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The effects of random geometric
graph structure and clustering on
localizability of sensor networks

Tolga Eren

Abstract
Graph rigidity provides the conditions of unique localizability for cooperative localization of wireless ad hoc and sensor
networks. Specifically, redundant rigidity and 3-connectivity are necessary and sufficient conditions for unique localizabil-
ity of generic configurations. In this article, we introduce a graph invariant for 3-connectivity, called 3-connectivity index.
Using this index along with the rigidity and redundancy indices provided in previous work, we explore the rigidity and
connectivity properties of two classes of graphs, namely, random geometric graphs and clustered graphs. We have found
out that, in random geometric graphs and clustered graphs, it needs significantly less effort to achieve 3-connectivity
once we obtain redundant rigidity. In reconsidering the general conditions for unique localizability, the most striking find-
ing in random geometric graphs is that it is unlikely to observe a graph, in which 3-connectivity is satisfied before the
graph becomes redundantly rigid. Therefore, in random geometric graphs, it is more likely sufficient to test only 3-con-
nectivity for unique localizability. On the contrary to random geometric graphs, our findings indicate that 3-connectivity
may be satisfied before the graph becomes redundantly rigid in clustered graphs, which means that, in clustered graphs,
we have to test both redundant rigidity and 3-connectivity for unique localizability.
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Introduction

Locations of sensor nodes are often required in several
applications of wireless sensor networks because infor-
mation gathered or communicated by wireless sensor
nodes is often meaningful with knowledge of the loca-
tions of the nodes.1 It may be expensive to equip all
sensor nodes with global positioning system (GPS)
receivers, and manual configuration of each sensor
node may be impractical. To overcome these problems,
a small number of reference nodes are used in a wireless
sensor network.2,3 Reference nodes, usually called
anchors or beacons, have the knowledge of their own
locations by means of GPS or manual configuration.
The rest of the nodes, which are large in number, are

called ordinary nodes. Ordinary nodes (non-anchors)
do not know their positions. The main idea in most
localization methods is that anchors transmit their
coordinates in order to help ordinary nodes localize
themselves. An ordinary node making measurements to
multiple anchors (e.g. three anchors in 2-space) can
determine its position. But direct communication to
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anchors is not feasible for several ordinary nodes
because of power constraints or blockage of signals. To
overcome this problem, ‘‘cooperative localization’’ can
be implemented, in which ordinary nodes make mea-
surements with other ordinary nodes to determine their
locations to be used with the information obtained
from anchors.2,3

Localizability is concerned with location uniqueness
of network nodes.4,5 In this article, we consider the
conditions of localizability with distance measurements
in two-dimensional space. Given anchor positions and
pairwise measurements between nodes, if there is a
unique set of node positions satisfying this set of infor-
mation, then the network is called uniquely localizable.
Unique localizability is associated with ‘‘graph rigid-
ity.’’ In particular, it was shown that global rigidity is
necessary and sufficient for unique localizability of net-
work graphs for generic configurations.6,7 For a graph
G to be globally rigid, G has to be vertex 3-connected
and redundantly rigid.8,9 More details on rigidity and
global rigidity will be provided in subsequent sections.

As noted earlier, the necessity and sufficiency of glo-
bal rigidity for unique localizability has been studied
for generic configurations in a general setting, such as
in the study of Jackson and Jordán.9 In particular, from
graph theory point of view, there was no restriction on
the existence of edges between any two vertices, say i

and j, even if they are located far apart from each other.
However, we know that in a graph representing a wire-
less ad hoc and sensor network, an edge between two
vertices exists if these two vertices are sufficiently close
to each other. From a mathematical point of view, this
can be modeled as a unit disk graph structure. The
assumption of unit disk graph structure is valid in ran-
dom geometric graphs, which are used to model wire-
less ad hoc and sensor networks.10 Moreover, the nodes
in a wireless ad hoc and sensor network may be
grouped in clusters (e.g. nodes are located in separate
rooms), which results in clustered graphs with unit disk
graph structure. As noted earlier, for a graph to be
globally rigid, it has to satisfy two conditions: it has to
be redundantly rigid and 3-connected. However, if the
underlying graph is a random geometric graph or a
clustered graph, then how these two conditions are
affected is an open question.

For generic configurations in a general setting, there
are graphs that are redundantly rigid but not 3-con-
nected, and there are graphs that are 3-connected but
not redundantly rigid. In a general setting, it is not clear
how much increase in sensing radii is needed to obtain
3-connectivity once redundant rigidity is satisfied, or
vice versa, because neighborhood (and therefore unit
disk graph structure) does not play a role in general set-
tings. However, we know that neighborhood is impor-
tant in random geometric graphs and clustered graphs;

therefore, how much increase in sensing radii is needed
to obtain 3-connectivity once redundant rigidity is satis-
fied (vice versa) is another open question. It is not even
known whether redundant rigidity or 3-connectivity is
satisfied first in a random geometric graph or clustered
graph.

Contributions of this article

1. First, we present a measure of 3-connectivity,
namely, 3-connectivity index, Kc. Then, by mak-
ing use of the rigidity index Kr, the redundancy
index Ku, which were introduced in the study of
Eren,11 together with the connectivity index Kc

introduced in this article, we assess how the sen-
sing radii of sensors affect the properties of
rigidity, redundant rigidity, and 3-connectivity
in networks, which enables us to evaluate the
unique localizability of sensor networks.
Specifically, we investigate the following ques-
tion: given that redundant rigidity and 3-con-
nectivity are associated with unique
localizability, is it difficult to satisfy redundant
rigidity or 3-connectivity once either of them is
attained? In particular, what percentage
increase is needed in sensing radii to attain 3-
connectivity once redundant rigidity is achieved,
or vice versa?

2. In general, redundant rigidity does not imply 3-
connectivity, and vice versa.8 By making use of
the rigidity index Kr, redundancy index Ku, and
the connectivity index Kc, we make the following
observations: (1) in random geometric graphs,
Kc = 1 more likely implies Ku = 1, that is, a 3-
connected graph is more likely to be redun-
dantly rigid; (2) in clustered graphs, Kc = 1 does
not imply Ku = 1, in other words, a 3-connected
graph is not necessarily redundantly rigid, so we
need to check both 3-connectivity and redun-
dant rigidity to make sure that they are both
satisfied.

The rest of this article is organized as follows. In
section ‘‘Related work,’’ we provide a list of references
on the subject. In section ‘‘Background on rigidity,’’
information on rigidity is given. In section ‘‘Measure of
3-connectivity,’’ the 3-connectivity index is provided.
The behaviors of the rigidity index, the redundancy
index, and the connectivity index are investigated in
section ‘‘Comparison of Kr, Ku, and Kc.’’ In section
‘‘Discussion,’’ we contemplate the differences observed
in random geometric graphs and clustered graphs. In
section ‘‘Conclusion,’’ the article ends with concluding
remarks.
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Related work

Rigidity and global rigidity have found extensive areas
of applications in the literature.5–7,12–16 In particular,
uniqueness of network localizability has applications in
robotics13,17,18 and in sensor networks.4–7,11,16,19–21

Rigidity theory has been applied to network topologies
to control robot formations.17,22–24 Specifically, rigidity
theory allows to maintain formations by distance mea-
surements instead of position measurements.
Moreover, it allows estimating positions from distance
measurements.17

The theory of localizability has been used in real
applications of localization of sensor networks. For
example, in the article by Chen et al.,25 they propose
localizability-aided localization (LAL) method, which
has three stages, namely, node localizability testing,
structure analysis, and network adjustment. In that
scheme, LAL method starts with an adjustment phase
and then other localization techniques are carried out.
The information of node localizability in LAL gives the
power of making all networks adjustments in a purpo-
seful way. They execute LAL and show its success by
means of real-world experiments and substantial num-
ber of simulations. In particular, to analyze the success
of LAL, they execute it on the data collected from
GreenOrbs, which is a wireless sensor network system
providing ecological information in the forest, where it
is crucial to decrease energy consumption. In experi-
ments and simulations, LAL directs the adjustment
phase efficiently in terms of the number of affected
nodes and inserted edges, which leads to the conclusion
that neglecting localizability gives rise to unneeded
adjustments and accompanying costs.25

Rigidity indices and connectivity indices have been
studied in different research areas. The stiffness matrix
was used to obtain a measure of formation rigidity by
Zhu and Hu in their study.26 Rigidity eigenvalue was
provided by Zelazo et al.17 using the symmetric rigidity
matrix. These two studies made use of an algebraic
approach for rigidity. Measure of rigidity based on
chemical bonds was provided by Jacobs et al.27 More
recently, rigidity index and redundancy index were
introduced by Eren.11 Rigidity index provided a mea-
sure of closeness to rigidity of a network graph. On the
other hand, redundancy index provided a measure of
redundancy of edges in the network graph from the per-
spective of rigidity. This study made use of a combina-
torial approach for rigidity. Quantitative connectivity
measures have been provided, especially as mathemati-
cal descriptors of molecular structures.28,29

Background on rigidity

First, we provide an overview of rigidity, redundant
rigidity, global rigidity, and 3-connectivity, and refer

the reader to the studies of Jackson and Jordán,9

Whiteley,30,31 and Berg and Jordán32 for more details
on rigidity theory.

Rigid frameworks and the rigidity matrix

A graph G =(V ,E) is used to model a network. Here,
the vertices in V = fv1, v2, . . . , vng denote the nodes in
the network, and the edges in E = fe1, e2, . . . , emg
denote the links of the network. A framework G( p) in
R2 is the combination of a finite graph G=(V ,E) and
a map p : V ! R2, assigning to each vertex in G, a loca-
tion in R2. In other words, a framework is a straight-
line realization of a graph G =(V ,E) in R2. The labeled
collection of points p=(p1, p2, . . . , pn) is called a con-
figuration. The graph component provides us the topol-
ogy information of a network, and the configuration
component provides us spatial positions of each node.

Frameworks G(p) and G(q) are equivalent if
jjp(vi)� p(vj)jj= jjq(vi)� q(vj)jj holds for all
(vi, vj) 2 E, where k :k denotes the distance. More
strongly, G(p) and G(q) are congruent if
jjp(vi)� p(vj)jj= jjq(vi)� q(vj)jj holds for all vi, vj 2 V .
A framework G(p) in R2 is rigid if there is a neighbor-
hood Up in the space of configurations in R2 such that
if q 2 Up and G(q) is equivalent to G(p), then q is con-
gruent to p.

Given an edge e=(vi, vj) 2 E of a framework G(p),
we define de = kp(vi)� p(vj)k2. The edge function of G

is a map from R2n to Rm and is given by
fG(p)= (de1

(p), de2
(p), . . . , dem

(p)). The rigidity matrix
R(G, p) is the jEj3 2jV j matrix, where j:j denotes the
cardinality of a set, and is defined as the Jacobian
matrix R(G, p)= (1=2)(∂fG(p)=∂p).

A framework G(p) is infinitesimally rigid if
rankfR(G, p)g= 2jV j � 3. If the framework is infinitesi-
mally rigid, then it is rigid. The converse of this state-
ment is not true. If the configuration p is generic, then
rigidity and infinitesimal rigidity are equivalent. A con-
figuration is called generic, if any non-trivial algebraic
equation with rational coefficients is not satisfied by
the coordinates of p.

Rigid graphs

The infinitesimal rigidity of framework G(p) depends
on the configuration p in R2. However, almost all con-
figurations of a graph G are either infinitesimally rigid
or flexible. Moreover, generic configurations form an
open connected dense subset of R2n. Therefore, rigidity
can be considered from the perspective of graph G.30

A graph G is rigid in R2 if G(p) is rigid for every gen-
eric configuration p. If G=(V ,E) is rigid and G � feg
is non-rigid for any e 2 E, then G is called minimally
rigid.
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A graph G =(V ,E) is rigid in the plane if and only
if there is a subgraph G0=(V ,E0) with jE0j= 2jV j � 3

such that

jE00j � 2jV 00j � 3 for all V 00 � V 0 with jV 00j � 2 ð1Þ

where for a subset V 0 � V let G0=(V 0,E0) denote the
subgraph of G induced by V 0, and for a subset V 00 � V 0

let G00=(V 00,E00) denote the subgraph of G0 induced by
V 00.30

Global rigidity

Rigidity disallows continuous flexing of a framework.
However, there are application areas in which rigidity
is not sufficient due to the possibility of multiple reali-
zations of the framework, resulting from discontinuous
flexing and partial reflection. Global rigidity is related
to the unique realization of a framework up to congru-
ence. A framework G(p) is globally rigid if every frame-
work G(q) which is equivalent to G(p) is congruent to
G(p). A globally rigid framework has a unique realiza-
tion up to congruence. In a globally rigid framework,
the distance between all vi, vj 2 V is maintained for dif-
ferent realizations. If a graph G=(V ,E) is rigid and,
for each e 2 E, G � feg is also rigid, then G is called
redundantly rigid. It was proved in the studies of
Hendrickson8 and Jackson and Jordán9 that a graph is
globally rigid if and only if it is redundantly rigid and
3-connected.

Rigidity and redundancy indices

Combinatorial measures of rigidity and redundancy
were introduced by Eren.11 Here, we give a brief review
of these indices. The rigidity matroid of the framework
G(p), denoted by M(G, p), is defined by linear indepen-
dence of the rows of the rigidity matrix R(G, p).

Let a graph G =(V ,E) be given. Let E0 � E, E0 6¼ [.
Then, E0 is independent if

jE00j � 2jV 00j � 3 for all E00 � E0 ð2Þ

where V 00 is the set of vertices incident with E00.
We define the rigidity index, Kr(G), as follows

Kr(G) ¼D
max
E02S
jE0j

2jV j � 3
ð3Þ

where S is the collection of edge sets E0 satisfying equa-
tion (2).

Rigidity index of a framework is an indicator of clo-
seness to rigidity, having values in the interval of ½0, 1�.
If Kr(G)= 0 this means that E=[. If Kr(G)= 1, then

the framework is rigid. This index is essentially the ratio
of independent edges in the framework over the possi-
ble maximal number of independent edges for the ver-
tex set in the given framework.11

For a rigid graph G =(V ,E), an edge e 2 E is called
a redundant edge if G � feg is rigid. A generalized con-
cept of redundancy to include both rigid and non-rigid
frameworks is introduced in the study of Eren.11 Given
a (rigid or non-rigid) graph G =(V ,E), an edge e 2 E

is called a generalized redundant edge if
Kr(G � e)=Kr(G). The set of generalized redundant
edges for such a graph is denoted by Eu(G), and
Eu(G)= fe : Kr(G � e)=Kr(G)g. The redundancy index
is the ratio of the cardinality of this set over the cardin-
ality of the edge set of G, that is,
Ku(G) ¼D jEuj=jEj, where jEj 6¼ 0

Redundancy index takes values between 0 and 1. If
G is rigid, then a value of 0 indicates that G is minimally
rigid, and a value of 1 indicates that G is redundantly
rigid.

Measure of 3-connectivity

First we recall some definitions on 3-connectivity. A
graph G=(V ,E) is 3-connected if it has at least four
vertices and G�X is connected for any X � V with
jX j � 2. From Menger’s theorem, a graph is 3-con-
nected if, for every pair of its vertices, it is possible to
find three vertex-independent paths connecting these
vertices.33 There are various tests for 3-connectivity,
34,35 where complexity analysis is also given.

Let Vc denote the set of vertex pairs, such that G�Vc

is connected, and let V2 denote the set of all vertex
pairs. The 3-connectivity index, denoted by Kc(G), is
defined as

Kc(G) ¼D Vcj j
V2j j

ð4Þ

Note that 0�Kc(G)� 1. Kc takes the value of 0 if
that there is no vertex pair Vc in G such that G�Vc is
connected. As the network graph gets closer to 3-con-
nectedness, Kc takes a larger value.

Proposition 1. Let a graph G =(V ,E) be given.
Kc(G)= 1 if and only if G is 3-connected.

Proof. If G is 3-connected, then G�Vc is connected for
any Vc � V with jVcj � 2, which results in Vc =V2.
Then, Kc(G) becomes 1 from the ratio in equation (4).
Now, if Kc(G)= 1, then, from the ratio in equation (4),
Vc =V2, which means that G�Vc remains connected
for any Vc � V , and hence G is 3-connected. h
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We have the following theorem.

Theorem 1. For a given sensing radius rs, let
Grs =(V ,Ers) be the resulting graph, where jV j � 4.
Then, Kc(Grs) is a non-decreasing function of rs.

Proof. For rs = 0, Ers =[, which results Kc(Grs)= 0.
For a sufficiently large rs, Grs =(V ,Ers) is a complete
graph and, therefore, Kc(Grs)= 1.

Let us consider an intermediate case, where Grs1 is
not a complete graph. Suppose that when we increase
the sensing radius, no new edge appears. Then, jVcj
does not change, hence Kc(Grs) stays the same.

Now suppose that a new edge e appears when we
increase the sensing radius. Let the resulting graph be
denoted by Grs2 =(V ,Ers2) where Ers2 =Ers1

S
feg.

First, suppose that the new edge e does not result in
a change in Vc. From equation (4), this means that
Kc(Grs2)=Kr(Grs1).

Second, suppose that the new edge e results in an
increase in jVcj. Since V2 stays the same, from equation
(4), this means that Kc(Grs2).Kr(Grs1). Note that the
new edge e cannot result in a decrease in jVcj.

Hence, we conclude that Kc(Grs) is non-decreasing as
we increase rs. Note that if we consider the case where
more than one new edge appears, then similar argu-
ments explained above are still valid.

Remark. We observe that Kc(G) is a non-decreasing
function of the ratio rs=d between the sensing radius rs

and the side length of the area d in each individual
simulation in the sequel, which is consistent with
Theorem 1.

Comparison of Kr, Ku, and Kc

We investigate the behavior of Kr, Ku, and Kc in two
classes of graphs, namely, (1) random geometric graphs
and (2) clustered graphs.

Random geometric graphs

Random geometric graphs with unit disk connection
are used to model wireless ad hoc networks.10,36 In our
model, a random geometric graph comprises n vertices
(nodes) which are distributed uniformly and indepen-
dently on a d 3 d square area (d is the side length of
the area). Two vertices are connected by an edge if their
distance is less than or equal to some given sensing
range rs.

An exemplary distribution of n= 25 sensor nodes in
an area of 30 units 3 30 units is shown in Figure 1
(simulation 30). For sensing radius rs = 10:8 units,

which is 36% of d, the resulting graph is shown in
Figure 2.

When rs takes different values, Kr(G), Ku(G), and
Kc(G) do also change. For the node distribution in
Figure 1, plots of Kr(G), Ku(G), and Kc(G) against rs=d

are shown in Figure 3.
Using the same 25 sensor nodes in an area of

30 3 30, we repeated this process for 50 different uni-
form random distributions. We computed Kr(G),
Ku(G), and Kc(G) as a function of the ratio rs=d

between the sensing radius rs and the side length of the
area d for each distribution. Average values of Kr(G),
Ku(G), and Kc(G) as a function of the ratio rs=d, com-
puted for 50 different node distributions, are shown in
Figure 4.

Figure 1. An exemplary node distribution.

Figure 2. The resulting random geometric graph for the node
distribution in Figure 1 when the sensing radius is 36% of the
side length of the area.
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Next, we determined the rs=d values at which Kr, Ku,
and Kc attain the value of 1, so that G becomes rigid,
redundantly rigid, and 3-connected, respectively. Note
that Ku may become 1 before G becomes rigid. This
indicates that all the edges are redundant in the graph.
But this is not what we are interested in. So, we imposed
the condition that Kr = 1 when Ku attain the value of 1.
This ensures that we determine the rs=d value for redun-
dant rigidity. The resulting plot is shown in Figure 5.

We make the following observations for random
geometric graphs:

� In simulations (1, 10, 13, 22, 24, 32, 35, 37, 38,
44), first Kr, then Ku, and finally Kc becomes 1.

� In simulations (2–9, 12, 14–21, 23, 25–31, 33, 34,
36, 39–43, 45, 47–50), first Kr becomes 1, then Ku

and Kc together become 1 at the same rs=d value.
� In simulation (11), Kr and Ku become 1 at the

same rs=d value; then, Kc becomes 1.
� In simulation (46), Kr, Ku, and Kc together

become 1 at the same rs=d value.
� We note that in none of the simulations, Kc

becomes 1 before Ku reaches this value.

Clustered graphs

Second, ‘‘clustered graphs’’ are considered in modeling
sensor networks. When the distribution of nodes is not
uniform, clustering, where the clusters are based on
geographic location, becomes an issue to enable energy-
efficient network operation.37 Clustering was also con-
sidered in the study of Marcelı́n-Jiménez et al.38 such
that a network becomes more rigid by increasing con-
nections between clusters. As in random geometric

graphs, we assume that there are n nodes on a d 3 d

square area, and two vertices are connected by an edge
if their distance is less than or equal to some given sen-
sing range rs.

First, we give some additional definitions. A cluster
Ci is identified by subgraph induced by a node set as
G(Ci) :¼ (Ci,E(Ci)), where E(Ci) :¼ f(v,w) 2 E : v,w 2
Cig. Given a graph G =(V ,E) and k 2 N.1, a collec-
tion of vertex sets C = fC1,C2, . . . ,Ckg, where Ci 6¼ [

for each i, is a partition of V , if
Sn

i= 1 Ci =V and
Ci

T
Cj =[ for i 6¼ j, such that each subgraph induced

by the vertex set Ci is connected. Each Ci is called a
cluster. The set Ea :¼

Sk
i= 1 E(Ci) is called the set of

Figure 3. When rs takes different values, Kr(G), Ku(G), and
Kc(G) do also change. Plots of Kr(G), Ku(G), and Kc(G) against
rs=d for the node distribution in Figure 1.

Figure 4. Average values of Kr(G), Ku(G), and Kc(G) as a
function of the ratio rs=d, computed for 50 different node
distributions.

Figure 5. rs=d values at which Kr , Ku, and Kc attain the value of
1 in random geometric graphs.
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intra-cluster edges, and Er =EnEa is called the set of
inter-cluster edges. We refer the reader to the study of
Gaertler39 for more details on graph partitioning and
clustered graphs.

In simulations, we take n= 25 units and d = 30 units,
as we did in random geometric graphs, for comparison
purposes. An exemplary distribution of clusters is shown
in Figure 6 (simulation 1).

If we take the sensing radius rs = 11:7 units, the
resulting clustered graph is shown in Figure 7.

There are four clusters, namely, C1,C2,C3,C4. Each
cluster in (C1,C2,C3,C4) is confined in one of the four
closed domains (D1,D2,D3,D4), respectively. The first
cluster is distributed in the closed domain
D1 = f(x, y) : x, y 2 ½3, 12�g. The rest of the domains are
as follows: D2 = f(x, y) : x 2 ½18, 27�, y 2 ½3, 12�g,
D3 = f(x, y) : x 2 ½3, 12�, y 2 ½18, 27�g,
D4 = f(x, y) : x, y 2 ½18, 27�g.

For the same clustered distribution, we generated
clustered graphs for several rs, taking values from 0 to
d. As the sensing radius increases, Kr(G), Ku(G), and
Kc(G) do change. The values of Kr(G), Ku(G), and
Kc(G) are plotted against the ratio rs=d in Figure 8. In
this plot, the node distribution in Figure 6 is used.

As expected from Theorem 2 of Eren,11 Ku(G) exhi-
bits a non-monotonic behavior. When the edges in each
cluster becomes a generalized redundant edge, Ku(G)
becomes 1 although the entire graph is not redundantly
rigid. As rs increases, new edges between clusters
appear, which are not necessarily redundantly rigid, so
Ku(G) drops down. As more edges appear with an
increasing rs, all the edges eventually become general-
ized redundant edges, and Ku(G) attains the value of 1

again. However, both Kr(G) and Kc(G) exhibit a non-
decreasing behavior, again as expected from Theorem 2
of Eren11 and Theorem 1 of this article.

We repeated the computation of Kr(G), Ku(G), and
Kc(G) as a function of the ratio rs=d for 50 different
clustered distributions. Average values of Kr(G), Ku(G),
and Kc(G) as a function of the ratio rs=d, computed for
50 different node distributions, are shown in Figure 9.

Then, we determined the rs=d values at which Kr, Ku,
and Kc attain the value of 1, so that G becomes rigid,
redundantly rigid, and 3-connected, respectively. As in
random geometric graphs, we imposed the condition
that Kr = 1 when Ku attain the value of 1 to avoid the
situations in which all edges are generalized redundant

Figure 6. An exemplary clustered node distribution.

Figure 7. The resulting clustered graph for the node
distribution in Figure 6 when the sensing radius is 39% of the
side length of the area.

Figure 8. When rs takes different values, Kr(G), Ku(G), and
Kc(G) do also change. Plots of Kr(G), Ku(G), and Kc(G) against
rs=d for the clustered node distribution in Figure 6.
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edges although the graph is non-rigid. This ensures that
we determine the rs=d value for redundant rigidity. The
resulting plot is shown in Figure 10.

We make the following observations for clustered
graphs:

� In simulations (1–3, 6, 16, 19, 21, 25, 26, 28, 30,
33, 40, 43, 49, 50), first Kr(G), then Ku(G), and
finally Kc(G) attain the value of 1. For example,
the results of simulation (1) is shown in Figure 8.

� In simulations (4, 5, 9, 12, 13, 17, 20, 22, 23, 27,
34–37, 47, 48), Kr reaches the value of 1 first,
then Ku and Kc become 1 at the same rs=d value.

� In simulations (7, 8, 10, 14, 15, 18, 24, 31, 39,
44–46), first Kr(G) and Ku(G) together attain the
value of 1, and then Kc(G) attain the value of 1.

� In simulations (11, 32, 38, 41, 42), Kr, Ku, and Kc

all become 1 at the same rs=d value.
� Contrary to the behaviors observed in random

geometric graphs, there is a noteworthy differ-
ence in clustered graph simulations. For the
clustered node distribution shown in Figure 11
(simulation 29), if we take the sensing radius
rs = 9:3 units, the resulting clustered graph
is shown in Figure 12. Although this graph is
3-connected, it is not redundantly rigid, because
if we remove any one of the edges in {(15, 23),

Figure 9. Average values of Kr(G), Ku(G), and Kc(G) as a
function of the ratio rs=d, computed for 50 different node
distributions.

Figure 10. rs=d values at which Kr , Ku, and Kc attain the value
of 1 in clustered graphs.

Figure 11. Another exemplary clustered node distribution.

Figure 12. The resulting clustered graph for the node
distribution in Figure 11 when the sensing radius is 31% of the
side length of the area.
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(19, 25), (2, 8)}, the resulting graph becomes non-
rigid. Therefore, for this distribution, first Kr(G),
then Kc(G), and finally Ku(G) attain the value of
1 as shown in Figure 13.

Discussion

First, let us recall the questions that we posed in section
‘‘Introduction.’’ The first question was whether satisfy-
ing redundant rigidity or 3-connectivity is difficult once
either of them is achieved, and in particular, what per-
centage increase in sensing radii is needed to reach from
redundant rigidity to 3-connectivity, or vice versa.

In random geometric graphs, in simulations (1, 10,
11, 13, 22, 24, 32, 35, 37, 38, 44), Ku becomes 1 before

Kc reaches this value. In the rest of the simulations, Ku

and Kc become 1 at the same rs=d value. On average
2:38% increase in rs is necessary to obtain a 3-con-
nected graph from a redundantly rigid graph.

In clustered graphs, there was one exception where Kc

becomes 1 before Ku reaches this value (simulation 29).
In all other simulations, Ku becomes 1 before Kc reaches
this value or they reach the value of 1 at the same rs=d

value. On average, 4:35% increase in rs is necessary to
obtain a 3-connected graph from a redundantly rigid
graph.

We reach the conclusion that attaining 3-connectiv-
ity is considerably easy once redundant rigidity is
achieved, for both random geometric graphs and clus-
tered graphs.

Next, let us recall the other issue that we raised in
section ‘‘Introduction,’’ specifically, the issue whether
redundant rigidity implies 3-connectivity or vice versa.

Recall that for a graph G to be global rigid, G has to
be redundantly rigid and 3-connected. An example, for
which G is redundantly rigid but not 3-connected is
shown in Figure 14.

The trapezoid composed of v2, v4, v5, v6 can reflect
over the edge (v2, v4) as shown in Figure 15.

Therefore, the framework in Figure 14 is not congru-
ent to the one in Figure 15, although they are equiva-
lent. So, this framework is not globally rigid. Figures 14
and 15 are an example of partial reflection, and it can
occur both in random geometric graphs and clustered
graphs, which have unit disk connection structure, that
is, proximity determines the neighbor relationship
between the nodes in the network.

An example, for which G is rigid, 3-connected, but
not redundantly rigid is shown in Figure 16.

A similar example was given in the study of
Hendrickson8 to demonstrate the necessity of redun-
dant rigidity. Let us consider this graph as a bar-joint

Figure 13. When rs takes different values, Kr(G), Ku(G), and
Kc(G) do also change. Plots of Kr(G), Ku(G), and Kc(G) against
rs=d for the clustered node distribution in Figure 11.

Figure 14. An exemplary graph G, for which G is redundantly
rigid, but not 3-connected.

Figure 15. Partial reflection: the trapezoid composed of
v2, v4, v5, v6 can reflect over the edge (v2, v4).
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framework, where edges are solid bars connected by
fully rotatable joints. If we remove the bar (v3, v6) tem-
porarily in Figure 16, then the triangle composed of
v4, v5, v6 can rotate on fully rotatable joints and move
to v04, v05, v06 such that the length of (v3, v6) is equal to the
length of (v3, v06). This is what we call discontinuous flex-
ing as brought up in the study of Hendrickson8.
Although the framework in Figure 16 is equivalent to
the one in Figure 17, they are not congruent. Therefore,
this framework is not globally rigid.

Discontinuous flexing occurs in rigid graph clusters
connected by few edges, which are inter-cluster edges.
This is what happens for the framework in Figure 12
(simulation 29). When we temporarily remove the edge

(2, 8), two clusters on the right can rotate around the
edges (15, 23), (19, 25), which result in discontinuous
flexing. However, discontinuous flexing is less likely to
occur in random geometric graphs with uniform distri-
bution because it is less likely to have rigid components
connected by inter-cluster edges to give rise to discon-
tinuous flexing. We summarize as follows: (1) in ran-
dom geometric graphs, a 3-connected graph is more
likely to be redundantly rigid, that is, Kc = 1 more
likely implies Ku = 1; (b) in clustered graphs, a 3-con-
nected graph is not necessarily redundantly rigid, in
other words, Kc = 1 does not imply Ku = 1, so we need
to check both 3-connectivity and redundant rigidity to
make sure that they are both satisfied for global
rigidity.

We may argue that 50 simulations are not sufficient
in number to reach conclusions, and we wonder what
happens if we increase the number of simulations. To
respond to this concern, we increase the number of
simulations to 200, for both random geometric graphs
and clustered graphs. Then, we determine the rs=d val-
ues at which Kr, Ku, and Kc attain the value of 1, so that
G becomes rigid, redundantly rigid, and 3-connected,
respectively, in the same manner as we did for the case
of 50 simulations. The resulting plot for random geo-
metric graphs is shown in Figure 18. The results of 200
simulations are in agreement with our previous results
of 50 simulations. In particular, we note that in none of
the simulations, Kc becomes 1 before Ku reaches this
value.

However, we still may question the existence of an
exception, where Kc becomes 1 before Ku reaches this
value. To find this out, we increase the number of simu-
lations to 1000. In only 1 simulation out of 1000

Figure 16. An exemplary graph G, for which G is rigid,
3-connected, but not redundantly rigid.

Figure 17. Discontinuous flexing: if we remove the bar (v3, v6)
temporarily in Figure 16, then the triangle composed of v4, v5, v6

can rotate on fully rotatable joints and move to v04, v
0
5, v
0
6 such

that the length (v3, v6) is equal to the length of (v3, v
0
6). Although

the framework in Figure 16 is equivalent to the one in this
Figure, they are not congruent.

Figure 18. rs=d values at which Kr , Ku, and Kc attain the value
of 1 in random geometric graphs with 25 nodes for 200
simulations.
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simulations (specifically, simulation 644), Kc becomes 1

before Ku reaches this value. In particular, Kc becomes
1 at rs=d = 0:34 where Ku\1. For this rs=d = 0:34

value, we plot the network in Figure 19. We observe
that this graph is 3-connected; however, it is not redun-
dantly rigid because if we remove any one of the edges
in f(5, 23), (9, 18), (3, 24)g, the graph becomes flexible.
The most noticeable feature of this graph is that the set
of nodes f3, 5, 7, 9, 12g actually forms a cluster (C1)
within the graph, where the remaining 20 nodes form
the other cluster (C2), and (5, 23), (9, 18), (3, 24) are the
inter-cluster edges connecting C1 and C2. Therefore, the
existence of clustering in a random geometric graph is
the reason why discontinuous flexing occurs resulting
Kc = 1 while Ku\1.

The resulting plot for clustered graphs is shown in
Figure 20. The results of 200 simulations are again in
agreement with our previous results of 50 simulations.
Specifically, we note that in simulation 29, simulation
75, and simulation 130, Kc becomes 1 before Ku reaches
this value.

Moreover, we may argue that 25 nodes is not large
enough for a sensor network to reach conclusions, and
we ask what happens if we increase the number of
nodes. To answer this question, we increase the number
of nodes to 200, for both random geometric graphs
and clustered graphs. Exemplary networks for random
geometric graph and clustered graph with 200 nodes
are shown in Figures 21 and 22, respectively.

Then, we determine the rs=d values at which Kr, Ku,
and Kc attain the value of 1, so that G becomes rigid,
redundantly rigid, and 3-connected, respectively, in the
same manner as we did for the case of 25 nodes. The

resulting plot for random geometric graphs is shown in
Figure 23. The results of 200 simulations with 200
nodes are in agreement with our previous results of
simulations with 25 nodes. In none of the simulations,
Kc becomes 1 before Ku reaches this value.

We note that when we increase the number of simu-
lations for networks with 200 nodes, we still do not
observe a network where Kc becomes 1 before Ku

reaches this value. However, this does not rule out the
existence of an exception. Yet, we believe that such an
exception can occur if a cluster forms within a random
geometric graph, as we observed in Figure 19.

Figure 19. Random geometric graph with 25 nodes
(simulation 644) when the sensing radius is 34% of the side
length of the area.

Figure 20. rs=d values at which Kr , Ku, and Kc attain the value
of 1 in clustered graphs with 25 nodes for 200 simulations.

Figure 21. An exemplary random geometric graph with 200
nodes (simulation 150) when the sensing radius is 15% of the
side length of the area.
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The resulting plot for clustered graphs with 200
nodes for 200 simulations is shown in Figure 24.
The results of simulations with 200 nodes are again in
agreement with our previous results of simulations
with 25 nodes. Specifically, we note that in simulations
with indices 31, 68, 75, 89, 98, 131, 148, 193, Kc

becomes 1 before Ku reaches this value. For example,
(simulation 75) for rs = 0:11 is shown in Figure 22. We
note that for the selected sensing radius, Kc = 1 but
Ku\1 in Figure 24. This can be verified from the net-
work, that is, the graph in Figure 22 is 3-connected;
however, it is not redundantly rigid because if we
remove any one of the edges in {(42, 128), (120, 195),

(146, 163), (57, 177), (63, 158)}, the graph is non-rigid;
in fact, it is not even rigid with those set of edges.

Conclusion

In this article, we introduced a graph invariant for
3-connectivity that we termed the 3-connectivity index,
Kc(G). This index results from the combinatorial con-
nectivity properties of a graph. Using the 3-connectivity
index along with the rigidity and redundancy indices,
we explored the rigidity and connectivity properties of
two classes of graphs, namely, random geometric
graphs and clustered graphs.

Our previous work of Eren11 showed that it needs
considerably less effort to obtain redundant rigidity
once the network becomes rigid. In this article, we
investigated the transition from redundant rigidity to 3-
connectivity and vice versa. First, we have found out
that, in random geometric graphs, it is considerably
easy to achieve 3-connectivity once we obtain redun-
dant rigidity. Specifically, redundant rigidity and 3-con-
nectivity are either satisfied at the same rs=d (the ratio
between the sensing radius, rs, and the side length of the
area, d), or an average 2:38% increase in rs=d converts
a redundantly rigid graph into a 3-connected graph. It
is worth noting that in random geometric graphs with
uniform distribution, it is unlikely to observe a graph,
in which 3-connectivity is satisfied before the graph
becomes redundantly rigid. Therefore, in random
geometric graphs, it is more likely sufficient to test only
3-connectivity for unique localizability. We discuss that
this is related to the lack of occurrence of discontinuous
flexing in random geometric graphs.

Second, we have found out that in clustered graphs,
redundant rigidity and 3-connectivity are either satisfied

Figure 22. An exemplary clustered graph with 200 nodes
(simulation 75) when the sensing radius is 11% of the side length
of the area.

Figure 23. rs=d values at which Kr , Ku, and Kc attain the value
of 1 in random geometric graphs with 200 nodes for 200
simulations.

Figure 24. rs=d values at which Kr , Ku, and Kc attain the value
of 1 in clustered graphs with 200 nodes for 200 simulations.
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at the same rs=d or an average 4:35% increase in rs=d

converts a redundantly rigid graph into a 3-connected
graph. Moreover, on the contrary to random geometric
graphs, our findings indicate that in clustered graphs,
3-connectivity may be satisfied before the graph
becomes redundantly rigid because it is possible to have
rigid components connected by inter-cluster edges,
which may result in discontinuous flexing. Therefore, in
clustered graphs, we have to test both redundant rigid-
ity and 3-connectivity for unique localizability.
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