Basit öğe kaydını göster

dc.contributor.authorGunay, Kubra
dc.contributor.authorArslan, Metin
dc.contributor.authorBozkaya, Ogun
dc.contributor.authorAluc, Yasar
dc.contributor.authorGok, Zehra Gun
dc.date.accessioned2020-06-25T18:30:27Z
dc.date.available2020-06-25T18:30:27Z
dc.date.issued2019
dc.identifier.citationclosedAccessen_US
dc.identifier.issn0944-1344
dc.identifier.issn1614-7499
dc.identifier.urihttps://doi.org/10.1007/s11356-019-06316-2
dc.identifier.urihttps://hdl.handle.net/20.500.12587/7646
dc.descriptionGunay, Kubra/0000-0002-3522-873X; GUN GOK, Zehra/0000-0001-6426-0395en_US
dc.descriptionWOS: 000500201200007en_US
dc.descriptionPubMed: 31485943en_US
dc.description.abstractIn this study, poly(ethylene terephthalate) fibers grafted with 4-vinyl pyridine (PET-g-4VP) was synthesized with using a radical polymerization method and its removal capacity for bromate ions in the aqueous solution was explored. The synthesized graft copolymer was structurally characterized by scanning electron microscopy (SEM) and Fourier transformed infrared spectroscopy (FTIR). The effect of some parameters such as pH, grafting rate, processing time, and ion concentration on bromate removal was examined with batch experiments. The sorptions of bromate onto the PET-g-4VP fibers were both verified with FTIR and X-ray fluorescence analysis (XRF) and the remaining amount of bromate after adsorption process was determined with an ion chromatography (Shimadzu). Moreover, kinetic and isotherm studies were also performed for adsorption of bromate with the grafted fibers. The point of zero charge (pH(pzc)) of the PET-g-4VP fibers was found to be 7.5 and the fibers removed maximum amount of bromate from aqueous solution at pH 3. Equilibrium time of adsorption was determined to be 75 min and the adsorption kinetic was found to be pseudo-second-order model. It was observed that the increase in the amount of grafted 4VP onto the PET fibers increased the bromate removal capacity of the fibers; however, when the grafting yield of 4VP was over 80%, the bromate removal ability of the fibers decreased. The maximum bromate removal capacity of the PET-g-4VP was determined to be 183 mg/g when the initial bromate amount was 800 mg/L, treatment time was 75 min, pH of the solution was 3, and 4VP grafting yield was 80%. When the initial bromate concentration was higher than 800 mg/L, the removal rate of the PET-g-4VP fibers was not changed. In addition, bromate ion adsorption data indicated compliance with the Freundlich isotherm. The adsorbent fibers obtained by this study may be promising candidates for the removal of bromate ions from the aqueous media.en_US
dc.language.isoengen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.isversionof10.1007/s11356-019-06316-2en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPoly(ethylene terephthalate)en_US
dc.subjectCopolymerizationen_US
dc.subject4-Vinyl Pyridineen_US
dc.subjectBromateen_US
dc.subjectAdsorptionen_US
dc.subjectAqueous solutionen_US
dc.titleElimination of carcinogenic bromate ions from aqueous environment with 4-vinyl pyridine-g-poly(ethylene terephthalate) fibersen_US
dc.typearticleen_US
dc.contributor.departmentKırıkkale Üniversitesien_US
dc.identifier.volume26en_US
dc.identifier.issue31en_US
dc.identifier.startpage31644en_US
dc.identifier.endpage31653en_US
dc.relation.journalEnvironmental Science And Pollution Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster