Common fixed points of Ciric-type contractions on partial metric spaces
Künye
Abbas, M.; Altun, I.; Romaguera Bonilla, S. (2013). Common fixed points of Ciric-type contractions on partial metric spaces. Publicationes Mathematicae Debrecen. 82:425-438. https://doi.org/10.5486/PMD.2013.5342Özet
We obtain a common fixed point theorem of Boyd-Wong type for four mappings satisfying a Ciric-type contraction on a complete partial metric space. Our result generalizes and unifies, among others, the very recent results of L. CIRIC, B. SAMET, H. AYDI and C. VETRO [Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput., 218 (2011), 2398-2406], S. ROMAGUERA [Fixed point theorems for generalized contractions on partial metric spaces, Topology Appl., 159 (2012), 194-199], T. ABDELJAWAD, E. KARAPINAR and K. TAS [Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett. 24 (2011), 1900-1904], and D. ILIC, V. PAVLOVIC and V. RAKOCEVIC [Some new extensions of Banach's contraction principle to partial metric space, Appl. Math. Lett. 24 (2011), 1326-1330].
Kaynak
Publicationes Mathematicae-DebrecenCilt
82Sayı
2Koleksiyonlar
- Makale Koleksiyonu [362]
- Scopus İndeksli Yayınlar Koleksiyonu [5783]
- WOS İndeksli Yayınlar Koleksiyonu [5632]