 0.100 50.0 41.2 0.0003 49.3 29.1

Table 4: �e accuracy of the returned documents by the SVD and the TULVD for the MED collection.

k
SVD TULVD

Min Cosine Similarity Precision (10%) Precision (50%) Min Cosine Similarity Precision (10%) Precision (50%)
5 0.618 22.2 12.6 0.786 29.8 11.7
10 0.289 34.2 15.2 0.547 53.0 17.2
20 0.069 73.1 19.3 0.148 66.5 18.8
50 0.035 77.9 19.4 0.091 77.5 24.2
100 0.025 85.2 34.4 0.035 83.2 45.6
150 0.022 83.3 27.1 0.021 85.8 46.0
300 0.015 66.4 18.1 0.01 77.2 38.3
600 0.007 56.2 16.5 0.006 52.0 16.0
900 0.005 51.6 15.3 0.003 47.7 15.1
1033 0.003 49.6 15.5 0.001 46.9 15.2

Documents

x
–20 –15 –10 –5 0 5 10 15 20

–20

–15

–10

–5

0

5

10

15

20

y

Figure 5: �e distribution of documents of the MED collection using the TULVD decomposition.

6 Scienti�c Programming



Table 7: Average precision, recall, and total number of documents returned for various relative cosine threshold values for the MED
collection.

Cosine threshold
SVD TULVD

Recall Precision Number of documents returned Recall Precision Number of documents returned
0.1 97.4 21.3 135.7 97.9 17.2 165.8
0.2 94.1 43.1 64.1 94.5 38.0 73.4
0.3 89.7 59.4 41.1 87.1 53.4 44.7
0.4 83.3 70.4 30.2 81.9 66.3 32.4
0.5 66.3 76.8 21.7 68.4 75.1 23.2
0.6 51.7 86.8 15.1 51.8 84.2 15.2
0.7 30.0 91.7 18.4 33.0 90.2 9.3
0.8 18.6 97.1 4.5 20.9 90.7 5.5
0.9 7.9 100.0 1.5 6.1 100 1.3

Table 8: Average precision, recall, and total numbers of documents returned for various relative cosine threshold values for the TIME
collection.

Cosine threshold
SVD TULVD

Recall Precision Number of documents returned Recall Precision Number of documents returned
0.1 88.6 12.4 58.4 82.5 22.5 37.5
0.2 82.4 17.2 46.6 71.8 34.4 20.2
0.3 73.5 26.9 25.6 59.1 40.1 12.8
0.4 68.3 37.7 16.3 49.9 51.7 8.1
0.5 63.2 49.8 10.8 40.0 56.8 5.5
0.6 54.1 63.2 7.1 32.8 66.3 4.8
0.7 43.8 72.3 4.8 32.7 67.5 3.0
0.8 40.6 76.6 4.0 27.6 71.6 2.5
0.9 0.0 0.0 0.0 0.0 0.0 0.0

Table 6: Average precision, recall, and total number of documents returned for various relative cosine threshold values for the ADI
collection.

Cosine threshold
SVD TULVD

Recall Precision Average number of documents returned Recall Precision Number of documents returned
0.1 82.1 11.4 34.4 76.7 18.1 35.3
0.2 71.2 17.2 19.7 62.2 23.4 21.3
0.3 60.5 24.7 11.5 49.8 35.7 11.3
0.4 46.7 33.9 6.3 44.9 51.9 6.5
0.5 36.3 47.4 3.6 31.1 60.5 3.7
0.6 32.8 59.6 2.3 18.6 58.7 2.1
0.7 25.8 71.0 2.0 13.0 72.2 1.5
0.8 15.2 73.5 1.3 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0 0.0 0.0

Table 5: -e accuracy of the returned documents by the SVD and the TULVD for the TIME collection.

k
SVD TULVD

Min Cosine Similarity Precision (10%) Precision (50%) Min Cosine Similarity Precision (10%) Precision (50%)
5 0.6290 30.4 13.2 0.70 31.3 12.4
10 0.4840 49.1 17.0 0.56 44.4 15.5
20 0.2140 58.9 17.4 0.51 49.8 16.1
50 0.1001 59.7 18.5 0.17 59.6 34.7
100 0.1013 70.8 22.8 0.09 65.8 35.2
150 0.1009 72.6 25.1 0.06 73.4 38.3
200 0.1004 75.6 33.1 0.03 74.1 40.8
300 0.1026 73.5 40.9 0.02 63.1 44.8
400 0.0823 72.8 47.1 0.02 63.1 46.1
423 0.0812 68.8 45.1 0.01 56.7 32.4

Scientific Programming 7



similar to the query clauses. Figure 6 shows the successful
indexing of documents in vector space created using the
SVD and the TULVD for the ADI, the MED, and the TIME
collections. All documents returned for each query are
listed in the decreasing order of similarity. �e accuracy of
these documents is calculated in percentiles. Precision
decreases as percentile slice rate increases, but retrieval to
related documents is increasing. As with other results,
Figure 6 also re¢ects the average of the performance
metrics of the documents listed for all of the queries in each
collection.

Figure 7 compares the SVD and TULVDmethods for the
three collections used in the testing process with the average

minimum similarity values of the documents listed at the
end of the indexing process with di�erent rank values. �e
results for the MED and the TIME collections seem to be
similar. In the ADI collection, it is seen that the similarity
change rate is almost the same, although it has di�erent
values according to the increasing rank values. �is di�er-
ence can be attributed to the fact that the number of doc-
uments in the MED and the TIME collections is much
higher than the ADI collection.

Figure 7 shows the minimum cosine similarity value
change for the ADI, the MED, and the TIME collections
with respect to k. Note that as the number k increases for
the three collections, the rate of change of the minimum

k

20
0 10 20 30 40 50 60 70 80 90

30

40

50

60

70

80
Pr

ec
isi

on

SVD
TULVD

(a)

0 100 200 300 400 500 600 700 800 900 1000
k

20

30

40

50

60

70

80

90

Pr
ec

isi
on

SVD
TULVD

(b)

SVD
TULVD

0 50 100 150 200 250 300 350 400 450
k

30

35

40

45

50

55

60

65

70

75

80

Pr
ec

isi
on

(c)

Figure 6: Precision results for di�erent k values using the SVD and the TULVD: (a) ADI; (b) MED; (c) TIME.

8 Scienti�c Programming



cosine similarity for successive steps decrease di�erently.
�us, it makes di¤cult to determine the similarity
threshold used in document indexing and prevents suc-
cessful indexing. For this reason, it is recommended to
obtain values in which the rate of change of the value of k is
high and the success of document indexing is good in order
to increase the performance of the process and to retrieve
the correct documents. In this case, k should be 50 for the
ADI collection, 150 for the MED collection, and 150 for the
TIME collection.

On the contrary, Figures 8, 9, and 10 illustrate the
indexing success of the semantic vector space generated by

both methods for the ADI, the MED, and the TIME col-
lections, respectively, according to di�erent k values.

5. Conclusion

According to the visual observation of the simulations
presented in Figures 2, 3, 4, and 5 as well as the quantitative
measurement of the recall and the precision given in Ta-
bles 3, 4, and 5, the TULVD can be a good substitute for the
SVD to �nd the rank k approximation in the LSA modeling.
To support our claim, in addition, when we examine Ta-
bles 6, 7, and 8, we observe that the TULVD-based LSA

0 10 20 30 40 50 60 70 80 90
k

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
M

in
. c

os
in

e s
im

ila
rit

y

SVD
TULVD

(a)

0 200 400 600 800 1000 1200
k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
in

. c
os

in
e s

im
ila

rit
y

SVD
TULVD

(b)

SVD
TULVD

0 50 100 150 200 250 300 350 400 450
k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
in

. c
os

in
e s

im
ila

rit
y

(c)

Figure 7: A plot of the minimum cosine similarity values for di�erent k values using the SVD and the TULVD: (a) ADI; (b) MED; (c) TIME.

Scienti�c Programming 9



model produces results similar to the SVD-based LSAmodel
for di�erent cosine threshold values in these three collec-
tions. Moreover, Figures 8, 9, and 10 are examined, and the
best k value for the SVD and TULVD application in the ADI
collection is 50, in the MED collection 100, and in the TIME
collection 200.

In result, the TULVD is as good as the SVD for re-
trieving the semantic structure of the textual document in

the LSA modeling. �e main advantage of the TULVD over
the SVD is the e¤cient computation of the initial low-rank
approximation as well as the e¤cient computation of the
low-rank approximation when adding a new document
and/or term to the existing LSA generated database,
i.e., “updating”.

As a result of our experience in this study, it is thought
that TULVD can be used as an alternative method in many

10 20 30 40 50 60 70 80 90 100
Recall

0

20

10

30

40

50

60

70

80

90

Pr
ec

isi
on

k = 5
k = 10
k = 20
k = 50

k = 100
k = 150
k = 300

k = 600
k = 900
k = 1033

(a)

10 20 30 40 50 60 70 80 90 100
Recall

0

20

10

30

40

50

60

70

80

90

Pr
ec

isi
on

k = 5
k = 10
k = 20
k = 50

k = 100
k = 150
k = 300

k = 600
k = 900
k = 1033

(b)

Figure 9: Precision vs. recall results for di�erent k values using the SVD and the TULVD for the MED collection: (a) SVD; (b) T-ULVD.

10 20 30 40 50 60 70 80 90 100
Recall

10

20

30

40

50

60

70

80
Pr

ec
isi

on

k = 5
k = 10
k = 20

k = 30
k = 40
k = 50

k = 60
k = 70
k = 82

(a)

10 20 30 40 50 60 70 80 90 100
Recall

10

20

30

40

50

60

70

80

Pr
ec

isi
on

k = 5
k = 10
k = 20

k = 30
k = 40
k = 50

k = 60
k = 70
k = 82

(b)

Figure 8: Precision vs. recall results for di�erent k values using the SVD and the TULVD for the ADI collection: (a) SVD; (b) T-ULVD.

10 Scienti�c Programming



areas of SVD used such as data compression, missing data
completion, image processing, sound processing, noisy data
cleaning, and especially signal processing. In addition, this
study can be extended to cover �elds such as text sum-
marization, text similarity, keyword extraction, author de-
tection, and text classi�cation.

Data Availability

�e ATI, TIME, and MEDLINE collections, which are well-
known datasets, used to support the �ndings of this study

have been obtained from the Glasgow Repository (http://ir.
dcs.gla.ac.uk/resources/test_collections/).

Disclosure

Initial results of this study were presented in the 21st In-
ternational ConferenceMathematical Modeling and Analysis.

Conflicts of Interest

�e authors declare that they have no con¢icts of interest.

Acknowledgments

�is study was supported with project 2016/150 by Kırıkkale
University Scienti�c Research Projects (BAP).

References

[1] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman, “Indexing by latent semantic analysis,”
Journal of the American Society for Information Science,
vol. 41, no. 6, pp. 391–407, 1990.

[2] N. Seco, T. Veale, and J. Hayes, “An intrinsic information
content metric for semantic similarity in wordnet,” in Pro-
ceedings of the 16th European Conference on Arti�cial In-
telligence, pp. 1089-1090, IOS Press, Valencia, Spain, August
2004.

[3] J. R. Ruiz, “Sociological discourse analysis: methods and
logic,” Forum Qualitative Sozialforschung/Forum: Qualitative
Social Research, vol. 10, no. 2, pp. 1–22, 2009.

[4] M. Hanselman, M. Kirchner, B. Renard et al., “Concise
representation of mass spectrometry images by probabilistic
latent semantic analysis,”Analytical Chemistry, vol. 80, no. 24,
pp. 9649–9658, 2008.

[5] T. K. Landauer, P. W. Foltz, and D. Laham, “An introduc-
tion to latent semantic analysis,” Discourse processes, vol. 25,
no. 2-3, pp. 259–284, 1998.

[6] W. Song, J. Z. Liang, X. L. He, and P. Chen, “Taking advantage
of improved resource allocating network and latent semantic
feature selection approach for automated text categorization,”
Applied Soft Computing, vol. 21, pp. 210–220, 2014.

[7] R. D. Fierro and P. C. Hansen, “Low-rank revealing UTV
decompositions,” Numerical Algorithms, vol. 15, no. 1,
pp. 37–55, 1997.

[8] J. L. Barlow and H. Erbay, “Modi�able low-rank approxi-
mation to a matrix,” Numerical Linear Algebra with Appli-
cations, vol. 16, no. 10, pp. 833–860, 2009.

[9] D. Watkins, Fundamentals of Matrix Computations, John
Wiley and Sons, Hoboken, NJ, USA, 2002.

[10] G. Golub and C. V. Loan, Matrix Computations, �e John
Hopkins Press, Baltimore, MD, USA, 2013.

[11] J. R. Bunch and C. P. Nielsen, “Updating the singular value
decomposition,” Numerische Mathematik, vol. 31, no. 2,
pp. 111–129, 1978.

[12] M. W. Berry, S. T. Dumais, and G. W. O’Brien, “�e com-
putational complexity of alternative updating approaches for
an svd-encoded indexing scheme,” in Proceedings of the
Seventh SIAM Conference on Parallel Processing for Scienti�c
Computing, pp. 39–44, San Francisco, CA, USA, February
1995.

[13] H. Erbay, J. L. Barlow, and Z. Zhang, “A modi�ed Gram-
Schmidt-based downdating technique for ULV

10 20 30 40 50 60 70 80 90 100
Recall

0

20

10

30

40

50

60

70

80

Pr
ec

isi
on

10

k = 5
k = 10
k = 20
k = 50

k = 100
k = 150
k = 200

k = 300
k = 400
k = 423

(a)

10 20 30 40 50 60 70 80 90 100
Recall

0

20

10

30

40

50

60

70

80

Pr
ec

isi
on

10

k = 5
k = 10
k = 20
k = 50

k = 100
k = 150
k = 200

k = 300
k = 400
k = 423

(b)

Figure 10: Precision vs. recall results for di�erent k values using the
SVD and the TULVD for the TIME collection: (a) SVD; (b) T-
ULVD.

Scienti�c Programming 11

http://ir.dcs.gla.ac.uk/resources/test_collections/
http://ir.dcs.gla.ac.uk/resources/test_collections/


decompositions with applications to recursive TLS problems,”
Computational Statistics & Data Analysis, vol. 41, no. 1,
pp. 195–209, 2002.

[14] G. W. Stewart, “An updating algorithm for subspace track-
ing,” IEEE Transactions on Signal Processing, vol. 40, no. 6,
pp. 1535–1541, 1992.

[15] J. L. Barlow, “Modification and maintenance of ULV
decompositions,” in Applied Mathematics and Scientific
Computing, pp. 31–62, Springer, Berlin, Germany, 2002.

[16] J. E. Tougas and R. J. Spiteri, “Updating the partial singular
value decomposition in latent semantic indexing,” Compu-
tational Statistics & Data Analysis, vol. 52, no. 1, pp. 174–183,
2007.

[17] T. A. Letsche and M. W. Berry, “Large-scale information
retrieval with latent semantic indexing,” Information sciences,
vol. 100, no. 1-4, pp. 105–137, 1997.

[18] S. T. Dumais, “Improving the retrieval of information from
external sources,” Behavior Research Methods, Instruments, &
Computers, vol. 23, no. 2, pp. 229–236, 1991.

[19] M. G. Ozsoy, I. Cicekli, and F. N. Alpaslan, “Text summa-
rization of Turkish texts using latent semantic analysis,” in
Proceedings of the 23rd International Conference on Com-
putational Linguistics, pp. 869–876, Association for Com-
putational Linguistics, Beijing, China, August 2010.

[20] M. W. Berry and R. D. Fierro, “Low-rank orthogonal de-
compositions for information retrieval applications,” Nu-
merical Linear Algebra with Applications, vol. 3, no. 4,
pp. 301–327, 1996.

[21] M. W. Berry, S. T. Dumais, and G. W. O’Brien, “Using linear
algebra for intelligent information retrieval,” SIAM Review,
vol. 37, no. 4, pp. 573–595, 1995.

[22] A. Huang, “Similarity measures for text document clustering,”
in Proceedings of the Sixth New Zealand Computer Science
Research Student Conference (NZCSRSC’2008), pp. 49–56,
Christchurch, New Zealand, April 2008.

[23] E. Jessup and J. Martin, “Taking a new look at the latent
semantic analysis approach to information retrieval,” in
Computational Information Retrieval, pp. 121–144, SIAM,
Philadelphia, PA, USA, 2001.

[24] B. Kang, D. Kim, and S. Lee, “Exploiting concept clusters for
content-based information retrieval,” Information sciences,
vol. 170, no. 2, pp. 443–462, 2005.

[25] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accu-
racy, f-score and roc: a family of discriminant measures for
performance evaluation, Lecture Notes in Computer Science,” in
Proceedings of Australasian Joint Conference on Artificial In-
telligence, pp. 1015–1021, Springer, Hobart, Australia, December
2006.

12 Scientific Programming



Computer Games 
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable
Computing

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

 Artificial 
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence 
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scienti�c  
Programming

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

