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1. Introduction

Stancu [1] introduced Beta operators L, of the second kind in order to approximate the Lebesgue integrable functions on
the interval (0, 00) as

1 o0 tnx—l
B(nx,n+ 1) /(; (1 + t)ymxtntl

Abel and Gupta [2] and Gupta et al. [3] estimated the rate of convergence for functions and for functions with derivatives
of bounded variation respectively, for the operators (1.1). As the g calculus has been one of the most interesting areas of
research in the last decade, this motivated us to introduce the q analogue of the Stancu-Beta operators. First, we mention
certain notation for g calculus as follows. For each nonnegative integer k, the g-integer [k], is defined by

[k], = {(1 —q/(1—q, q#1

Li(f; %) = f()dt. (1.1)

k, qg=1.

The g-factorial [k],! is defined as

Kok — 1l [1]y, k> 1
[k]q!:::gf]q[ ooy, k=1

For the integers n, k, n > k > 0, the g-binomial coefficients are defined by
[n:| ._ [n]q!
k|, ™ [Klg!n — klg!"
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The g-improper integral is defined as (see [4])
co/A e n n
qa\4q
| reoas = q)n_wa<A> A
We consider (a + b), = ]_[]”;01 (a + ¢'b). The g-Beta integral representations are as follows:
oo/A thl
B, (t,s) =K (At ———dgx,
q ( ) ( )/(; (1 + X)Z+S q
where
KA t+1)=qK(@Art

for A > 0 (see [5]).
The present work deals with the g analogue of the well known Stancu-Beta operators. Here we estimate moments, the
recurrence relation, and some direct results in terms of the modulus of continuity of the g-Stancu-Beta operators.

2. g-Stancu-Beta operators and moments

Definition 1. For 0 < g < 1, we propose the g analogue of Stancu-Beta operators as

K (A, [nlyx) o/ ultlext [nlgx
([n]q x, [n]; + 1) /0 1+ u)gnquH"]qﬂf (q a u) dqu.

LI(f;x) =
n(f ) Bq

Lemma 1. We have

LI(1;x) =1, LL(t; %) = x, L9 (tZ;x)_M

" ~oa(n—1)
Proof. By the definition of g-Stancu-Beta operators, we have
LI(1;x) = K (4. [nlg¥) /OO/A il du
By ([nlgx, [nlg+1) Jo (14 u)gn]qx+[n]q+1 q
=1
Next, we have
K (A, [n], x) qiMax  foo/A ulnlgx
5 (60 = 5 il x, Inly + 1) fo g1 99
q (Mg X, [Nlq (14 uwyq
_ K (A, [n]yx) g™ By ([n]yx + 1, [n],)
By (Inlgx. [n], +1) K (A [nl;x+ 1)
_ K (A’ (n], X) q'"lex Iy ([n]q X+ 1) Iy ([”]q)
By (Inlyx, [n], + 1) K (A, [nl,x + 1) I (In], x + [n], + 1)
I ([n]gx + [n]g + 1) 1 I ([nlgx + 1) Iy (In],)

K (A, (g
) a1y 7 (il 1) @K (A 0120 T (kg + 1)

_ Fallnlgx +1) 1y (Inly)
I ([n]q x) Iy ([n]q + ])
[n], xIy (Inly %) Iy (Inl,)

Iy ([nlgx) Inlg I (Inl,)
Finally, by using the g-Beta integral, we have
2[n]gx 0o/A [n]gx+1
B ) = BK E?z;llniq [Xn)1q+ 1) / i
q g% Ltlg 0 (14 u)q
_K(An] x) ¢?Ma* B ([n],x+ 2, [n], — 1)
© By(Inlgx.[nl,+1) K (A [n],x+2)
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Iy (Inlyx + [nl, + 1)
Iy (Inlgx) Iy (Il + 1)
5 1 Iy (Inlyx+2) Iy (In], — 1)
q(Imlgx+1) glnlgx e (A nl,x) Iy (Inlyx + [nly + 1)
T (Inl,x+2) Iy (In], — 1) 1
T (X)L (), +1)
B (Inlgx + 1) [nlyxIy (In], x) Iy (In], — 1) 1
L (Inlgx) [n]g ([nlg — 1) Iy (In)g — 1) q
B (Inlgx+ 1) x
(- 1)

= ¢?"e*K (A, [n], x)

Remark 1. Suppose that g € (0, 1); then for x € [0, 0o0), we have
LIt—xx=0
_ ([nlq — qln]q + Q)Xz +x

(=07 a(lnly — 1)

Remark 2. Suppose that g € (0, 1); then for x € [0, 00), and proceeding along the lines of the proof of Lemma 1, we have
the following formula for the mth-order moment:

19 (¢ x) = Iy (Inlgx +m) Iy ([nl; —m + 1)

Iy ([n]gx) Iy ([n], + 1) gmim=1/2"

3. Direct theorems
We denote by C3[0, 00) the space of real valued continuous bounded functions f on the interval [0, 00); the norm ||.|| on
the space C[0, 00) is given by
Ifll = sup If()I.

0<x<oo
Peetre’s K-functional is defined by
Ky(f,8) = inf{[f —gll +8llg"]l : g € W?}],

where W? = {g € (3[0,00) : g’,g” € ([0, 00)}. By [6], there exists a positive constant C > 0 such that K,(f, §) <
Cawy(f, 8%, 8 > 0 where the second-order modulus of smoothness is given by

wy(f.N8) = sup  sup |f(x+2h) — 2f (x+ h) + f(%)].
0<h§ﬁ0§x<oc

Also for f € ([0, oo) the usual modulus of continuity is given by
o(f,8) = sup sup |f(x+h) —fx)|

0<h<§ 0<x<o©

Theorem 1. Suppose that f € Cg[0, 00) and 0 < q < 1. Then for all x € [0, o0) and n € N, there exists an absolute constant
C > Osuch that
IL3(f5 %) — f(O] < Caa (f, 8n (%)),

(Inlg—qlnlg+9x*+x
where (Sﬁ(x) = W

Proof. Suppose that g € W?2. From Taylor’s expansion

t
gm=g®+g®a—w+fa—wﬂwm,td&w)



70 A. Aral, V. Gupta / Applied Mathematics Letters 25 (2012) 67-71

and Lemma 1, we get

t
Li(g;x) =gx) + L] (/ (t —uwg” (u)du, x) .

t
L </ (t —u)g" (u)du, x)

< LI (t —%.x) 1g"].
Using Remark 1, we obtain
([nly — qlnly + Qx* +x
q([nlg — 1)
On the other hand, by the definition of L} (f; x), we have
I (501 < If Il
Next,
L0 —fl < I —g:0 — -2+ |Lig %) — g
(In] — qlnly + @x* +x 2’|
q([nlg — 1) '

Hence taking the infimum on the right hand side over allg € W?, we get
LI %) = F(X)] < CKa (F, 87(%)) .
In view of the property of the K-functional for every q € (0, 1), we get

IL3(f, %) — fX)] < Coy (f, 8n(X)) -
This completes the proof of the theorem. O

Hence

t
/ |t — ullg” (u)|du

5LZ<

)

ILig; x) —g)| <

ILI(g; %) —g®)| < lg"ll.

IA

If —ell +

Let B,2 [0, 00) be the set of all functions f defined on [0, oo) satisfying the condition |f (x)| < M (1 + xz), where My is
a constant depending only on f. We denote by C,2 [0, oo) the subspace of all continuous functions belonging to B,z [0, 00).
Also, let C% [0, 00) be the subspace of all functions f € Cyz [0, 00) for which lim,., /@) is finite. The norm on 5 [0, 00)

1+x2
is I e = SUPycjo, ) L.

Theorem 2. Let f € C3 [0, 00) be such that f',f" € €10, 00) and g = gn € (0, 1) such that g, — 1asn — oo; then the
following equality holds:
. ! X142,
lim [, (L (320 = F@0) = =@

uniformly on [0, A], A > 0.

Proof. By Taylor’s formula we may write

1
fFO=F+f X —x + Ef”(X)(t — %)% +r(t, x)( —x)7, (3.1)
where r(t, x) is the remainder term and lim,_, r(t, x) = 0. Applying LI (f; x) to (3.1), we obtain
(1l (£330 — F09) = [nlg (6 = 060+ [l 1 (€ =075 ) T2
+ [nlg, L8 (r (£, %) (£ — %)% ;%) .
By the Cauchy-Schwartz inequality, we have
LI (r (6, x) (t —x)%;x) < \/LZ” (r2(t,%); x)\/Lg“ ((t—x*:x). (3.2)

Observe that 7% (x,x) = 0and r? (., x) € C:Z [0, 00). Then it follows from Theorem 1 that

lim LI (r* (¢, %);X) =1° (x,X) =0 (3.3)
n—oo
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uniformly with respect to x € [0, A]. Now from (3.2), (3.3) and Remark 2, we get immediately
i qn _ 2. _
lim [n],, L} (r(t,x) (t—x7%;x) =0.
Finally using Remark 1, we get the following:

im [n]g, (L (F5 %) — f(x))

Jim [n],, (f’(X)L?{‘ ((t—x);%) + %f”(X)Lﬂ“ (€ = %)%, %) + LT (r (¢, %) (¢ — x)%; X))

1
_x+x ;—x)f”(x). 0

4. Weighted approximation
In this section we shall discuss the weighted approximation theorem.
Theorem 3. Suppose that q¢ = qy, satisfies 0 < q, < 1 and suppose that q, — 1asn — oo. Foreach f € C:z [0, 00), we have
lim (1) ~ ], =0.
Proof. Using the theorem in [7] we see that it is sufficient to verify the following three conditions:
lim |t %) —x"|| , =0, v=0,1,2. (4.1)

Since LI" (1, x) = 1and LI (t, x) = x, the first and second conditions of (4.1) are fulfilled for v = O and v = 1.
We can write

[nly, — qnlnl,, — qn| X 1 X
L (t2,x) — %%, < g, o +
” n ( X) X HXZ - xes[g,lzo) qn ([n]qn - 1) 14 x2 xeslg,lgo) an ([n]Qn - ]) 1+

which implies that

lim |Li" (¢%, x) —x*| , =0.

n—o00o

Thus the proof is completed. O
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