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VECTOR METRIC SPACES AND SOME PROPERTIES

Cüneyt Çevı̇k — Ishak Altun

Abstract. In this paper we introduce vector metric spaces and we give

some properties of this spaces. Also we prove Baire theorem and Banach

fixed point theorem on this spaces.

1. Introduction

Let E be a Riesz space with the positive cone E+ = {x ∈ E : x ≥ 0}. If
every non-empty subset of E which is bounded above has a supremum, then E

is called Dedekind complete. If (an) is a decreasing sequence in E such that
inf an = a, we write an ↓ a. E is said to be Archimedean if n−1a ↓ 0 holds for
every a ∈ E+. A sequence (bn) is said to order convergent (or o-convergent) to b

if there is a sequence (an) in E satisfying an ↓ 0 and |bn − b| ≤ an for all n, and
written bn

o→ b or o-lim bn = b, where |a| = a∨ (−a) for any a ∈ E. Furthermore
(bn) is said to be order-Cauchy (or o-Cauchy) if there exists a sequence (an) in
E such that an ↓ 0 and |bn − bn+p| ≤ an holds for all n and p. E is said to
be o-Cauchy complete if every o-Cauchy sequence is o-convergent. For notations
and other facts regarding Riesz spaces we refer to [1].

Huang and Zhang [3], defined cone metric space and proved some fixed point
theorems for contractive mappings on this spaces. Let X be a non-empty set.
The cone metric on X take value on an ordered Banach space. On the other
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hand, Zabrĕıko [5] defined K-metric space and K-normed space. Also Zabrĕıko
gave some fixed point theorems with linear and nonlinear Lipschitz conditions on
K-metric spaces. The K-metric space on X take value on an ordered linear space
B with a cone K. In this paper we introduce vector metric spaces. A vector
metric space on X take value on a Riesz space.

We replace the real numbers by Riesz space and define vector metric spaces
(X, d, E). In Section 2, we define basic concepts of the metric spaces theory
in vector metric spaces. Then we obtain some new results and give the Baire’s
Theorem in the vector metric spaces.

In Section 3, we give a proof of Banach fixed point theorem on vector metric
spaces. Our results are generalization of some fixed point theorems in metric
spaces [2], [4].

2. Vector metric spaces

In this section we define vector metric spaces and prove some properties.

Definition 2.1. Let X be a non-empty set and E be a Riesz space. The
function d:X×X → E is said to be a vector metric (or E-metric) if it is satisfying
the following properties:

(a) d(x, y) = 0 if and only if x = y,
(b) d(x, y) ≤ d(x, z) + d(y, z)

for all x, y, z ∈ X. Also the triple (X, d, E) (briefly X with the default parameters
omitted) is said to be vector metric space.

It is obvious that vector metric spaces generalize metric spaces.
For arbitrary elements x, y, z, w of a vector metric space, the following

statements are satisfied:

(i) 0 ≤ d(x, y);
(ii) d(x, y) = d(y, x);
(iii) |d(x, z)− d(y, z)| ≤ d(x, y);
(iv) |d(x, z)− d(y, w)| ≤ d(x, y) + d(z, w).

Now we give some examples of vector metric spaces.

Example 2.2. (a) A Riesz space E is a vector metric space with d:E×E →
E defined by

d(x, y) = |x− y|.
This vector metric is called to be absolute valued metric on E.

(b) It is well known that R2 is a Riesz space with coordinatwise ordering
defined by

(x1, y1) ≤ (x2, y2) if and only if x1 ≤ x2 and y1 ≤ y2
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for (x1, y1), (x2, y2) ∈ R2. Again R2 is a Riesz space with lexicographical ordering
defined by

(x1, y1) ≤ (x2, y2) if and only if x1 < x2 or x1 = x2, y1 ≤ y2.

Therefore d: R2 × R2 → R2 defined by

d((x1, y1), (x2, y2)) = (α|x1 − y1|, β|x2 − y2|)

is a vector metric, where α, β are positive real numbers.
(c) Let d: R× R → R2,

d(x, y) = (α|x− y|, β|x− y|),

where α, β ≥ 0 and α + β > 0. Then d is a vector metric with coordinatwise or
lexicographical ordering.

Remark 2.3. Note that R2 is Archimedean with coordinatwise ordering but
not with lexicographical ordering.

Now we give some definitions.

Definition 2.4. (a) A sequence (xn) in a vector metric space (X, d, E)

vectorial converges (or E-converges) to some x ∈ E, written xn
d,E−→ x, if there is

a sequence (an) in E satisfying an ↓ 0 and d(xn, x) ≤ an for all n.
(b) A sequence (xn) is called E-Cauchy sequence whenever there exists a se-

quence (an) in E such that an ↓ 0 and d(xn, xn+p) ≤ an holds for all n and p.
(c) A vector metric space X is called E-complete if each E-Cauchy sequence

in X E-converges to a limit in X.
(d) A subset Y of a vector metric space X is said to be E-closed whenever

(xn) ⊆ Y and xn
d,E−→ x imply x ∈ Y .

Using the above definitions, we have the following properties:

If xn
d,E−→ x, then

(i) The limit x is unique.
(ii) Every subsequence of (xn) E-converges to x.

(iii) If also yn
d,E−→ y, then d(xn, yn) o→ d(x, y).

The relationships between the concepts of boundedness and diameter of a
subset of a vector metric space are different from the usual. For a non-empty sub-
set A of a vector metric space X its E-diameter defined by d(A) = sup{d(x, y) :
x, y ∈ A} if sup{d(x, y) : x, y ∈ A} in E. Furthermore, if there exists an a > 0
in E such that d(x, y) ≤ a for x, y ∈ A, then A is called E-bounded set. If E is
Dedekind complete, then every E-bounded set of X has a diameter.
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Theorem 2.5. For the vector metric space (X, d, E) the followings hold:

(a) Every E-convergent sequence is an E-Cauchy sequence;
(b) Every E-Cauchy sequence is E-bounded;
(c) If an E-Cauchy sequence (xn) has a subsequence (xnk

) such that

xnk

d,E−→ x then xn
d,E−→ x;

(d) If (xn) and (yn) are E-Cauchy sequences, then (d(xn, yn)) is an o-
Cauchy sequence.

Proof. (a) Let xn
d,E−→ x in X. Since there exists a sequence (an) in E such

that an ↓ 0 and

d(xn, xn+p) ≤ d(xn, x) + d(xn+p, x) ≤ an + an+p ≤ 2an

for all n and p, then (xn) is an E-Cauchy sequence in X.
(b) Let (xn) be an E-Cauchy sequence in X. Since there exists a sequence

(an) in E such that an ↓ 0 and d(xn, xn+p) ≤ an for all n and p, then d(xn, xn+p)
≤ a1, that is, (xn) is E-bounded in X.

(c) Let (xn) be an E-Cauchy sequence and let (xnk
) be a subsequence of (xn)

such that xnk

d,E−→ x in X. If we take nk = n + p, where n ≤ nk for all n, then
there exist two sequences (an) and (bn) in E such that an ↓ 0, bn ↓ 0 and

d(xn, x) ≤ d(xn, xn+p) + d(x, xn+p) ≤ an + bn+p ≤ an + bn,

hence xn
d,E−→ x.

(d) Since there exist two sequence (an) and (bn) in E such that an ↓ 0, bn ↓ 0
and

|d(xn, yn)− d(xn+p, yn+p)| ≤ d(xn, xn+p) + d(yn, yn+p) ≤ an + bn

for all n and p, then the sequence (d(xn, yn)) is an o-Cauchy sequence in E. �

When E = R, the concepts of vectorial convergence and convergence in
metric are the same. When also X = E and d is the concepts of absolute
valued vector metric, vectorial convergence and convergence in order are the
same. When E = R, the concepts of E-Cauchy sequence and Cauchy sequence
are the same.

Now, let us fix a vector metric space (X, d, E). For two elements a and b in
E, we shall write a < b to indicate that a ≤ b but a 6= b, while b > a stands
for a < b. If x ∈ X, then the open ball at x with radius r > 0 in E is the set
B(x, r) = {y ∈ X : d(x, y) < r}. Now, the open subsets of X can be defined in
the usual way. A subset A of X is called open if for every x ∈ A, there exists
some r > 0 in E such that B(x, r) ⊆ A. Every open ball B(x, r) is an open set.
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The collection of open subsets τd,E is a topology on X, called the vector metric
topology.

Definition 2.6. Let (X, d, E) be a vector metric space.

(a) A subset Y of X is called τd,E-dense whenever B(x, r)∩ Y 6= ∅ for each
x ∈ X and 0 < r ∈ E.

(b) A subset Y of X is called E-dense whenever for every x ∈ X there exists

a sequence (xn) in Y satisfying xn
d,E−→ x.

We have already following result.

Corollary 2.7. Let Y be a subset of a vector metric space (X, d, E) with
E Archimedean. If Y is τd,E-dense, then Y is E-dense.

We will use some properties of vector metric topology for constructing to the
Baire’s theorem . The following result explain the Cantor intersection theorem
for vector metric spaces.

Theorem 2.8. Let X be a E-complete vector metric space such that E is
Dedekind complete. If a decreasing sequence of non-empty E-closed subsets has
vanishing diameter in X, then the intersection of the sequence is a singleton.

Proof. Let (Fn) be a decreasing sequence of non-empty E-closed subsets of
the E-complete vector metric space X where E Dedekind complete, and assume
limn→∞ d(Fn) = 0. The intersection F =

⋂∞
n=1 Fn cannot have more than one

point, for if x, y ∈ F , then d(x, y) ≤ d(Fn) for each n, so d(x, y) = 0, which
implies x = y.

To see that F is non-empty, for each n pick some xn ∈ Fn. Since d(xn, xn+p)
≤ d(Fn) for each n and p, the sequence (xn) is E-Cauchy. Since X is E-complete

there is some x ∈ X with xn
d,E−→ x. But xn+p belongs to Fn, and each Fn is

E-closed, so x belongs to Fn for each n. �

Now we give Baire Theorem for vector metric spaces.

Theorem 2.9. A E-complete vector metric space X is a Baire space when-
ever E Archimedean and Dedekind complete.

Proof. Let X be a E-complete vector metric space with E Archimedean.
Now let (An) be a sequence of τd,E-dense open subsets of X and put A =⋂∞

n=1 An. It is sufficient to show that A is a τd,E-dense subset of X, or that
B(x, r) ∩A 6= ∅ for each x ∈ X and r > 0. So fix x ∈ X and r > 0.

Since A1 is open and τd,E-dense in X, there exist y1 ∈ X and 0 < r1 < a

where a is some element of E such that C(y1, r1) ⊂ B(x, r) ∩A1, where C(x, r)
denotes the closed ball of radius r centered at x. Similarly, since A2 is open
and τd,E-dense in X, we have B(y1, r1) ∩ A2 6= ∅, so there exist y2 ∈ X and
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0 < r2 < a/2 such that C(y2, r2) ⊂ B(y1, r1) ∩ A2. Proceeding inductively, we
see that there exists a sequence (yn) in X and a sequence (rn) in E such that
0 < rn satisfying, for each n,

C(yn+1, rn+1) ⊂ B(yn, rn) ∩An+1 ⊂ C(yn, rn) and rn < a/n.

Now the Cantor Intersection Theorem guarantees that
⋂∞

n=1 C(yn, rn) is a sin-
gleton. From

⋂∞
n=1 C(yn, rn) ⊂ B(x, r) ∩A, we see that B(x, r) ∩A 6= ∅. �

3. Fixed point theorem

In this section we will give Banach fixed point theorem on vector metric
spaces.

Theorem 3.1. Let X be an E-complete vector metric space with E is Ar-
chimedean. Suppose the mapping T :X → X satisfies the contractive condition

(3.1) d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X,

where k ∈ [0, 1) is a constant. Then T has a unique fixed point in X and for any
x0 ∈ X, iterative sequence (xn) defined by xn = Txn−1, for n ∈ N, E-converges
to the fixed point of T .

Proof. Let x0 ∈ X be arbitrary. Define the sequence (xn) by xn = Txn−1,
for n ∈ N. We have

d(xn, xn+1) = d(Txn−1, Txn) ≤ kd(xn−1, xn) ≤ . . . ≤ knd(x0, x1).

Thus for n, p ∈ N

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . . + d(xn+p−1, xn+p)

≤ (kn + kn+1 + · · ·+ kn+p−1)d(x0, x1) ≤
kn+p−1

1− k
d(x0, x1).

Now since E is Archimedean then (xn) is an E-Cauchy. By the E-completeness

of X, there is z ∈ X such that xn
d,E−→ z. Hence there exists (an) in E such that

an ↓ 0 and d(xn, z) ≤ an. Since

d(Tz, z) ≤ d(Txn, T z) + d(Txn, z)

≤ kd(xn, z) + d(xn+1, z) ≤ kan + an+1 ≤ (k + 1)an,

then d(Tz, z) = 0, i.e. Tz = z. The uniqueness of fixed point is easily seen. �

We can prove the following theorem as above. We omit the straightforward
proof.
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Theorem 3.2. Let X be an E-complete vector metric space with E is Ar-
chimedean. Suppose the mapping T :X → X satisfies the contractive condition

d(Tx, Ty) ≤ ad(x, Tx) + bd(y, Ty) + cd(x, Ty) + ed(y, Tx) + fd(x, y)

for all x, y ∈ X, where a, b, c, e and f are nonnegative and a+ b+ c+ e+f < 1.
Then T has a unique fixed point in X and for any x0 ∈ X, iterative sequence
(xn) defined by xn = Txn−1, for n ∈ N, E-converges to the fixed point of T .

Now we give an example.

Example 3.3. Let E = R2 with coordinatwise ordering (since R2 is not
Archimedean with lexicographical ordering, then we can not use this ordering).
As in [3] let

X = {(x, 0) ∈ R2 : 0 ≤ x ≤ 1} ∪ {(0, x) ∈ R2 : 0 ≤ x ≤ 1}.

The mapping d:X ×X → E is defined by

d((x, 0), (y, 0)) =
(

4
3
|x− y|, |x− y|

)
,

d((0, x), (0, y)) =
(
|x− y|, 2

3
|x− y|

)
,

d((x, 0), (0, y)) =
(

4
3
x + y, x +

2
3
y

)
.

Then X is E-complete vector metric space.
Let T :X → X with T ((x, 0)) = (0, x) and T ((0, x)) = (x/2, 0), then T

satisfies the inequality (3.1) with k = 3/4. According to Theorem 3.1, T has
a unique fixed point in X. But T is not a contractive mapping in real valued
metric on X, thus we can not apply the Banach fixed point theorem on metric
space to this example.

Remark 3.4. The fixed point results of this paper generalize the fixed point
theorems in metric spaces to vector metric spaces. Also if X = E and d is
absolute valued vector metric, then we obtain fixed point theorems of Riesz
space E.
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