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a b s t r a c t

In the present work we introduce the q analogue of well known Stancu-Beta operators. We
estimate moments and establish direct results in terms of the modulus of continuity. We
also present an asymptotic formula.
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1. Introduction

Stancu [1] introduced Beta operators Ln of the second kind in order to approximate the Lebesgue integrable functions on
the interval (0, ∞) as

Ln(f ; x) =
1

B(nx, n + 1)

∫
∞

0

tnx−1

(1 + t)nx+n+1
f (t)dt. (1.1)

Abel and Gupta [2] and Gupta et al. [3] estimated the rate of convergence for functions and for functions with derivatives
of bounded variation respectively, for the operators (1.1). As the q calculus has been one of the most interesting areas of
research in the last decade, this motivated us to introduce the q analogue of the Stancu-Beta operators. First, we mention
certain notation for q calculus as follows. For each nonnegative integer k, the q-integer [k]q is defined by

[k]q :=


(1 − qk)/(1 − q), q ≠ 1
k, q = 1.

The q-factorial [k]q! is defined as

[k]q! :=


[k]q[k − 1]q · · · [1]q, k ≥ 1
1, k = 0.

For the integers n, k, n ≥ k ≥ 0, the q-binomial coefficients are defined by[
n
k

]
q
:=

[n]q!
[k]q![n − k]q!

.
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The q-improper integral is defined as (see [4])∫
∞/A

0
f (x)dqx = (1 − q)

∞−
n=−∞

f

qn

A


qn

A
, A > 0.

We consider (a + b)nq =
∏n−1

j=0 (a + qjb). The q-Beta integral representations are as follows:

Bq (t, s) = K (A, t)
∫

∞/A

0

xt−1

(1 + x)t+s
q

dqx,

where

K (A, t + 1) = qtK (A, t)

for A > 0 (see [5]).
The present work deals with the q analogue of the well known Stancu-Beta operators. Here we estimate moments, the

recurrence relation, and some direct results in terms of the modulus of continuity of the q-Stancu-Beta operators.

2. q-Stancu-Beta operators and moments

Definition 1. For 0 < q < 1, we propose the q analogue of Stancu-Beta operators as

Lqn (f ; x) =
K


A, [n]q x


Bq


[n]q x, [n]q + 1

 ∫
∞/A

0

u[n]qx−1

(1 + u)
[n]qx+[n]q+1
q

f

q[n]qxu


dqu.

Lemma 1. We have

Lqn (1; x) = 1, Lqn (t; x) = x, Lqn

t2; x


=


[n]q x + 1


x

q

[n]q − 1

 .

Proof. By the definition of q-Stancu-Beta operators, we have

Lqn (1; x) =
K


A, [n]q x


Bq


[n]q x, [n]q + 1

 ∫
∞/A

0

u[n]qx−1

(1 + u)
[n]qx+[n]q+1
q

dqu

= 1.

Next, we have

Lqn (t; x) =
K


A, [n]q x


q[n]qx

Bq

[n]q x, [n]q + 1

 ∫
∞/A

0

u[n]qx

(1 + u)
[n]qx+[n]q+1
q

dqu

=
K


A, [n]q x


q[n]qx

Bq

[n]q x, [n]q + 1

 Bq

[n]q x + 1, [n]q


K


A, [n]q x + 1


=

K

A, [n]q x


q[n]qx

Bq

[n]q x, [n]q + 1

 Γq

[n]q x + 1


Γq


[n]q


K


A, [n]q x + 1


Γq


[n]q x + [n]q + 1


= K


A, [n]q x


q[n]qx

Γq

[n]q x + [n]q + 1


Γq


[n]q x


Γq


[n]q + 1

 1
q[n]qxK


A, [n]q x

 Γq

[n]q x + 1


Γq


[n]q


Γq


[n]q x + [n]q + 1


=

Γq

[n]q x + 1


Γq


[n]q


Γq


[n]q x


Γq


[n]q + 1


=

[n]q xΓq

[n]q x


Γq


[n]q


Γq


[n]q x


[n]q Γq


[n]q

 = x.

Finally, by using the q-Beta integral, we have

Lqn

t2; x


=

K

A, [n]q x


q2[n]qx

Bq

[n]q x, [n]q + 1

 ∫
∞/A

0

u[n]qx+1

(1 + u)
[n]qx+[n]q+1
q

dqu

=
K


A, [n]q x


q2[n]qx

Bq

[n]q x, [n]q + 1

 Bq

[n]q x + 2, [n]q − 1


K


A, [n]q x + 2


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= q2[n]qxK

A, [n]q x

 Γq

[n]q x + [n]q + 1


Γq


[n]q x


Γq


[n]q + 1


×

1

q([n]qx+1)q[n]qxK

A, [n]q x

 Γq

[n]q x + 2


Γq


[n]q − 1


Γq


[n]q x + [n]q + 1


=

Γq

[n]q x + 2


Γq


[n]q − 1


Γq


[n]q x


Γq


[n]q + 1

 1
q

=


[n]q x + 1


[n]q xΓq


[n]q x


Γq


[n]q − 1


Γq


[n]q x


[n]q


[n]q − 1


Γq


[n]q − 1

 1
q

=


[n]q x + 1


x

q

[n]q − 1

 . �

Remark 1. Suppose that q ∈ (0, 1); then for x ∈ [0, ∞), we have

Lqn (t − x; x) = 0

Lqn

(t − x)2 ; x


=

([n]q − q[n]q + q)x2 + x
q([n]q − 1)

.

Remark 2. Suppose that q ∈ (0, 1); then for x ∈ [0, ∞), and proceeding along the lines of the proof of Lemma 1, we have
the following formula for themth-order moment:

Lqn

tm; x


=

Γq

[n]q x + m


Γq


[n]q − m + 1


Γq


[n]q x


Γq


[n]q + 1


qm(m−1)/2

.

3. Direct theorems

We denote by CB[0, ∞) the space of real valued continuous bounded functions f on the interval [0, ∞); the norm ‖.‖ on
the space CB[0, ∞) is given by

‖f ‖ = sup
0≤x<∞

|f (x)|.

Peetre’s K -functional is defined by

K2(f , δ) = inf[{‖f − g‖ + δ‖g ′′
‖ : g ∈ W 2

}],

where W 2
= {g ∈ CB[0, ∞) : g ′, g ′′

∈ CB[0, ∞)}. By [6], there exists a positive constant C > 0 such that K2(f , δ) ≤

Cω2(f , δ1/2), δ > 0 where the second-order modulus of smoothness is given by

ω2(f ,
√

δ) = sup
0<h≤

√
δ

sup
0≤x<∞

|f (x + 2h) − 2f (x + h) + f (x)|.

Also for f ∈ CB[0, ∞) the usual modulus of continuity is given by

ω(f , δ) = sup
0<h≤δ

sup
0≤x<∞

|f (x + h) − f (x)|.

Theorem 1. Suppose that f ∈ CB[0, ∞) and 0 < q < 1. Then for all x ∈ [0, ∞) and n ∈ N, there exists an absolute constant
C > 0 such that

|Lqn(f ; x) − f (x)| ≤ Cω2 (f , δn(x)) ,

where δ2
n(x) =

([n]q−q[n]q+q)x2+x
q([n]q−1) .

Proof. Suppose that g ∈ W 2. From Taylor’s expansion

g(t) = g(x) + g ′(x)(t − x) +

∫ t

x
(t − u)g ′′(u)du, t ∈ [0, ∞)
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and Lemma 1, we get

Lqn(g; x) = g(x) + Lqn

∫ t

x
(t − u)g ′′(u)du, x


.

Hence

|Lqn(g; x) − g(x)| ≤

Lqn ∫ t

x
(t − u)g ′′(u)du, x

 ≤ Lqn

∫ t

x
|t − u||g ′′(u)|du

 , x
≤ Lqn


(t − x)2, x


‖g ′′

‖.

Using Remark 1, we obtain

|Lqn(g; x) − g(x)| ≤
([n]q − q[n]q + q)x2 + x

q([n]q − 1)
‖g ′′

‖.

On the other hand, by the definition of Lqn(f ; x), we have

|Lqn(f ; x)| ≤ ‖f ‖.

Next,

|Lqn(f ; x) − f (x)| ≤ |Lqn(f − g; x) − (f − g)(x)| + |Lqn(g; x) − g(x)|

≤ ‖f − g‖ +
([n]q − q[n]q + q)x2 + x

q([n]q − 1)
‖g ′′

‖.

Hence taking the infimum on the right hand side over all g ∈ W 2, we get

|Lqn(f ; x) − f (x)| ≤ CK2

f , δ2

n(x)

.

In view of the property of the K -functional for every q ∈ (0, 1), we get

|Lqn(f , x) − f (x)| ≤ Cω2 (f , δn(x)) .

This completes the proof of the theorem. �

Let Bx2 [0, ∞) be the set of all functions f defined on [0, ∞) satisfying the condition |f (x)| ≤ Mf

1 + x2


, where Mf is

a constant depending only on f . We denote by Cx2 [0, ∞) the subspace of all continuous functions belonging to Bx2 [0, ∞).
Also, let C∗

x2
[0, ∞) be the subspace of all functions f ∈ Cx2 [0, ∞) for which limx→∞

f (x)
1+x2

is finite. The norm on C∗

x2
[0, ∞)

is ‖f ‖x2 = supx∈[0,∞)
|f (x)|
1+x2

.

Theorem 2. Let f ∈ C∗

x2
[0, ∞) be such that f ′, f ′′

∈ C∗

x2
[0, ∞) and q = qn ∈ (0, 1) such that qn → 1 as n → ∞; then the

following equality holds:

lim
n→∞

[n]qn

Lqnn (f ; x) − f (x)


=

x(1 + x)
2

f ′′(x)

uniformly on [0, A], A > 0.

Proof. By Taylor’s formula we may write

f (t) = f (x) + f ′(x)(t − x) +
1
2
f ′′(x)(t − x)2 + r(t, x)(t − x)2, (3.1)

where r(t, x) is the remainder term and limt→x r(t, x) = 0. Applying Lqnn (f ; x) to (3.1), we obtain

[n]qn

Lqnn (f ; x) − f (x)


= [n]qnL

qn
n (t − x; x)f ′(x) + [n]qnL

qn
n


(t − x)2 ; x

 f ′′(x)
2

+ [n]qnL
qn
n


r (t, x) (t − x)2 ; x


.

By the Cauchy–Schwartz inequality, we have

Lqnn

r (t, x) (t − x)2 ; x


≤


Lqnn


r2 (t, x) ; x


Lqnn


(t − x)4 ; x


. (3.2)

Observe that r2 (x, x) = 0 and r2 (., x) ∈ C∗

x2
[0, ∞). Then it follows from Theorem 1 that

lim
n→∞

Lqnn

r2 (t, x) ; x


= r2 (x, x) = 0 (3.3)
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uniformly with respect to x ∈ [0, A]. Now from (3.2), (3.3) and Remark 2, we get immediately

lim
n→∞

[n]qnL
qn
n


r (t, x) (t − x)2 ; x


= 0.

Finally using Remark 1, we get the following:

lim
n→∞

[n]qn

Lqnn (f ; x) − f (x)


= lim

n→∞
[n]qn


f ′(x)Lqnn ((t − x) ; x) +

1
2
f ′′(x)Lqnn


(t − x)2 , x


+ Lqnn


r (t, x) (t − x)2 ; x


=

x(1 + x)
2

f ′′(x). �

4. Weighted approximation

In this section we shall discuss the weighted approximation theorem.

Theorem 3. Suppose that q = qn satisfies 0 < qn < 1 and suppose that qn → 1 as n → ∞. For each f ∈ C∗

x2
[0, ∞), we have

lim
n→∞

Lqnn (f ) − f

x2 = 0.

Proof. Using the theorem in [7] we see that it is sufficient to verify the following three conditions:

lim
n→∞

Lqnn (tν; x) − xν

x2 = 0, ν = 0, 1, 2. (4.1)

Since Lqnn (1, x) = 1 and Lqnn (t, x) = x, the first and second conditions of (4.1) are fulfilled for ν = 0 and ν = 1.
We can writeLqnn 

t2, x

− x2


x2 ≤ sup

x∈[0,∞)

[n]qn − qn [n]qn − qn


qn

[n]qn − 1

 x2

1 + x2
+ sup

x∈[0,∞)

1
qn


[n]qn − 1

 x
1 + x2

which implies that

lim
n→∞

Lqnn 
t2, x


− x2


x2 = 0.

Thus the proof is completed. �
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