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Abstract. In the peresent paper, we give a common fixed point theorem for four weakly compatible
mappings on non-complete partial metric spaces. Some supporting examples are provided.
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1 Introduction

Partial metric spaces were introduced by Matthews [1] to the study of denotational seman-
tics of dataflow networks. In particular, he proved a partial metric version of the Banach
contraction principle. Later, Valero [2] and Oltra and Valero [3] gave some generalizations
of the result of Matthews. In fact, the study of fixed point theorems on partial metric metric
spaces has received a lot of attention in the last three years (see, for instance, [4–17]
and their references). Almost all of these papers offer fixed point or common fixed point
results on complete partial metric spaces. In this paper, we present a common fixed point
theorem without completeness of the space.

Now, we recall some definitions and results needed in the sequel. A partial metric on
a nonempty set X is a mapping p : X ×X → [0,∞) such that

(p1) x = y if and only if p(x, x) = p(x, y) = p(y, y),
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(p2) p(x, x) 6 p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, y) 6 p(x, z) + p(z, y)− p(z, z)
for all x, y, z ∈ X . A partial metric space is a pair (X, p) such that X is a nonempty set
and p is a partial metric on X . It is clear that, if p(x, y) = 0, then from (p1) and (p2)
x = y. But if x = y, p(x, y) may not be 0. A basic example of a partial metric space is
the pair (X, p), where X = [0,∞) and p(x, y) = max{x, y} for all x, y ∈ X .

Example 1. Let (X, d) and (X, p) be a metric space and partial metric space, respectively.
Mappings ρi : X ×X → [0,∞) (i ∈ {1, 2, 3}) defined by

ρ1(x, y) = d(x, y) + p(x, y),

ρ2(x, y) = d(x, y) + max
{
ω(x), ω(y)

}
,

ρ3(x, y) = d(x, y) + a

define partial metrics on X , where ω : X → [0,∞) is an arbitrary function and a > 0.

Other examples of the partial metric spaces which are interesting from a computa-
tional point of view may be found in [1, 18, 19].

Each partial metric p on X generates a T0 topology τp on X which has a family of
open p-balls {

Bp(x, ε): x ∈ X, ε > 0
}
,

as a base, where Bp(x, ε) = {y ∈ X: p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.
It is easy to see that, a sequence {xn} in a partial metric space (X, p) converges with

respect to τp to a point x ∈ X if and only if p(x, x) = limn→∞ p(x, xn). By L(xn), we
denote the set of x ∈ X , which the sequence {xn} converges to x with respect to τp. That
is, L(xn) = {x ∈ X : xn → x w.r.t. τp}. If p is a partial metric on X , then the functions
ps, pm : X ×X → [0,∞) given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)
and

pm(x, y) = max
{
p(x, y)− p(x, x), p(x, y)− p(y, y)

}
= p(x, y)−min

{
p(x, x), p(y, y)

}
are equivalent metrics on X .

Remark 1. Let {xn} be a sequence in a partial metric space (X, p) and x ∈ X , then

lim
n→∞

ps(xn, x) = 0

if and only if
p(x, x) = lim

n→∞
p(xn, x) = lim

n,m→∞
p(xn, xm).
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Definition 1. Let (X, p) be a partial metric space.
(i) A sequence {xn} in X is called Cauchy whenever limn,m→∞ p(xn, xm) exists

(and finite);
(ii) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges with

respect to τp, to a point x ∈ X , that is, limn,m→∞ p(xn, xm) = p(x, x).

The following example shows that a convergent sequence {xn} in a partial metric
spaceX may not be Cauchy. In particular, it shows that the limit of a convergent sequence
is not unique.

Example 2. Let X = [0,∞) and p(x, y) = max{x, y}. Let

xn =

{
0, n = 2k,

1, n = 2k + 1.

Then it is easy to see that L(xn) = [1,∞). But lim
n,m→∞

p(xn, xm) does not exist.

The following Lemma shows that under certain conditions the limit is unique.

Lemma 1. (See [20].) Let {xn} be a convergent sequence in partial metric spaceX such
that xn → x and xn → y. If

lim
n→∞

p(xn, xn) = p(x, x) = p(y, y),

then x = y.

Lemma 2. (See [20, 21].) Let {xn} and {yn} be two sequences in partial metric space
X such that

lim
n→∞

p(xn, x) = lim
n→∞

p(xn, xn) = p(x, x)

and

lim
n→∞

p(yn, y) = lim
n→∞

p(yn, yn) = p(y, y),

then limn→∞ p(xn, yn) = p(x, y). In particular, limn→∞ p(xn, z) = p(x, z) for every
z ∈ X .

Lemma 3. (See [1, 3].) Let (X, p) be a partial metric space.
(i) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the

metric space (X, ps).
(ii) A partial metric space (X, p) is complete if and only if the metric space (X, ps) is

complete.

In the proofs of many fixed-point theorems on Partial metric space, using the met-
ric ps, the operations are done in the metric space (X, ps), and then taking into account
Lemma 3, again returns to the partial metric space (X, p). However, in their recent paper
Haghi et al. [22] have done the proof completely on a metric space using another metric,
which is obtained from the partial metric p, instead of ps. In this paper, we do not use the
technique of Haghi et al. [22], because of our contractive condition is given by implicit
relation.
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2 Main results

In the following we deal with the class Ψ of all functions ψ : [0,∞)6 → R with the
property:

(ψ1) For w 6 u and v > 0,

ψ(u, v, v, u, u+ v, w) 6 0 or ψ(u, v, u, v, w, u+ v) 6 0

implies that u < v,

(ψ2) ψ(t1, t2, t3, t4, t5, t6) is non-increasing in t5, t6,

(ψ3) for every w,w′ 6 u,

ψ(u, u, w,w′, u, u) 6 0, ψ(u, 0, 0, u, u, w) 6 0 and ψ(u, 0, u, 0, w, u) 6 0

implies that u = 0,

(ψ4) ψ is continuous in any coordinates.

Two basic examples of ψ are:

1. ψ(t1, t2, t3, t4, t5, t6) = t1 − λmax{t2, t3, t4, (1/2)t5, (1/2)t6} for 0 < λ < 1,

2. ψ(t1, t2, t3, t4, t5, t6) =
∫ t1
0
φ(s) ds − hmax{

∫ ti
0
φ(s) ds} for i = 2, 3, 4, where

0 < h < 1 and φ : R+ → R+ is a continuous map.

Let f and S be two self maps of a partial metric space (X, p), then we define a set
E(f, S) by

E(f, S) =
{
p(fx, Sx): x ∈ X

}
.

It is clear that inf E(f, S) is exist, but may not be belong to E(f, S).
It is well known that f and S are weakly compatible [23] if they are commute at their

coincidence point, that is, fx = Sx implies that fSx = Sfx.

Theorem 1. Let (X, p) be a partial metric space and f, g, S, T : X → X are four
mappings such that f(X) ⊆ T (X) and g(X) ⊆ S(X). Suppose for all x, y ∈ X

ψ
(
p(fx, gy), p(Sx, Ty), p(Sx, fx), p(gy, Ty), p(Sx, gy), p(Ty, fx)

)
6 0, (1)

where ψ ∈ Ψ . If inf E(f, S) ∈ E(f, S), f and S as well as g and T are weakly
compatible, then f , g, S and T have a unique common fixed point z in X . Moreover
p(z, z) = 0.

Proof. Since inf E(f, S) ∈ E(f, S), hence if put α = inf E(f, S), then there exists
u ∈ X such that α = p(fu, Su). Since fu ∈ f(X) ⊆ T (X), hence there exists v ∈ X
such that fu = Tv. Thus

α = p(fu, Su) = p(Tv, Su).
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We prove that α = 0. Let α > 0, from (1) we get

ψ
(
p(fu, gv), p(Su, Tv), p(Su, fu), p(gv, Tv), p(Su, gv), p(Tv, fu)

)
6 0.

Since,

p(Su, gv) 6 p(Su, fu) + p(fu, gv)− p(fu, fu)
6 p(Su, fu) + p(fu, gv),

by above inequality and (ψ2) it follows that

ψ
(
p(fu, gv), α, α, p(gv, fu), α+ p(fu, gv), p(fu, fu)

)
6 0.

By (ψ1), p(Tv, gv) = p(fu, gv) < α = p(fu, Su). Since gv ∈ g(X) ⊆ S(X), hence
there exists w ∈ X such that Sw = gv. Similarly, from (1) we get

ψ
(
p(fw, gv), p(Sw, Tv), p(Sw, fw), p(gv, Tv), p(Sw, gv), p(Tv, fw)

)
6 0.

Since,

p(fw, Tv) 6 p(fw, Sw) + p(Sw, Tv)− p(Sw, Sw)
6 p(fw, Sw) + p(Sw, Tv),

by above inequality and (ψ2) it follows that

ψ
(
p(fw, Sw), p(gv, Tv), p(Sw, fw), p(gv, Tv), p(Sw, Sw), p(fw, Sw) + p(gv, Tv)

)
6 0.

If p(gv, Tv) = 0, then by (ψ1) we get p(fw, Sw) = 0. Thus, by the definition of α, we
have

α = p(fu, Su) 6 p(fw, Sw) = 0,

which is a contradiction. So, it follows that p(gv, Tv) > 0, hence by (ψ1), we get
p(fw, Sw) < p(gv, Tv). Thus,

α = p(fu, Su) 6 p(fw, Sw) < p(gv, Tv) < p(fu, Su) = α,

which is a contradiction. Hence α = 0. This implies that fu = Su = Tv. Now we prove
that gv = Tv. If gv 6= Tv, then by (1) and (ψ2), we get

ψ
(
p(Tv, gv), p(Tv, Tv), p(Tv, Tv), p(gv, Tv), p(Tv, Tv) + p(Tv, gv), p(Tv, Tv)

)
= ψ

(
p(fu, gv), p(Su, Tv), p(Su, fu), p(gv, Tv), p(Su, Tv)+p(Su, gv), p(Tv, fu)

)
6 ψ

(
p(fu, gv), p(Su, Tv), p(Su, fu), p(gv, Tv), p(Su, gv), p(Tv, fu)

)
6 0,

from (ψ1) it follows that, p(Tv, gv) = 0 and so Tv = gv, because α = p(Tv, Tv) = 0.
Hence,

Tv = gv = fu = Su = z.
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By weak compatibility of g and T and f and S we have gz = Tz and fz = Sz. Now, we
prove that fz = z. In fact by (1), we have

ψ
(
p(fz, gv), p(Sz, Tv), p(Sz, fz), p(gv, Tv), p(Sz, gv), p(Tv, fz)

)
6 0

or
ψ
(
p(fz, z), p(fz, z), p(fz, fz), p(z, z), p(fz, z), p(z, fz)

)
6 0.

By (ψ3), we have p(fz, z) = 0 and so fz = z. Therefore,

fz = Sz = z.

Similarly by (1) we have

ψ
(
p(z, gz), p(z, gz), p(fz, fz), p(gz, gz), p(z, gz), p(z, gz)

)
= ψ

(
p(fz, gz), p(Sz, Tz), p(Sz, fz), p(gz, Tz), p(Sz, gz), p(Tz, fz)

)
6 0.

By (ψ3), we have p(z, gz) = 0 and so gz = z. Therefore,

gz = Tz = z.

i.e., z is a common fixed point of f, g, S and T . Moreover p(z, z) = p(fu, Su) = α = 0.
Now we show that the common fixed point is unique. If x and y are two common

fixed points of f, g, S and T , then from (1), we have

ψ
(
p(x, y), p(x, y), p(x, x), p(y, y), p(x, y), p(y, x)

)
= ψ

(
p(fx, gy), p(Sx, Ty), p(Sx, fx), p(Sy, Ty), p(Sx, gy), p(Ty, fx)

)
6 0.

By (ψ3) implies that p(x, y) = 0 and so x = y.

Remark 2. In Theorem 1, the condition inf E(f, S) ∈ E(f, S) can be replaced by
inf E(g, T ) ∈ E(g, T ).

Corollary 1. Let fi, gj , T and S (i, j ∈ N ) be self-mappings of a partial metric space
(X, p) such that fi0(X) ⊆ T (X), and gj0(X) ⊆ S(X) for some i0, j0 ∈ N . Suppose for
all x, y ∈ X and i, j ∈ N

ψ
(
p(fix, gjy), p(Sx, Ty), p(Sx, fix), p(gjy, Ty), p(Sx, gjy), p(Ty, fix)

)
6 0,

where ψ ∈ Ψ . If inf E(fi0 , S) ∈ E(fi0 , S), fi0 and S as well as gj0 and T are weakly
compatible, then fi, gj , S and T have a unique common fixed point z in X . Moreover
p(z, z) = 0.

Proof. By Theorem 1, S, T , fi0 and gj0 have a unique common fixed point z in X .
Moreover p(z, z) = 0. That is, there exists a unique z ∈ X such that

Sz = Tz = fi0z = gj0z = z.
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Now for every j ∈ N , we have from (1)

ψ
(
p(z, gjz), p(z, z), p(z, z), p(gjz, z), p(z, gjz) + p(z, z), p(z, z)

)
= ψ

(
p(z, gjz), p(z, z), p(z, z), p(gjz, z), p(z, gjz), p(z, z)

)
= ψ

(
p(fi0z, gjz), p(Sz, Tz), p(Sz, fi0z), p(gjz, Tz), p(Sz, gjz), p(Tz, fi0z)

)
6 0.

By (ψ1), it follows that p(gjz, z) = 0. Hence, for every j ∈ N , we have gjz = z.
Similarly, for every i ∈ N , we get fiz = z. Therefore, for every i, j ∈ N , we have

fiz = gjz = Sz = Tz = z.

We can obtain the following corollaries from Theorem 1, by the choosing some special
function ψ.

Corollary 2. Let (X, p) be a partial metric space and f, g, S, T : X → X are four
mappings such that f(X) ⊆ T (X) and g(X) ⊆ S(X). Suppose for all x, y ∈ X

p(fx, gy) 6 λmax

{
p(Sx, Ty), p(Sx, fx), p(gy, Ty),

1

2
p(Sx, gy),

1

2
p(Ty, fx)

}
,

where λ ∈ (0, 1). If inf E(f, S) ∈ E(f, S), f and S as well as g and T are weakly
compatible, then f , g, S and T have a unique common fixed point z in X . Moreover
p(z, z) = 0.

Corollary 3. Let (X, p) be a partial metric space and f, g, S, T : X → X are four
mappings such that f(X) ⊆ T (X) and g(X) ⊆ S(X). Suppose for all x, y ∈ X

p(fx,gy)∫
0

φ(s) ds 6 hmax

{ p(Sx,Ty)∫
0

φ(s) ds,

p(Sx,fx)∫
0

φ(s) ds,

p(gy,Ty)∫
0

φ(s) ds

}
,

where 0 < h < 1 and φ : R+ → R+ is a continuous map. If inf E(f, S) ∈ E(f, S),
f and S as well as g and T are weakly compatible, then f , g, S and T have a unique
common fixed point z in X . Moreover p(z, z) = 0.

Corollary 4. Let (X, p) be a partial metric space and f, g, S, T : X → X are four
mappings such that f(X) ⊆ T (X) and g(X) ⊆ S(X). Suppose for all x, y ∈ X

p(fx, gy) 6 λp(Sx, Ty),

where λ ∈ (0, 1). If inf E(f, S) ∈ E(f, S), f and S as well as g and T are weakly
compatible, then f , g, S and T have a unique common fixed point z in X . Moreover
p(z, z) = 0.

Now we give an illustrative example.
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Example 3. Let X = [0,∞) and p(x, y) = max{x, y}, then (X, p) is a partial metric
space. Define self-maps f , g, S and T on X as follows:

fx = x, gx = ex − 1, Sx = 2x and Tx = e2x − 1

for any x ∈ X . Hence, inf E(f, S) = inf{p(fx, Sx): x ∈ X} = 0 ∈ E(f, S) and

p(fx, gy) = max
{
x, ey − 1

}
6 max

{
x, ey cosh y − 1

}
=

1

2
max

{
2x, e2y − 1

}
=

1

2
p(Sx, Ty)

for every x, y in X . Also, f and S as well as g and T are weakly compatible and f(X) =
T (X) and g(X) = S(X). Therefore, all conditions of Corollary 4 are holds, and z = 0
is unique common fixed point of f , g, S, T .

The following example shows that condition inf E(f, S)∈E(f, S) can not be omitted.

Example 4. Let X = (0,∞) and p(x, y) = max{x, y}, then (X, p) is a partial metric
space. Define self-maps f , g, S and T on X as follows:

fx = gx = λx, Sx = Tx = x

for any x ∈ X , where λ ∈ (0, 1). Hence,

p(fx, gy) = max{λx, λy} = λmax{x, y} = λp(Sx, Ty)

for every x, y in X . Also, f and S as well as g and T are weakly compatible, f(X) =
T (X) and g(X) = S(X). But f , g, S, T have not a common fixed point in X . Note that

inf E(f, S) = inf{p(fx, Sx) : x ∈ X} = 0 /∈ E(f, S).

Example 5. Let X = [0,∞)∩Q, where by Q we denote the set of rational numbers and
p(x, y) = max{x, y}, then (X, p) is a non-complete partial metric space. If we define
self-maps f , g, S and T on X as in Example 4 with λ ∈ (0, 1)∩Q, then all conditions of
Corollary 4 are holds and z = 0 is unique common fixed point of f , g, S, T .
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