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Abstract

Two biodegradable polymers, poly(L-lactide) and poly("-caprolactone) were blended (50/50) and

used to produce polymeric scaffolds by the dual porogen approach using a salt leaching technique

to create pores within the matrix, while supercritical-CO2 treatment was used to enhance the

interconnectivity and to remove impurities from synthesis steps. The scaffolds were highly porous

(porosity >90%) with interconnected pore morphologies. These biodegradable scaffolds were

evaluated in Sprague Dawley rats for osteoconductive properties over a 6-month period. Bone

specimens were analyzed after 1, 3, and 6 months, for bone healing and tissue response. The

cortical bone remodeling by controlled osteoblastic and osteoclastic activities as well as the bone

marrow elements recovery were semi-quantitatively examined for each group. Excellent

integration and biocompatibility behavior was observed in all groups. No adverse tissue

responses were observed.
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Introduction

Scaffolds made of polymers, ceramics, and composite materials have been used in tissue
engineering for diverse applications. Usually, these materials meet some desirable properties,
such as suitable mechanical strength, biocompatibility, and degradation.1,2 Also, there are a
number of fabrication procedures reported in the literature.3–6 Basically, the aim of these
methods is to enhance the surface area, interconnectivity, biocompatibility, and
degradation.7 As for the pore formation, one of the readily used methods is salt leaching
in which controlled porosity can be achieved based on the leachable particles used.8 Other
approaches involve dual techniques which employ a second porogen to increase pore
interconnectivity. In this study, we combine salt leaching and supercritical fluid treatment
for porous matrix formation.

Defects in the cranium are a crucial problem. For example, critical size defects
cannot be healed by the organism’s intrinsic mechanisms; therefore, cranial defects have
often been used to evaluate bone grafting and repair materials.9–12 According to reported
literature, Sprague Dawley rats fail to repair such defects.13 Therefore, we used the
same animal in our critical size cranial defect model to monitor the defect healing
ability of materials that we developed in this study. Another requirement or approach
for tissue engineering is to utilize differentiable cell lines, such as, stem cells. In this
study, mesenchymal stem cells (MSCs) were used as they are found in a number of
tissues, such as fat, trabecular bone, umbilical cord, and periosteum.14 These cells are
known to be multipotent and are able to differentiate into other cell lines like bone,
cartilage, and muscle. Their differentiation activity can be triggered by inflammation and
injury.15–17

This study investigates the ability of scaffolds with widely open and interconnected pores
made of biodegradable polymeric blends of poly(L-lactide) (PLLA) and
poly("-caprolactone) (PCL) with or without MSCs in the healing of critical size cranial
defects in rats. For comparison, only MSCs were used in parallel studies. Although, the
scaffold preparation, their pore structures, degradations, and mechanical properties are
reported, we focused mostly on healing, new bone regeneration, and biocompatibility
aspects in the animal models over a 6-month study.

Materials and methods

Biodegradable scaffolds

Biodegradable scaffolds, made of PLLA and PCL, were synthesized from the dimers and
monomers under a nitrogen atmosphere for 30 and 4 h for PLLA and PCL, respectively,
using 0.1% (w/w) Sn-2-ethylhexanoate catalyst ratio at 120�C. Detailed protocols for
polymer synthesis and scaffold fabrication are reported in a previous study.18 The
polymers were characterized by nuclear magnetic resonance, Fourier transform infrared
spectroscopy, and thermal analysis: gas permeation chromatography (GPC) (Shimadzu,
Japan) was used to determine the average molecular weights of the polymers in
chloroform at 25�C and 1mL/min flow rate.

Biodegradable scaffolds were produced by applying two techniques: ‘salt leaching’ and
supercritical carbon dioxide (scCO2) treatment.’18–20 Briefly, PLLA and PCL blends were
prepared from their respective solutions (12% w/v) in a weight ratio of 50/50. These blends
and NaCl crystals (Sigma, UK, with a 250–355mm particle size) were mixed in a ratio of
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1 : 11 and poured into a mold to obtain 8-mm diameter cylinders. The salt particles were
extracted by deionized water.

The scaffolds were then treated with scCO2 (at 2000 psi, 35�C) for 15min to induce
smaller pores on the pore walls. The pore structures were characterized by scanning
electron microscopy (SEM; S 4500, Hitachi, Japan) and m-CT (mCT 40, Scanco Medical
AG, Brüttisellen, Switzerland) operated at 40 kVp and 180 mA.20 The scaffolds with a
diameter of 8mm and a thickness of 1mm were cut from the cylinders (�2 cm long)
produced in plastic syringes; therefore, both sides had the same pore morphology.

In order to determine in vitro degradation, the scaffolds (n¼ 24) were placed into glass
vials and Ringer solution and antibiotics (1% v/v) was added. The vials were covered with
cotton gauze and placed into a shaking water bath at 37�C and physiological pH (pH 7.4) for
6 months. During this test, four scaffolds were analyzed each month by GPC to determine
the changes in the molecular weight and heterogeneity indices (HIs) of the materials.

The mechanical properties of the scaffolds (4mm thick and 50.24mm2 surface
area) (n¼ 24) were investigated using an Universal Test Instrument (Lloyd Instruments,
LR5K Internal Extensometer, USA) in compression mode. The tests were conducted
at room temperature using 500N force and 10mm/min rate according to ASTM D
695 standard. The elongation data were recorded against the compression strength.
The Young’s modulus was determined from the slope of the initial part of the strain–
stress curves. Tests were repeated four times for each sample and mean values were
recorded.

The animals were randomly divided into three groups (32� 3) and treated as follows:
(1) the scaffold group, scaffolds were only implanted in the cranial defects, (2) the scaffold–
stem cell group, scaffolds were first implanted, then MSCs (1� 106 cells per scaffold) were
injected with a syringe into the pores of the scaffold, and (3) the stem cell group, no
scaffolds, only stem cells (1� 106 cells per cavity) were injected in the cavity of the
cranial defects.

Stem cells

Femur and tibia allograft samples were obtained from the same species under general
anesthesia and cultured in DMEM-LG solution (Sigma, Germany) containing 3%
penicillin/streptomycin (Sigma, Germany). Under laminar flow, the femur and tibia
samples were flushed with the incubation medium described below. The cells were then
washed twice at 1500 rpm for 5min. The cells (3� 106 cells/cm2) were incubated in 75-cm2

Petri dishes in DMEM-LG (Sigma, Germany) medium containing 20% fetal bovine serum
(FBS; Sigma, Germany), 1% penicillin/streptomycin, and 2mM glutamine (Sigma,
Germany) at 37�C and 5% CO2. Media were changed every 3–4 days. Confluent cells
were detached using 0.25% Trypsin/EDTA (Sigma, Germany) and cell count was
calculated by using Tryphan blue. Counted cells were frozen in cell culture medium
containing 10% dimethyl sulfoxide (Fluka, Germany) and kept in liquid nitrogen. For use
in the animal experiments, cell pellets were re-suspended in phosphate-buffered saline with
1� 106 cells per 50 mL and transferred to insulin injectors. Differentiation media composed
of DMEM-LG, FBS, dexamethosone (Sigma, Germany), beta-glycerophosphate (Sigma,
Germany), and ascorbic acid (Sigma, UK) was added to the cell culture plates including
the stem cells and differentiation were monitored for 21 days. Osteogenic differentiation was
confirmed by Alizarin Red staining.

Aydin et al. 209



Animal studies

The test animals, female Sprague Dawley rats (n¼ 96, weight: 200–330 g), were caged in a
controlled environment (temperature: 22�C and 55% relative humidity) and food/water were
administered ad libitum during the 6-month study. An alternating 12 h light and 12 h dark
scheme was applied for 6 months. The protocol described below followed the mandate of the
Hacettepe University – Animal Experiments Local Ethical Committee-Ethical Board
(permission no: 2007/30-12 and date: March 26, 2007).

The animals were randomly divided into three groups (32� 3) and treated as follows:
(1) the scaffold group, scaffolds were only implanted in the cranial defects; (2) the scaffold–
stem cell group, scaffolds were first implanted and then 1� 106 MSCs 1� 106 per scaffold
were injected by syringe into the scaffold; and (3) the stem cell group, no scaffolds, only stem
cells (1� 106 cells per cavity) were injected in the cranial defects.

The animal weights were recorded and a sterile surgical procedure similar to that applied
in other studies was used.21,22 The animals were anesthetized with intraperitoneal ketamin
HCl (Parke Davis, 50mg/mL, Taiwan) and Rampun (2%) (Bayer, Germany) injections. The
implantation site was shaved and disinfected with Batikon solution (Droksan, Turkey).
Following iodide solution application, critical size defects of 8mm in diameter were
formed in the cranial area using a rotary, round-headed saw. The ‘scaffolds,’ ‘scaffolds
plus stem cells,’ or ‘stem cells’ were immediately implanted into the cavities. During the
animal studies, 32 animals were sacrificed; specimens were removed and placed in 10%
phosphate-buffered formalin (pH 7.0) at room temperature for fixation. The samples were
decalcified by immersion in De Castro solution for 5–10 days before dehydration. They were
rinsed in buffer, dehydrated in a graded series of ethanol, and then embedded in paraffin.
Five micrometer-thick serial sections were cut with a microtome (Leica, Germany).
Haematoxylin & Eosin and Masson’s trichrome.

The sections were stained and evaluated for defect healing, new bone formation, and
tissue response to cells and/or implant. Two independent investigators evaluated the bone
graft sections using Leica DMR microscope with a DC500 digital camera (Germany) and
quantitatively analyzed with a Leica Qwin Plus computer image analysis system (Germany).
One section from every 20 sections was randomly taken and quantified. The new bone area
in the defect was calculated based on Masson’s trichrome-stained sections. The defect
healing and implant biocompatibility (tissue response) were semi-quantitatively scored.
Statistical tests were applied to evaluate the histology parameters. The normality of
distribution and the homogeneity of variances of the sample were established using the
Shapiro–Wilk test.

The quantity of new bone was analyzed by parametric variance analysis tests (one-way
ANOVA and Tukey’s test for multiple comparison and as post hoc test, respectively) to
assess statistical significance. Bone healing and tissue response were analyzed by non-
parametric tests (Kruskal–Wallis for multiple comparison and Mann Whitney U as post
hoc test with Bonferoni correction). Descriptive statistical values were expressed as mean,
standard deviation, minimum, and maximum.23

Results and discussion

Scaffolds

PLLA and PCL were synthesized by homopolymerization of the respective dimer and
monomer at predetermined conditions and 50/50 (w/w) PLLA/PCL blends were used to
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prepare porous scaffolds in cylindrical forms by molding, salt leaching, and scCO2

treatment.19,20 The properties of the polymers and scaffolds produced in this study are
summarized in Table 1.

A representative m-CT image of the scaffolds made of PLLA/PCL blends is given in
Figure 1. The scaffolds were highly porous structures (porosities up to 94.7%; analyzed
by m-CT) as a result of the salt leaching technique. The scCO2 treatment caused the
formation of extra but smaller pores especially on the pore walls that increased the
interconnectivity within the porous scaffold matrix significantly. The polymer content in
the scaffolds was only �5% of the total volume, this is a very significant property for
scaffolds in tissue engineering and occupied only 1/20 of the defect volume.

The number and weight average molecular weights of the blend decreased to about
56,000 and 22,000, respectively, after 6 months (almost half of the initial values; Table 1)
when the scaffolds were degraded in Ringer’s solutions. HI was 2.9 after 1 month and
only decreased to 2.6 in 6 months. The decrease in the molecular weight is reasonable since
full bone regeneration takes about a year or more; therefore, supporting the newly forming
tissues with the help of scaffold by physical means is important, and could be critical.18

According to the mechanical test data obtained from the four individual measurements,
the Young’s modulus of the scaffolds was 31.15� 1.43 kPa. This value was expected for a
highly porous material (>90%), but is sufficient for non-load-bearing applications.

Calvarial bone healing (histological evaluation)

The implantation procedure is shown in Figure 2. These porous biodegradable polymeric
scaffolds, made of PLLA and PCL blends alone and/or combined with MSCs, were

Table 1. Physical properties of the polymers and scaffolds

Properties

Weight average molecular weight (Mw) and HI of PLLA

used for the scaffolds (kDa)a
�200/2.44

Weight average molecular weight (Mw) and HI of PCL used

for the scaffolds (kDa)a
�40/1.78

The PLLA/PCL weight ratio in the blends used for the scaffolds 50/50

Scaffold shape/diameter (mm)/thickness (mm) Cylindrical/8/1

Scaffold porosity (%)b 94.7� 0.4

Scaffold pore size range (mm) 250–355

Scaffold pore thickness (mm)b 0.21� 0.01

Scaffold pore interconnectivity (1)b 538.1� 16.4

Unit scaffold surface (1/mm)b 8.3� 0.01

Scaffold degradation in Ringer solutiona

The weight average molecular weight of the blend after 1/3/6 months 109,077/86,044/56,337

The HI of the blend after 1/3/6 monthsd 2.92/2.74/2.60

Young’s modulus (kPa)c 31.15� 1.43

EtO sterilization at 37�C (h) 24

aDetermined by GPC.
bDetermined by m-CT.
cDetermined by Universal Test Instrument.
dAverage of four scaffolds.
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evaluated for their restoration capabilities in critical-size cranial defects induced in
Sprague Dawley rats. Only stem cells as the third group of animal tests were used for
comparison. The materials were placed into the cranial defects and the defect area of the
test animals were examined macroscopically (Figure 3) after the 1, 3, and 6 months. We
did not observe any foreign body reaction with fibrosis, necrosis, and/or scar tissue
formation in none of the animal groups during the 6 months. Even though the surgical
operation was quite severe and the implants quite large (8mm in diameter and 1mm
thick), there were no animal deaths during the test period. It should be noted that the
polymer used was a blend of two well-known biodegradable polymers, PLLA and PCL,
and the percentage of the polymer phase was only about 5% of the total volume due to the
high porosity of the scaffolds prepared for this study.

Figure 2. Animal surgical procedure: (a) cranial defect created and scaffold before implantation; (b) scaffold

implanted into the cranial defect; and (c) introducing stem cells within the cavities of the implanted scaffold

Figure 1. A representative m-CT image of the PLLA/PCL blend scaffolds
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Following macroscopic examination, the bone specimens were taken from the defect areas
(including the surrounding tissue) and histologically examined for bone repair and tissue
responses. The scoring techniques applied and the results are given in Table 2. Shown in
Figures 4–6 are representative histological images of the samples taken after 1, 3, and 6
months, respectively, at two different magnifications for the ‘scaffold,’ ‘stem cell,’ and
‘scaffold–stem cell’ groups.

The quantitative and qualitative histological analyses of the bone healing revealed that the
critical size cavity was not totally ossified at the end of 6months in any of the groups; this has also
been reported in similar studies.24,22 However, very positive/promising healing processes without
any significant tissue reactions were observed as summarized and discussed below.

Bone defect healing

Listed in Table 3 are the bone defect healing scores and the tissue responses to the implants.
The bone defect healing scores increased significantly in all groups from day 30 to 180.
Defect healing scores increased significantly from 30 to 90 days and from 30 to 180 days
in all groups (p< 0.005).

The descriptive statistics regarding new bone area measurements (mm2) are given in
Figure 7. The 3-month new bone formation rate was significantly higher than that
after 1 month in the scaffold group (p¼ 0.00); but there was no significant difference
for the stem cell and scaffold–stem cell-implanted groups. The 6-month new bone
formation measurements were also significantly higher than that after 1 month in
all groups (p¼ 0.00). The new bone formation (green-stained bone area in the
images) was significantly greater in the scaffold–stem cell group compared to that of
the scaffold group after months 1 and 3 (p¼ 0.00 and p¼ 0.004, respectively). The
stem cell group received significantly higher scores for new bone formation compared

Figure 3. A sample image showing the defect site at the end of 3 months in the scaffold–stem cell group
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to the scaffold group (p¼ 0.06) after month 1; but the difference was not significant
after 3 months.

There was no statistically significant difference between the stem cell and scaffold–stem
cell groups regarding new bone formation after months 1 and 3. There was no statistically
significant difference seen between groups for new bone formation in or after month 6
(Figure 7).

Figure 4. After 1 month: Ossification started from cortical bone edges within the defect area (a)–(f).

Defect healing process is at more advanced level in stem cell group (c and d) and scaffold–stem cell (e and f)

group comparing to that of the scaffold samples (a and b). Collagen fibers (pink with HE; green with MT) and

the blood vessels (arrow) are located, in close relation with the dissolving implant particles; showing the

biocompatibility and the good guidance for the polymer. Note that bony spicules guiding the ossification are

present within the cavity in D. Note: HE, hematoxylin eosin; MT, Masson’s trichrome; I, implant; CT,

connective tissue; BM, bone marrow; CB, compact bone; NB, new bone; and Co, collagen fibers
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Cortical bone remodeling by controlled osteoblastic and osteoclastic activities and the
bone marrow elements recovery were semi-quantitatively examined for each group.
The ossification process started from the edges of the cortical bone and went toward the
center in the scaffold and stem cell groups (Figures 4–6). A fibrous capsule surrounded the
polymer particles in all groups. These particles stimulated new bone formation by guiding
new small blood vessels within these thin collagenous capsules (Figures 4(a), (b), (e), and (f);
5(a), (b), (e), and (f); and 6(a), (b), (e), and (f)). The stem cell group gave better results

Figure 5. After 3 months: The green new bone layer (osteoid) at the cortical edges is thicker than day 30

in all groups. Maturing bone matrix undergoing Haversian remodeling in red-green with MT is seen at inset

(b). The cavity is filled with a disorganized loose connective tissue in (c) and (d). Dissolving polymeric

particles adjacent to vessels and tiny collagen fibers fill the cavity in the scaffold implanted groups (a, b, e, and

f). Note the presence of collagen fibers (green with MT), macrophages (arrows) and the small blood vessels

(stars) adjacent to the polymer particles in inset F. Note: HE, haematoxylin eosin; MT, Masson’s trichrome;

I, implant; CT, connective tissue; BM, bone marrow; CB, compact bone; and NB, new bone
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regarding the marrow recovery and new bone remodeling compared to the scaffold groups
after 6 months (Figure 6(a)–(f)). The marrow cavity was filled with hematopoietic precursor
cells and the fat islands in this group. But the difference was not statistically significant
regarding total bone defect healing score. Ma et al.25,26 reported promising results with

Figure 6. After 6 months: Although new bone layer is significantly thicker compared to previous time

points, critical size defect is still filled with fibrous callus in all groups (a)–(f). Stem cell applied cavity remains

to be filled with a disorganized loose connective tissue (c and d). However, the healing process is accelerated

with the presence of a thick new bone layer (note the two distinct new bone layer marked by Os and NB in

(c)) and ossifying small bony spicules within the cavity in this group (d inset). Polymer is degrading from the

periphery toward inside and dividing particles and/or porosities make compartments that are surrounded by

thin capsules containing macrophages, epitheloid giant cells (arrows) and fibroblasts (insets of a, e, and f).

Remodeling of new bone layer and bone marrow recovery is better in cell-scaffold applied groups (e, f) when

compared to others. Note: HE, hematoxylin eosin; MT, Masson’s trichrome; I, implant; CT, connective

tissue; BM, bone marrow; CB, compact bone; NB, new bone; and Star, blood vessel
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polymer/ceramic/collagen composites as posterolateral and intervertebral spinal fusion
materials. Other groups also suggested the use of scaffold/cell constructs for bone
repair.27–29 Zhou et al. reported that PLLA-nano hydroxyapatite scaffolds combined with
MSCs can enhance and accelerate bone formation.30

The stem cell group revealed the best cortical bone remodeling and new bone formation
in the defect area at the end of 1 month (Figure 4(c) and (d)). Disorganized ossifiying bony
islands and accelerated healing (almost equal to the scaffold–stem cell group) were
observed within the defect in this group after 2 months (Figure 5(c) and (d)); but
healing process was not promoted after 6 months compared to the other groups (Figure
6(c) and (d)). On the other hand, the stem cell group did not have significantly higher total
bone defect healing scores compared to other groups.

Tissue response

Tissue response scores remained low and did not significantly differ between groups and by
time (Table 3). Neither fibrosis (scar tissue), necrosis, nor foreign body reaction was noted in
any of the samples at any time point. The polymeric scaffolds caused mild to moderate

Table 3. Descriptive statistics

Parameter

Time

(month) Group N

Arithmetic

mean

Standard

deviation Median Minimum Maximum

Bone defect repair 1 ‘Scaffold’ 10 2.4167 0.51493 2.000 2.00 3.00

‘Stem cell’ 10 3.2000 0.63246 3.000 2.00 4.00

‘Scaffold–stem

cell’

10 3.0833 0.51493 3.000 2.00 4.00

3 ‘Scaffold’ 10 3.1667 0.57735 3.000 2.00 4.00

‘Stem cell’ 10 4.0000 0.57735 4.000 3.00 5.00

‘Scaffold–stem

cell’

10 4.3333 0.65134 4.000 3.00 5.00

6 ‘Scaffold’ 12 3.7500 0.75308 4.000 3.00 5.00

‘Stem cell’ 12 4.0000 0.86603 4.000 3.00 5.00

‘Scaffold–stem

cell’

12 4.5000 0.67420 5.000 3.00 5.00

Tissue Response 1 ‘Scaffold’ 10 2.4167 0.51493 2.000 2.00 3.00

‘Stem cell’ 10 1.0000 0.00000 1.000 1.00 1.00

‘Scaffold–stem

cell’

10 2.2727 0.46710 2.000 2.00 3.00

3 ‘Scaffold’ 10 2.3333 0.49237 2.000 2.00 3.00

‘Stem cell’ 10 1.0000 0.00000 1.000 1.00 1.00

‘Scaffold–stem

cell’

10 2.2500 0.45227 2.000 2.00 3.00

6 ‘Scaffold’ 12 2.3333 0.49237 2.000 2.00 3.00

‘Stem cell’ 12 1.0000 0.00000 1.000 1.00 1.00

‘Scaffold–stem

cell’

12 2.4167 0.51493 2.000 2.00 3.00

Tissue response and defect healing scores are the variables. The data of variables belonging to different groups are given as

mean, minimum, maximum, medium, and standard deviation values.
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inflammation that was characterized mainly by mononuclear phagocytic cells, macrophages,
lymphocytes, and fibroblasts. Some scattered polymorphonuclear leukocytes with foreign
body giant cells were also noted (insets of Figure 6(a), (e), and (f)).

A highly vascular and cellular connective tissue was observed surrounding the
polymer particles within the cavity initiated the intra membrane formation of new bone
capsules in the scaffold and scaffold–stem cell implanted groups. The capsule was
more cellular and vascular; the newly formed bone trabecules were greater in the
scaffold–stem cell group compared to the scaffold group (Figure 4). Degradation of the
polymer started from the periphery at 1 month. However, polymer particle residues
were still intact at 6 months (Figures 4(a), (b), (e), and (f); 5(a), (b), (e), and (f); and
6(a), (b), (e), and (f)).

Conclusions

In this study, we reported the use of highly porous biodegradable scaffolds with or without
stem cells for repairing critical size cranial defects in a rat model. Both salt leaching and scCO2

treatment were used to obtain the highly open pore structures with very high interconnectivity
between the pores. The scCO2 application not only produced extra small pores on the pore
walls which increased the interconnectivity, but also allowed removal of residuals within the
scaffolds and eliminated the potential side effects in in vivo. The porosity of the scaffolds was
over 90% with less than 10% polymer in the scaffolds; this is a very important property if one
considers the possible side effects of the polymers and their degradation products.
Degradation data imply that the weight of the polymeric blend was halved after 6 months
which means less than 5% of the cavity volume was occupied by polymer at that time;
consequently, the scaffold was still able to support the newly forming tissue.

Figure 7. Descriptive statistics regarding to new bone area measurement (mm2)
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There were no foreign body reactions, such as fibrosis, necrosis, or scar tissue formation
in any of the groups and no animals died during the 6-month experiment. The cranial defect
healing and new bone formation of all three groups, the ‘scaffolds,’ ‘scaffold-stem cells’ and
‘stem cells,’ were very similar. It is felt that supporting the defect area mechanically for more
than 6 months may lead even better bone formation; therefore, the ‘scaffold–stem cells
group’ may be the more effective repair strategy.
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