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WEIGHTED ITERATED HARDY-TYPE INEQUALITIES

AMIRAN GOGATISHVILI AND RZA MUSTAFAYEV

Abstract. In this paper a reduction and equivalence theorems for the boundedness of the composition of a
quasilinear operatorT with the Hardy and Copson operators in weighted Lebesgue spaces are proved. New
equivalence theorems are obtained for the operatorT to be bounded in weighted Lebesgue spaces restricted
to the cones of monotone functions, which allow to change thecone of non-decreasing functions to the
cone of non-increasing functions and vice versa not changing the operatorT. New characterizations of the
weighted Hardy-type inequalities on the cones of monotone functions are given. The validity of so-called
weighted iterated Hardy-type inequalities are characterized.

1. Introduction

The well-known two-weight Hardy-type inequalities

(1.1)
( ∫ ∞

0

( ∫ x

0
f (τ) dτ

)q

w(x) dx
)1/q

≤ c
( ∫ ∞

0
f p(x)v(x) dx

)1/p

and

(1.2)
( ∫ ∞

0

( ∫ ∞

x
f (τ) dτ

)q

w(x) dx
)1/q

≤ c
( ∫ ∞

0
f p(x)v(x) dx

)1/p

for all non-negative measurable functionsf on (0,∞), where 0< p, q < ∞ with c being a constant

independent off , have a broad variety of applications and represents now a basic tool in many parts of

mathematical analysis, namely in the study of weighted function inequalities. For the results, history and

applications of this problem, see [33,34,36].

Throughout the paper we assume thatI := (a, b) ⊆ (0,∞). ByM(I ) we denote the set of all measurable

functions onI . The symbolM+(I ) stands for the collection of allf ∈ M(I ) which are non-negative on

I , whileM+(I ; ↓) andM+(I ; ↑) are used to denote the subset of those functions which are non-increasing

and non-decreasing onI , respectively. WhenI = (0,∞), we write simplyM↓ andM↑ instead ofM+(I ; ↓)

andM+(I ; ↑), accordingly. The family of all weight functions (also called just weights) onI , that is,

locally integrable non-negative functions on (0,∞), is given byW(I ).

For p ∈ (0,∞] andw ∈ M+(I ), we define the functional‖ · ‖p,w,I onM(I ) by

‖ f ‖p,w,I :=



(∫
I
| f (x)|pw(x) dx

)1/p
if p < ∞

ess supI | f (x)|w(x) if p = ∞.

If, in addition,w ∈ W(I ), then the weighted Lebesgue spaceLp(w, I ) is given by

Lp(w, I ) = { f ∈ M(I ) : ‖ f ‖p,w,I < ∞},
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2 A. GOGATISHVILI AND R.CH.MUSTAFAYEV

and it is equipped with the quasi-norm‖ · ‖p,w,I .

Whenw ≡ 1 on I , we write simplyLp(I ) and‖ · ‖p,I instead ofLp(w, I ) and‖ · ‖p,w,I , respectively.

Supposef be a measurable a.e. finite function onRn. Then its non-increasing rearrangementf ∗ is

given by

f ∗(t) = inf{λ > 0 : |{x ∈ Rn : | f (x)| > λ}| ≤ t}, t ∈ (0,∞),

and let f ∗∗ denotes the Hardy-Littlewood maximal function off , i.e.

f ∗∗(t) :=
1
t

∫ t

0
f ∗(τ) dτ, t > 0.

Quite many familiar function spaces can be defined using the non-increasing rearrangement of a function.

One of the most important classes of such spaces are the so-called classical Lorentz spaces.

Let p ∈ (0,∞) andw ∈ W. Then the classical Lorentz spacesΛp(w) andΓp(w) consist of all functions

f ∈ M for which ‖ f ‖Λp(w) < ∞ and‖ f ‖Γp(w) < ∞, respectively. Here it is

‖ f ‖Λp(w) := ‖ f ∗‖p,w,(0,∞) and ‖ f ‖Γp(w) := ‖ f ∗∗‖p,w,(0,∞).

For more information about the LorentzΛ andΓ see e.g. [11] and the references therein.

There has been considerable progress in the circle of problems concerning characterization of bound-

edness of classical operators acting in weighted Lorentz spaces since the beginnig of the 1990s. The

first results on the problemΛp(v) ֒→ Γp(v), 1 < p < ∞, which is equivalent to inequality (1.1) re-

stricted to the cones of non-increasing functions, were obtained by Boyd [5] and in an explicit form by

Ariño and Muckenhoupt [3]. The problem withw , v andp , q, 1 < p, q < ∞ was first successfully

solved by Sawyer [40]. Many articles on this topic followed, providing the results for a wider range of

parameters. In particular, much attention was paid to inequalities (1.1) and (1.2) restricted to the cones

of monotone functions; see for instance [3, 4, 10, 12, 15, 22–32, 35, 37, 40, 43, 45–47], survey [11], the

monographs [33,34], for the latest development of this subject see [27], and references given there. The

restricted operator inequalities may often be handled by the so-called ”reduction theorems”. These, in

general, reduce a restricted inequality into certain non-restricted inequalities. For example, the restriction

to non-increasing or quasi-concave functions may be handled in this way, see e.g. [24–27, 42]. At the

initial stage the main tool was the Sawyer duality principle[40], which allowed one to reduce anLp − Lq

inequality for monotone functions with 1< p, q < ∞ to a more manageable inequality for arbitrary

non-negative functions. This principle was extended by Stepanov in [46] to the case 0< p < 1 < q < ∞.

In the same work Stepanov applied a different approach to this problem, so-called reduction theorems,

which enabled to extend the range of parameters to 1< p < ∞, 0 < q < ∞. The casep ≤ q, 0 < p ≤ 1

was alternatively characterized in [8,12,35,46,47]. Later on some direct reduction theorems were found

in [10,23,27] involving supremum operators which work for the case 0< q < p ≤ 1.

In this paper we consider operatorsT : M+ → M+ satisfying the following conditions:

(i) T(λ f ) = λT f for all λ ≥ 0 and f ∈ M+;

(ii) T f(x) ≤ cTg(x) for almost allx ∈ R+ if f (x) ≤ g(x) for almost allx ∈ R+, with constantc > 0

independent off andg;

(iii) T( f + λ1) ≤ c(T f + λT1) for all f ∈ M+ andλ ≥ 0, with a constantc > 0 independent off andλ.

Given a operatorT : M+ → M+, for 0 < p < ∞ andu ∈ M+, denote by

Tp,u(g) := (T(gpu))1/p, g ∈ M+.
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HenceT1,1 ≡ T. Whenp = 1, we writeTu instead ofT1,u.

Denote by

Hg(t) :=
∫ t

0
g(s) ds, g ∈ M+,

and

H∗g(t) :=
∫ ∞

t
g(s) ds, g ∈ M+,

the Hardy operator and Copson operator, respectively.

In the paper we prove a reduction and equivalence theorems for the boundedness of the composition

operatorsT ◦H or T ◦H∗ of a quasiliear operatorT : M+ → M+ with the operatorsH andH∗ in weighted

Lebesgue spaces. To be more precise, we consider inequalities

(1.3)
∥∥∥∥∥T

( ∫ x

0
h
)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖s,v,(0,∞), h ∈ M+,

and

(1.4)
∥∥∥∥∥T

( ∫ ∞

x
h
)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖s,v,(0,∞), h ∈ M+.

Using these equivalence theorems, in particular, we completely characterize the validity of the iterated

Hardy-type inequalities

(1.5)
∥∥∥∥∥Hp,u

( ∫ x

0
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c‖h‖s,v,(0,∞),

and

(1.6)
∥∥∥∥∥Hp,u

( ∫ ∞

x
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c‖h‖s,v,(0,∞),

where 0< p < ∞, 0 < q ≤ ∞, 1≤ s< ∞, u, w andv are weight functions on (0,∞).

It is worth to mentoin that the characterizations of ”dual” inequalities

(1.7)
∥∥∥∥∥H∗p,u

( ∫ ∞

x
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c‖h‖s,v,(0,∞),

and

(1.8)
∥∥∥∥∥H∗p,u

( ∫ x

0
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c‖h‖s,v,(0,∞),

can be easily obtained from the solutions of inequalities (1.5) - (1.6), respectively, by change of variables.

In the case whenp = 1, using the Fubini Theorem, inequalities (1.5) and (1.6) can be reduced to the

weightedLs − Lq boundedness problem of the Volterra operator

(Kh)(x) :=
∫ x

0
k(x, y)h(y) dy, x > 0,

with the kernel

k(x, y) :=
∫ x

y
u(t) dt, 0 < y ≤ x < ∞,

and the Stieltjes operator

(S h)(x) =
∫ ∞

0

h(t) dt
U(x) + U(t)

,

respectively, and consequently, can be easily solved. Indeed:
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By the Fubini Theorem, we see that
∫ x

0

(∫ t

0
h(τ) dτ

)
u(t) dt =

∫ x

0
k(x, τ)h(τ) dτ, h ∈ M+(0,∞).

On the other hand, it is easy to see that
∫ x

0

(∫ ∞

t
h(s) ds

)
u(t) dt ≈ U(x) · S(hU)(x), h ∈ M+(0,∞).

Note that the weightedLs − Lq boundedness of Volterra operatorsK, that is, inequality

(1.9) ‖Kh‖q,w,(0,∞) ≤ c‖h‖s,v,(0,∞), h ∈ M+(0,∞),

is completely characterized for 1≤ s≤ ∞, 0 < q ≤ ∞ (see [27] and references given there).

The usual Stieltjes transform is obtained on puttingU(x) ≡ x. In the caseU(x) ≡ xλ, λ > 0, the

boundedness of the operatorS between weightedLs andLq spaces, namely inequality

(1.10) ‖S h‖q,w,(0,∞) ≤ c‖h‖s,v,(0,∞), h ∈ M+(0,∞),

was investigated in [2] (when 1≤ s ≤ q ≤ ∞), in [41] (when 1≤ q < s ≤ ∞), in [13] (see also [14])

(when 1< s < ∞, 0 < q ≤ ∞), where the result is presented without proof. This problemalso was

considered in [16] and [20, 21], where completely different approach was used, based on the so called

“gluing lemma” (see also [17]). It is proved in [19] (when 1≤ s ≤ ∞, 0 < q ≤ ∞) that inequality (1.10)

holds if and only if

(1.11)
∥∥∥∥∥Hu

( ∫ ∞

x
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c‖hU‖s,v,(0,∞), h ∈ M+(0,∞),

holds, and the solution of (1.10) is obtained using characterization of inequality (1.11).

Note that inequality (1.6) has been completely characterized in [18] and [19] in the case 0< p < ∞,

0 < q ≤ ∞, 1≤ s≤ ∞ by using difficult discretization and anti-discretization methods. Inequalities (1.5)

- (1.6) and (1.7) - (1.8) were considered also in [38] and [39], but characterization obtained there is not

complete and seems to us unsatisfactory from a practical point of view.

We pronounce that the characterizations of inequalities (1.5)-(1.6) and (1.7)-(1.8) are important be-

cause many inequalities for classical operators can be reduced to them (for illustrations of this important

fact, see, for instance, [19]). These inequalities play an important role in the theory of Morrey-type

spaces and other topics (see [6], [7] and [9]). It is worth to mention that using characterizations of

weighted Hardy inequalities we can show that the characterization of the boundedness of bilinear Hardy

inequalities, namely of the inequality

(1.12) ‖T1 f · T2g‖w,q,(0,∞) ≤ c‖ f ‖p1,v1,(0,∞)‖g‖p2,v2,(0,∞),

for all f ∈ Lp1(v1, (0,∞)) andg ∈ Lp2(v2, (0,∞)) with constantc independent off andg, whereTi =

H orH∗, i = 1, 2, are equivalent to inequalities (1.5)-(1.6) and (1.7)-(1.8) (see, for instance, [1]).

It is well-known that whenT is a integral operator then by substitution of variables it is possible to

change the cone of non-decreasing functions to the cone of non-increasing functions and vice versa, when

considering inequalities

(1.13) ‖T f‖β,w,(0,∞) ≤ c‖ f ‖s,v,(0,∞), f ∈ M↓(0,∞),

and

(1.14) ‖T f‖β,w,(0,∞) ≤ c‖ f ‖s,v,(0,∞), f ∈ M↑(0,∞),
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but this procedure changesT also as usually to the ”dual” operator. Theorems proved in Section4 allows

to change the cones to each other not changing the operatorT. This new observation enables to state that

if we know solution of one inequality on any cone of monotone functions, then we could characterize the

inequality on the other cone of monotone functions.

The paper is organized as follows. Section2 contains some preliminaries along with the standard

ingredients used in the proofs. In Section3 we prove the reduction and equivalence theorems for the

boundedness of the composition operatorsT ◦H or T ◦H∗ in weighted Lebesgue spaces. In Section4 the

equivalence theorems which allow to change the cones of monotone functions to each other not changing

the operatorT are proved. In Section5 we obtain a new characterizations of the weighted Hardy-type

inequalities on the cones of monotone functions. In Section6 we give complete characterization of

inequalities (1.5) - (1.6) and (1.7) - (1.8).

2. Notations and Preliminaries

Throughout the paper, we always denote byc or C a positive constant, which is independent of main

parameters but it may vary from line to line. However a constant with subscript or superscript such asc1

does not change in different occurrences. Bya . b, (b & a) we mean thata ≤ λb, whereλ > 0 depends

on inessential parameters. Ifa . b andb . a, we writea ≈ b and say thata andb are equivalent. We

will denote by1 the function1(x) = 1, x ∈ (0,∞). Unless a special remark is made, the differential

elementdx is omitted when the integrals under consideration are the Lebesgue integrals. Everywhere in

the paper,u, v andw are weights.

Convention 2.1. We adopt the following conventions:

(i) Throughout the paper we put 0· ∞ = 0,∞/∞ = 0 and 0/0 = 0.

(ii) If p ∈ [1,+∞], we definep′ by 1/p+ 1/p′ = 1.

(iii) If 0 < q < p < ∞, we definer by 1/r = 1/q− 1/p.

(iv) If I = (a, b) ⊆ R andg is monotone function onI , then byg(a) andg(b) we mean the limits

limx→a+ g(x) and limx→b− g(x), respectively.

To state the next statements we need the following notations:

U(t) :=
∫ t

0
u, U∗(t) :=

∫ ∞
t

u,

V(t) :=
∫ t

0
v, V∗(t) :=

∫ ∞
t

v,

W(t) :=
∫ t

0
w, W∗(t) :=

∫ ∞
t

w.

Theorem 2.2 ([27], Theorem 3.1). Let 0 < β ≤ ∞ and1 ≤ s < ∞, and let T : M+ → M+ be a positive

operator. Then the inequality

(2.1) ‖T f‖β,w,(0,∞) ≤ c‖ f ‖s,v,(0,∞), f ∈ M↓(0,∞)

implies the inequality

(2.2)
∥∥∥∥∥T

( ∫ ∞

x
h
)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖s,Vsv1−s,(0,∞), h ∈ M+(0,∞).

If V(∞) = ∞ and if T is an operator satisfying conditions(i)-(ii) , then the condition(2.2) is sufficient for

inequality(2.1) to hold on the coneM↓. Further, if0 < V(∞) < ∞, then a sufficient condition for(2.1) to
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hold onM↓ is that both(2.2) and

(2.3) ‖T1‖β,w,(0,∞) ≤ c‖1‖s,v,(0,∞)

hold in the case when T satisfies the conditions(i)-(iii) .

Theorem 2.3 ([27], Theorem 3.2). Let 0 < β ≤ ∞ and 1 ≤ s < ∞, and let T : M+ → M+ satisfies

conditions(i) and(ii) . Then a sufficient condition for inequality(2.1) to hold is that

(2.4)
∥∥∥∥∥T

( 1
V2(x)

∫ x

0
hV

)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖s,v1−s,(0,∞), h ∈ M+(0,∞).

Moreover,(2.1) is necessary for(2.4) to hold if conditions(i)-(iii) are all satisfied.

Theorem 2.4 ([27], Theorem 3.3). Let 0 < β ≤ ∞ and1 ≤ s < ∞, and let T : M+ → M+ be a positive

operator. Then the inequality

(2.5) ‖T f‖β,w,(0,∞) ≤ c‖ f ‖s,v,(0,∞), f ∈ M↑(0,∞)

implies the inequality

(2.6)
∥∥∥∥∥T

( ∫ x

0
h
)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖s,Vs
∗v1−s,(0,∞), h ∈ M+(0,∞).

If V∗(0) = ∞ and if T is an operator satisfying the conditions(i)-(ii) , then the condition(2.6) is sufficient

for inequality(2.5) to hold. If0 < V∗(0) < ∞ and T is an operator satisfying the conditions(i)-(iii) , then

(2.5) follows from(2.6) and (2.3).

Theorem 2.5 ([27], Theorem 3.4). Let 0 < β ≤ ∞ and 1 ≤ s < ∞, and let T : M+ → M+ satisfies

conditions(i) and(ii) . Then a sufficient condition for inequality(2.5) to hold is that

(2.7)
∥∥∥∥∥T

( 1
V2
∗ (x)

∫ ∞

x
hV∗

)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖s,v1−s,(0,∞), h ∈ M+(0,∞).

Moreover,(2.5) is necessary for(2.7) to hold if conditions(i)-(iii) are all satisfied.

3. Reduction and equivalence theorems

In this section we prove some reduction and equivalence theorems for inequalities (1.3) and (1.4).

3.1. The case 1 < s < ∞. The following theorem allows to reduce the iterated inequality (1.3) to the

inequality on the cone of non-increasing functions.

Theorem 3.1. Let 0 < β ≤ ∞, 1 < s < ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that

(3.1)
∫ x

0
v1−s′(t) dt < ∞ for all x > 0.

Then inequality(1.3) holds iff

(3.2) ‖TΦ2 f ‖β,w,(0,∞) ≤ c‖ f ‖s,φ,(0,∞), f ∈ M↓,

holds, where

φ(x) ≡ φ
[
v; s

]
(x) :=

( ∫ x

0
v1−s′(t) dt

)− s′

s′+1

v1−s′(x)

and

Φ(x) ≡ Φ
[
v; s

]
(x) =

∫ x

0
φ(t) dt =

( ∫ x

0
v1−s′(t) dt

) 1
s′+1

.
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Proof. Note thatΦ−sφ1−s ≈ v. Inequality (1.3) is equivalent to the inequality

(3.3)
∥∥∥∥∥TΦ2

( 1
Φ2(x)

∫ x

0
h
)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖s,Φ−sφ1−s,(0,∞), h ∈ M+.

Obviously, (3.3) is equivalent to

(3.4)
∥∥∥∥∥TΦ2

( 1
Φ2(x)

∫ x

0
hΦ

)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖s,φ1−s,(0,∞), h ∈ M+.

By Theorem2.3, inequality (3.4) is equivalent to

‖TΦ2 f ‖β,w,(0,∞) ≤ c‖ f ‖s,φ,(0,∞), f ∈ M↓.

This completes the proof. �

We immediately get the following equivalence statements.

Corollary 3.2. Let 0 < β ≤ ∞, 1 < s< ∞, 0 < δ ≤ s, and let T: M+ → M+ satisfies conditions(i)-(iii) .

Assume that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that(3.1) holds. Then inequality(1.3) holds iff

both

(3.5)
∥∥∥∥∥TΦ2

( {∫ ∞

x
hδ

}1/δ )∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖s,Φs/δφ1−s/δ,(0,∞), h ∈ M+,

and

(3.6) ‖TΦ2(1)‖β,w,(0,∞) ≤ c‖1‖s,φ,(0,∞),

hold.

Proof. By Theorem3.1, inequality (1.3) is equivalent to

(3.7) ‖TΦ2 f ‖β,w,(0,∞) ≤ c‖ f ‖s,φ,(0,∞), f ∈ M↓.

Since (3.7) is equivalent to

(3.8) ‖T̃ f‖β/δ,w,(0,∞) ≤ cδ‖ f ‖s/δ,φ,(0,∞), f ∈ M↓,

with

T̃( f ) :=
{
TΦ2( f 1/δ)

}δ
,

it remains to apply Theorem2.2. �

Corollary 3.3. Let 0 < β ≤ ∞, 1 < s< ∞, 0 < δ ≤ s, and let T: M+ → M+ satisfies conditions(i)-(iii) .

Assume that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that(3.1) holds. Then inequality(1.3) holds iff

(3.9)
∥∥∥∥∥TΦ2(1−1/δ)

({ ∫ x

0
hδΦ

}1/δ)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖s,φ1−s/δ,(0,∞), h ∈ M+

holds.

Proof. By Theorem3.1, inequality (1.3) is equivalent to

(3.10) ‖TΦ2 f ‖β,w,(0,∞) ≤ c‖ f ‖s,φ,(0,∞), f ∈ M↓.

We know that (3.10) is equivalent to

(3.11) ‖T̃ f‖β/δ,w,(0,∞) ≤ cδ‖ f ‖s/δ,φ,(0,∞), f ∈ M↓,

with

T̃( f ) :=
{
TΦ2( f 1/δ)

}δ
,
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By Theorem2.3, we see that (3.11) is equivalent to

(3.12)
∥∥∥∥∥T̃

( 1
Φ2(x)

∫ x

0
hΦ

)∥∥∥∥∥
β/δ,w,(0,∞)

≤ cδ‖h‖s/δ,φ1−s/δ,(0,∞), h ∈ M+(0,∞).

To complete the proof it suffices to note that (3.12) is equivalent to (3.9). �

The following ”dual” version of the reduction and equivalence statements also hold true and may be

proved analogously.

Theorem 3.4. Let 0 < β ≤ ∞, 1 < s < ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that

(3.13)
∫ ∞

x
v1−s′(t) dt < ∞ for all x > 0.

Then inequality(1.4) holds iff

(3.14) ‖TΨ2 f ‖β,w,(0,∞) ≤ c‖ f ‖s,ψ,(0,∞), f ∈ M↑

holds, where

ψ(x) ≡ ψ
[
v; s

]
(x) :=

( ∫ ∞

x
v1−s′(t) dt

)− s′

s′+1

v1−s′(x)

and

Ψ(x) ≡ Ψ
[
v; s

]
(x) :=

∫ ∞

x
ψ(t) dt =

( ∫ ∞

x
v1−s′(t) dt

) 1
s′+1

Corollary 3.5. Let 0 < β ≤ ∞, 1 < s< ∞, 0 < δ ≤ s, and let T: M+ → M+ satisfies conditions(i)-(iii) .

Assume that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that(3.13) holds. Then inequality(1.4) holds iff

both

(3.15)
∥∥∥∥∥TΨ2

( {∫ x

0
hδ

}1/δ )∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖s,Ψs/δψ1−s/δ,(0,∞), h ∈ M+,

and

(3.16) ‖TΨ21‖β,w,(0,∞) ≤ c‖1‖s,ψ,(0,∞),

hold.

Corollary 3.6. Let 0 < β ≤ ∞, 1 < s< ∞, 0 < δ ≤ s, and let T: M+ → M+ satisfies conditions(i)-(iii) .

Assume that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that(3.13) holds. Then inequality(1.4) holds iff

(3.17)
∥∥∥∥∥TΨ2(1−1/δ)

({ ∫ ∞

x
hδΨ

}1/δ)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖s,ψ1−s/δ,(0,∞), h ∈ M+

holds.

The following theorem allows to reduce the iterated inequality (1.3) to the inequality on the cone of

non-decreasing functions.

Theorem 3.7. Let 0 < β ≤ ∞, 1 < s < ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that(3.1) holds. Then inequality(1.3) holds iff both
∥∥∥TΦ2[v;s]·Ψ2/δ[Φ[v;s]s/δφ[v;s]1−s/δ ;s/δ] f

∥∥∥
β,w,(0,∞)

≤ c‖ f ‖s,ψ[Φ[v;s]s/δφ[v;s]1−s/δ;s/δ],(0,∞), f ∈ M↑,

where0 < δ < s,

ψ
[
Φ[v; s]s/δφ[v; s]1−s/δ; s/δ

]
(x)
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≈

{ ∫ ∞

x

( ∫ t

0
v1−s′

)− s′+(s/δ)′

1+s′

v1−s′(t) dt
}− (s/δ)′

1+(s/δ)′
( ∫ x

0
v1−s′

)− s′+(s/δ)′

1+s′

v1−s′(x),

Ψ
[
Φ[v; s]s/δφ[v; s]1−s/δ; s/δ

]
(x) ≈

{ ∫ ∞

x

( ∫ t

0
v1−s′

)− s′+(s/δ)′

1+s′

v1−s′(t) dt
} 1

1+(s/δ)′

,

and (3.6) hold.

Proof. By Corollary3.2, (1.3) holds iff both (3.5) and (3.6) hold. It is easy to see that (3.5) is equivalent

to

(3.18)
∥∥∥∥∥
[
TΦ2

({ ∫ ∞

x
h
}1/δ)]δ∥∥∥∥∥

β/δ,w,(0,∞)
≤ cδ‖h‖s/δ,Φs/δφ1−s/δ,(0,∞), h ∈ M+,

Since

ψ
[
Φ[v; s]s/δφ[v; s]1−s/δ; s/δ

]
(x)

=

( ∫ ∞

x
Φ[v; s]−(s/δ)′φ[v; s]

)− (s/δ)′

(s/δ)′+1

Φ[v; s]−(s/δ)′(x)φ[v; s](x)

≈

(
Φ[v; s]1−(s/δ)′(x) −Φ[v; s]1−(s/δ)′(∞)

)− (s/δ)′

(s/δ)′+1

Φ[v; s]−(s/δ)′(x)φ[v; s](x)

≈

{( ∫ x

0
v1−s′

) 1−(s/δ)′

1+s′

−

( ∫ ∞

0
v1−s′

) 1−(s/δ)′

1+s′
}− (s/δ)′

1+(s/δ)′
( ∫ x

0
v1−s′

)− s′+(s/δ)′

1+s′

v1−s′(x)

≈

{ ∫ ∞

x

( ∫ t

0
v1−s′

)− s′+(s/δ)′

1+s′

v1−s′(t) dt
}− (s/δ)′

1+(s/δ)′
( ∫ x

0
v1−s′

)− s′+(s/δ)′

1+s′

v1−s′(x),

and

Ψ
[
Φ[v; s]s/δφ[v; s]1−s/δ; s/δ

]
(x)

=

( ∫ ∞

x
Φ[v; s]−(s/δ)′φ[v; s]

) 1
(s/δ)′+1

≈

(
Φ[v; s]1−(s/δ)′(x) − Φ[v; s]1−(s/δ)′(∞)

) 1
(s/δ)′+1

≈

{( ∫ x

0
v1−s′

) 1−(s/δ)′

1+s′

−

( ∫ ∞

0
v1−s′

) 1−(s/δ)′

1+s′
} 1

1+(s/δ)′

≈

{ ∫ ∞

x

( ∫ t

0
v1−s′

)− s′+(s/δ)′

1+s′

v1−s′(t) dt
} 1

1+(s/δ)′

,

by Theorem3.4, we complete the proof. �

Corollary 3.8. Let 0 < β ≤ ∞, 1 < s < ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that(3.1) holds. Then inequality(1.3) holds iff both
∥∥∥TΦ2[v;s]·Ψ4/s[Φ[v;s]2φ[v;s]−1;2] f

∥∥∥
β,w,(0,∞)

≤ c‖ f ‖s,ψ[Φ[v;s]2φ[v;s]−1;2],(0,∞), f ∈ M↑,

where

ψ
[
Φ[v; s]2φ[v; s]−1; 2

]
(x)

≈

{ ∫ ∞

x

( ∫ t

0
v1−s′

)− 2+s′

1+s′

v1−s′(t) dt
}− 2

3
( ∫ x

0
v1−s′

)− 2+s′

1+s′

v1−s′(x),
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Ψ
[
Φ[v; s]2φ[v; s]−1; 2

]
(x) ≈

{ ∫ ∞

x

( ∫ t

0
v1−s′

)− 2+s′

1+s′

v1−s′(t) dt
} 1

3

,

and (3.6) hold.

Proof. The statement follows by Theorem3.7with δ = s/2. �

The following ”dual” statement also holds true and may be proved analogously.

Theorem 3.9. Let 0 < β ≤ ∞, 1 < s < ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that(3.13) holds. Then inequality(1.4) holds iff both
∥∥∥TΨ2[v;s]·Φ2/δ[Ψ[v;s]s/δψ[v;s]1−s/δ ;s/δ] f

∥∥∥
β,w,(0,∞)

≤ c‖ f ‖s,φ[Ψ[v;s]s/δψ[v;s]1−s/δ ;s/δ],(0,∞), f ∈ M↓,

where0 < δ < s,

φ
[
Ψ[v; s]s/δψ[v; s]1−s/δ; s/δ

]
(x)

≈

{ ∫ x

0

( ∫ ∞

t
v1−s′

)− s′+(s/δ)′

1+s′

v1−s′(t) dt
}− (s/δ)′

1+(s/δ)′
( ∫ ∞

x
v1−s′

)− s′+(s/δ)′

1+s′

v1−s′(x),

Φ
[
Ψ[v; s]s/δψ[v; s]1−s/δ; s/δ

]
(x) ≈

{ ∫ x

0

( ∫ ∞

t
v1−s′

)− s′+(s/δ)′

1+s′

v1−s′(t) dt
} 1

1+(s/δ)′

,

and (3.6) hold.

Corollary 3.10. Let 0 < β ≤ ∞, 1 < s < ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that(3.13) holds. Then inequality(1.4) holds iff both
∥∥∥TΨ2[v;s]·Φ4/s[Ψ[v;s]2ψ[v;s]−1;2] f

∥∥∥
β,w,(0,∞)

≤ c‖ f ‖s,φ[Ψ[v;s]2ψ[v;s]−1;2],(0,∞), f ∈ M↓,

where

φ
[
Ψ[v; s]2ψ[v; s]−1; 2

]
(x)

≈

{ ∫ x

0

( ∫ ∞

t
v1−s′

)− 2+s′

1+s′

v1−s′(t) dt
}− 2

3
( ∫ ∞

x
v1−s′

)− 2+s′

1+s′

v1−s′(x),

Φ
[
Ψ[v; s]2ψ[v; s]−1; 2

]
(x) ≈

{ ∫ x

0

( ∫ ∞

t
v1−s′

)− 2+s′

1+s′

v1−s′(t) dt
} 1

3

,

and (3.6) hold.

3.2. The case s= 1. In this case we have the following results.

Theorem 3.11. Let 0 < β ≤ ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume that

u, w ∈ W(0,∞) and v∈ W(0,∞) be such that V(x) < ∞ for all x > 0. Then inequality

(3.19)
∥∥∥∥∥T

( ∫ x

0
h
)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖1,V−1,(0,∞), h ∈ M+,

holds iff

(3.20) ‖TV2 f ‖β,w,(0,∞) ≤ c‖ f ‖1,v,(0,∞), f ∈ M↓.

Proof. Inequality (3.19) is equivalent to the inequality

(3.21)
∥∥∥∥∥TV2

( 1
V2(x)

∫ x

0
hV

)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖1,(0,∞), h ∈ M+.

By Theorem2.3, inequality (3.21) is equivalent to (3.20). �
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Corollary 3.12. Let 0 < β ≤ ∞, 0 < δ ≤ 1, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that V(x) < ∞ for all x > 0. Then inequality(3.19) holds

iff both

(3.22)
∥∥∥∥∥TV2

( {∫ ∞

x
hδ

}1/δ )∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖1,V1/δv1−1/δ,(0,∞), h ∈ M+,

and

(3.23) ‖TV2(1)‖β,w,(0,∞) ≤ c‖1‖1,v,(0,∞),

hold.

Proof. By Theorem3.11, inequality (3.19) is equivalent to (3.20). Since (3.20) is equivalent to

(3.24)
∥∥∥∥
{
TV2( f 1/δ)

}δ∥∥∥∥
β/δ,w,(0,∞)

≤ cδ‖ f ‖1/δ,v,(0,∞), f ∈ M↓,

it remains to apply Theorem2.2. �

Corollary 3.13. Let 0 < β ≤ ∞, 0 < δ ≤ 1, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that V(x) < ∞ for all x > 0. Then inequality(3.19) holds

iff

(3.25)
∥∥∥∥∥TV2(1−1/δ)

({ ∫ x

0
hδV

}1/δ)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖1,v1−1/δ,(0,∞), h ∈ M+

holds.

Proof. By Theorem3.11, inequality (3.19) is equivalent to (3.24). By Theorem2.3, we see that (3.24) is

equivalent to

(3.26)
∥∥∥∥∥
{
TV2

([ 1
V2(x)

∫ x

0
hV

]1/δ)}δ∥∥∥∥∥
β/δ,w,(0,∞)

≤ cδ‖h‖1/δ,v1−1/δ,(0,∞), h ∈ M+(0,∞).

To complete the proof it suffices to note that (3.26) is equivalent to (3.25). �

The following theorem allows to reduce the iterated inequality (3.19) to the inequality on the cone of

non-decreasing functions.

Theorem 3.14. Let 0 < β ≤ ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume that

u, w ∈ W(0,∞) and v∈ W(0,∞) be such that V(x) < ∞ for all x > 0. Then inequality(3.19) holds iff

both

(3.27)
∥∥∥TV2·Ψ2/δ[V1/δv1−1/δ;1/δ] f

∥∥∥
β,w,(0,∞)

≤ c‖ f ‖1,ψ[V1/δv1−1/δ;1/δ],(0,∞), f ∈ M↑,

where0 < δ < 1,

ψ[V1/δv1−1/δ; 1/δ](x) ≈
( ∫ ∞

x
V−(1/δ)′v

)− (1/δ)′

1+(1/δ)′

V−(1/δ)′(x)v(x),

Ψ[V1/δv1−(1/δ); 1/δ](x) ≈
( ∫ ∞

x
V−(1/δ)′v

) 1
1+(1/δ)′

,

and (3.23) hold.
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Proof. By Corollary 3.12, inequality (3.19) holds iff both (3.22) and (3.23) hold. It is easy to see that

(3.22) is equivalent to

(3.28)
∥∥∥∥∥
[
TV2

( {∫ ∞

x
h

}1/δ )]δ∥∥∥∥∥
β/δ,w,(0,∞)

≤ cδ‖h‖1/δ,V1/δv1−1/δ,(0,∞), h ∈ M+.

By Theorem3.4, inequality (3.28) is equivalent to
∥∥∥∥∥
[
T

V2Ψ2/δ
[
V1/δv1−1/δ;1/δ

]( f 1/δ)
]δ∥∥∥∥∥

β/δ,w,(0,∞)
≤ cδ‖ f ‖1/δ,ψ[V1/δv1−1/δ;1/δ],(0,∞), f ∈ M↑,

which is evidently equivalent to (3.27).

It remains to note that

ψ[V1/δv1−1/δ; 1/δ](x) ≈
( ∫ ∞

x
V−(1/δ)′v

)− (1/δ)′

1+(1/δ)′

V−(1/δ)′(x)v(x),

Ψ[V1/δv1−(1/δ); 1/δ](x) ≈
( ∫ ∞

x
V−(1/δ)′v

) 1
1+(1/δ)′

.

�

Corollary 3.15. Let 0 < β ≤ ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume that

u, w ∈ W(0,∞) and v∈ W(0,∞) be such that V(x) < ∞ for all x > 0. Then inequality(3.19) holds iff

both

(3.29)
∥∥∥∥∥TV2Ψ4

[
V2v−1;2

]( f )
∥∥∥∥∥
β,w,(0,∞)

≤ c‖ f ‖1,ψ[V2v−1;2],(0,∞), f ∈ M↑,

where

ψ[V2v−1; 2](x) ≈
( ∫ ∞

x
V−2v

)−2/3

V−2(x)v(x)

Ψ[V2v−1; 2](x) ≈
( ∫ ∞

x
V−2v

)1/3

,

and (3.23) hold.

Proof. The statement follows by Theorem3.14with δ = 1/2. �

The following statement immediately follows from Theorem3.11.

Corollary 3.16. Let 0 < β ≤ ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume that

u, w ∈ W(0,∞) and v∈ W(0,∞) be such that V∗(x) < ∞ for all x > 0 and V∗(0) = ∞. Then inequality

(3.30)
∥∥∥∥∥T

( ∫ x

0
h
)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖1,V∗,(0,∞), h ∈ M+,

holds iff

(3.31) ‖TV−2
∗

f ‖β,w,(0,∞) ≤ c‖ f ‖1,v/V2
∗ ,(0,∞), f ∈ M↓

holds.

Proof. Since

V∗(x) =

(∫ x

0

v
V2
∗

)−1

, x > 0,

it remains to apply Theorem3.11. �
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Corollary 3.17. Let 0 < β ≤ ∞, 0 < δ ≤ 1, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v ∈ W(0,∞) be such that V∗(x) < ∞ for all x > 0 and V∗(0) = ∞. Then

inequality(3.30) holds iff both

(3.32)
∥∥∥∥∥TV−2

∗

( {∫ ∞

x
hδ

}1/δ )∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖1,V1/δ−2
∗ v1−1/δ,(0,∞), h ∈ M+,

holds.

Corollary 3.18. Let 0 < β ≤ ∞, 0 < δ ≤ 1, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v ∈ W(0,∞) be such that V∗(x) < ∞ for all x > 0 and V∗(0) = ∞. Then

inequality(3.30) holds iff

(3.33)
∥∥∥∥∥TV2(1/δ−1)

∗

({ ∫ x

0
hδ

}1/δ)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖1,V3/δ−2
∗ v1−1/δ,(0,∞), h ∈ M+

holds.

The following ”dual” statements also hold true and may be proved analogously.

Theorem 3.19. Let 0 < β ≤ ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume that

u, w ∈ W(0,∞) and v∈ W(0,∞) be such that V∗(x) < ∞ for all x > 0. Then inequality

(3.34)
∥∥∥∥∥T

( ∫ ∞

x
h
)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖1,V−1
∗ ,(0,∞), h ∈ M+,

holds iff

(3.35) ‖TV2
∗
f ‖β,w,(0,∞) ≤ c‖ f ‖1,v,(0,∞), f ∈ M↑.

Corollary 3.20. Let 0 < β ≤ ∞, 0 < δ ≤ 1, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that V∗(x) < ∞ for all x > 0. Then inequality(3.34) holds

iff both

(3.36)
∥∥∥∥∥TV2

∗

( {∫ x

0
hδ

}1/δ )∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖1,V1/δ
∗ v1−1/δ,(0,∞), h ∈ M+,

and

(3.37) ‖TV2
∗
(1)‖β,w,(0,∞) ≤ c‖1‖1,v,(0,∞),

hold.

Corollary 3.21. Let 0 < β ≤ ∞, 0 < δ ≤ 1, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that V∗(x) < ∞ for all x > 0. Then inequality(3.34) holds

iff

(3.38)
∥∥∥∥∥TV2(1−1/δ)

∗

({ ∫ ∞

x
hδV∗

}1/δ)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖1,v1−1/δ,(0,∞), h ∈ M+

holds.

Theorem 3.22. Let 0 < β ≤ ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume that

u, w ∈ W(0,∞) and v∈ W(0,∞) be such that V∗(x) < ∞ for all x > 0. Then inequality(3.34) holds iff

both

(3.39)
∥∥∥TV2·Φ2/δ[V1/δ

∗ v1−1/δ;1/δ] f
∥∥∥
β,w,(0,∞)

≤ c‖ f ‖1,φ[V1/δ
∗ v1−1/δ;1/δ],(0,∞), f ∈ M↓,
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where0 < δ < 1,

φ[V1/δ
∗ v1−1/δ; 1/δ](x) ≈

( ∫ x

0
V−(1/δ)′
∗ v

)− (1/δ)′

1+(1/δ)′

V−(1/δ)′
∗ (x)v(x),

Φ[V1/δ
∗ v1−(1/δ); 1/δ](x) ≈

( ∫ x

0
V−(1/δ)′
∗ v

) 1
1+(1/δ)′

,

and (3.37) hold.

Corollary 3.23. Let 0 < β ≤ ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume that

u, w ∈ W(0,∞) and v∈ W(0,∞) be such that V∗(x) < ∞ for all x > 0. Then inequality(3.34) holds iff

both ∥∥∥∥∥TV2
∗Φ

4
[
V2
∗ v−1;2

]( f )
∥∥∥∥∥
β,w,(0,∞)

≤ c‖ f ‖1,φ[V2
∗v−1;2],(0,∞), f ∈ M↓,

where

φ[V2
∗v
−1; 2](x) ≈

( ∫ x

0
V−2
∗ v

)−2/3

V−2
∗ (x)v(x)

Φ[V2
∗v
−1; 2](x) ≈

( ∫ x

0
V−2
∗ v

)1/3

,

and (3.37) hold.

Corollary 3.24. Let 0 < β < ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume that

u, w ∈ W(0,∞) and v∈ W(0,∞) be such that V(x) < ∞ for all x > 0 and V(∞) = ∞. Then inequality

(3.40)
∥∥∥∥∥T

( ∫ ∞

x
h
)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖1,V,(0,∞), h ∈ M+,

holds iff

(3.41) ‖TV−2 f ‖β,w,(0,∞) ≤ c‖ f ‖1,v/V2,(0,∞), f ∈ M↓.

Corollary 3.25. Let 0 < β ≤ ∞, 0 < δ ≤ 1, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v ∈ W(0,∞) be such that V(x) < ∞ for all x > 0 and V(∞) = ∞. Then

inequality(3.40) holds iff both

(3.42)
∥∥∥∥∥TV−2

( {∫ x

0
hδ

}1/δ )∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖1,V1/δ−2v1−1/δ,(0,∞), h ∈ M+,

holds.

Corollary 3.26. Let 0 < β ≤ ∞, 0 < δ ≤ 1, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v ∈ W(0,∞) be such that V(x) < ∞ for all x > 0 and V(∞) = ∞. Then

inequality(3.40) holds iff

(3.43)
∥∥∥∥∥TV2(1/δ−1)

({ ∫ ∞

x
hδ

}1/δ)∥∥∥∥∥
β,w,(0,∞)

≤ c‖h‖1,V3/δ−2v1−1/δ,(0,∞), h ∈ M+

holds.



WEIGHTED ITERATED HARDY-TYPE INEQUALITIES 15

4. Equivalence theorems for the weighted inequalities on the cones of monotone functions

As it is mentioned in the introduction, by substitution of variables it is possible to change the cone

of non-decreasing functions to the cone of non-increasing functions and vice versa, when considering

inequalities (2.1) and (2.5) for integral operatorsT. But this procedure changesT also as usually to the

”dual” operator.

The following theorems allows to change the cones to each other not changing the operatorT.

Theorem 4.1. Let 0 < β ≤ ∞, 0 < s < ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that V(x) < ∞ for all x > 0 holds. Then inequality(2.1)

holds if and only if both

(4.1)
∥∥∥T{Ψ[Vs/δv1−s/δ;s/δ]}2/δ( f )

∥∥∥
β,w,(0,∞)

≤ c‖ f ‖s,ψ[Vs/δv1−s/δ;s/δ],(0,∞), f ∈ M↑,

where0 < δ < s and

ψ[Vs/δv1−s/δ; s/δ](x) ≈
( ∫ ∞

x
V−(s/δ)′v

)− (s/δ)′

(s/δ)′+1

V−(s/δ)′(x)v(x), (x > 0),

Ψ[Vs/δv1−s/δ; s/δ](x) ≈
( ∫ ∞

x
V−(s/δ)′v

) 1
(s/δ)′+1

, (x > 0)

and (2.3) hold.

Proof. Inequality (2.1) is equivalent to

(4.2)
∥∥∥∥
{
T( f 1/δ)

}δ∥∥∥∥
β/δ,w,(0,∞)

≤ cδ‖ f ‖s/δ,v,(0,∞), f ∈ M↓.

By Theorems2.2, (4.2) holds if and only if

(4.3)

∥∥∥∥∥∥∥∥

T

(∫ ∞

x
h

)1/δ


δ
∥∥∥∥∥∥∥∥
β/δ,w,(0,∞)

≤ cδ‖h‖s/δ,Vs/δv1−s/δ,(0,∞), h ∈ M+,

and (2.3) hold. By Theorem3.4, (4.3) is equivalent to
∥∥∥∥∥
{
T{
Ψ
[
Vs/δv1−s/δ;s/δ

]}2
(
f 1/δ)

}δ∥∥∥∥∥
β/δ,w,(0,∞)

≤ cδ‖ f ‖
s/δ,ψ

[
Vs/δv1−s/δ;s/δ

]
,(0,∞)

, f ∈ M↑,(4.4)

with

ψ
[
Vs/δv1−s/δ; s/δ

]
≈ (V1−(s/δ)′ − V1−(s/δ)′(∞))−(s/δ)′/((s/δ)′+1)V−(s/δ)′v

Ψ
[
Vs/δv1−s/δ; s/δ

]
≈ (V1−(s/δ)′ − V1−(s/δ)′(∞))1/((s/δ)′+1).

Note that (4.4) is equivalent to (4.1), and this completes the proof. �

To state the next statements we need the following notations:

V1(x) :=
( ∫ ∞

x
V−2v

)1/3

, (x > 0).

The following statement holds true.

Corollary 4.2. Let 0 < β ≤ ∞, 0 < s < ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that V(x) < ∞ for all x > 0 holds. Then inequality(2.1)

holds if and only if both

(4.5)
∥∥∥T{Ψ[V2v−1;2]}4/s( f )

∥∥∥
β,w,(0,∞)

≤ c‖ f ‖s,ψ[V2v−1;2],(0,∞), f ∈ M↑,
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where

ψ[V2
∗v
−1; 2](x) ≈ {V1 · V}

−2(x)v(x), (x > 0),

Ψ[V2
∗v
−1; 2](x) ≈ V1(x), (x > 0),

and (2.3) hold.

Proof. The statement follows by Theorem4.1with δ = s/2. �

The following ”dual” statement also holds true and can be proved analogously.

Theorem 4.3. Let 0 < β ≤ ∞, 0 < s < ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that V∗(x) < ∞ for all x > 0 holds. Then inequality(2.5)

holds if and only if both

(4.6)
∥∥∥∥∥T{

Φ
[
Vs/δ
∗ v1−s/δ;s/δ

]}2/δ( f )
∥∥∥∥∥
β,w,(0,∞)

≤ c‖ f ‖
s,φ

[
Vs/δ
∗ v1−s/δ ;s/δ

]
,(0,∞)

, f ∈ M↓,

where0 < δ < s and

φ[Vs/δ
∗ v1−s/δ; s/δ](x) ≈

( ∫ x

0
V−(s/δ)′
∗ v

)− (s/δ)′

(s/δ)′+1

V−(s/δ)′
∗ (x)v(x), (x > 0),

Φ[Vs/δ
∗ v1−s/δ; s/δ](x) ≈

( ∫ x

0
V−(s/δ)′
∗ v

) 1
(s/δ)′+1

, (x > 0),

and (2.3) hold.

To state the next statement we need the following notations:

V∗1(x) :=
( ∫ x

0
V−2
∗ v

)1/3

, (x > 0).

Corollary 4.4. Let 0 < β ≤ ∞, 0 < s < ∞, and let T : M+ → M+ satisfies conditions(i)-(iii) . Assume

that u, w ∈ W(0,∞) and v∈ W(0,∞) be such that V∗(x) < ∞ for all x > 0 holds. Then inequality(2.5)

holds if and only if both

(4.7)
∥∥∥∥∥T{

Φ
[
V2
∗v−1;2

]}4/p( f )
∥∥∥∥∥
β,w,(0,∞)

≤ c‖ f ‖
s,φ

[
V2
∗ v−1;2

]
,(0,∞)

, f ∈ M↓,

where

φ[V2
∗v
−1; 2](x) ≈ {V∗1 · V∗}

−2(x)v(x), (x > 0),

Φ[V2
∗v
−1; 2](x) ≈ V∗1(x), (x > 0),

and (2.3) hold.

5. The weighted Hardy-type inequalities on the cones of monotone functions

In this section we consider weighted Hardy inequalities on the cones of monotone functions.

Note that inequality

(5.1) ‖Hu( f )‖q,w,(0,∞) ≤ c‖ f ‖p,v,(0,∞), f ∈ M↓

was considered by many authors and there exist several characterizations of this inequality (see, survey

paper [11], [4], [15], [10], and [27]).

Using change of variablesx = 1/t, we can easily obtain full characterization of the weightedinequality

(5.2) ‖H∗u( f )‖q,w,(0,∞) ≤ c‖ f ‖p,v,(0.∞), f ∈ M↑.
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Our aim in this section is to give the characterization of theinequalities

(5.3) ‖Hu( f )‖q,w,(0,∞) ≤ c‖ f ‖p,v,(0,∞), f ∈ M↑

and

(5.4) ‖H∗u( f )‖q,w,(0,∞) ≤ c‖ f ‖p,v,(0,∞), f ∈ M↓.

Inequality (5.3) was considered in [31] in the case when 1< p, q < ∞, and recently, completely

characterized in [29, 30] and [27] in the case 0< p, q < ∞. It is worth to mention that in the most

difficult case when 0< q < p ≤ 1, the characterization obtained in [27, Theorem 3.12] involves additional

functionϕ(x) := W−1(4W(x)), whereW−1(t) := inf {s≥ 0 : W(s) = t} is the generalized inverse function

of W. Theorem5.3give us a another characterization of (5.3) and its proof does not use the discretization

technique.

Recall the following complete characterization of the weighted Hardy inequality on the cone of non-

increasing functions.

Theorem 5.1 ([27], Theorems 2.5, 3.15, 3.16). Let 0 < q, p ≤ ∞. Then inequality(5.1) with the best

constant c holds if and only if:

(i) 1 < p ≤ q < ∞, and in this case c≈ A0 + A1, where

A0 : = sup
t>0

( ∫ t

0
Uq(τ)w(τ) dτ

) 1
q

V−
1
p (t),

A1 : = sup
t>0

W
1
q
∗ (t)

( ∫ t

0

(U(τ)
V(τ)

)p′

v(τ) dτ
) 1

p′

;

(ii) q < p < ∞ and1 < p < ∞, and in this case c≈ B0 + B1, where

B0 : =
( ∫ ∞

0
V−

r
p (t)

( ∫ t

0
Uq(τ)w(τ) dτ

) r
p

Uq(t)w(t) dt
)1

r

,

B1 : =
( ∫ ∞

0
W

r
p
∗ (t)

( ∫ t

0

(U(τ)
V(τ)

)p′

v(τ) dτ
) r

p′

w(t) dt
) 1

r

;

(iii) q < p ≤ 1, and in this case c≈ B0 +C1, where

C1 : =
( ∫ ∞

0

(
ess sup
τ∈(0,t)

Up(τ)
V(τ)

) r
p

W
r
p
∗ (t)w(t) dt

) 1
r

;

(iv) p ≤ q < ∞ and p≤ 1, and in this case c= D0, where

D0 := sup
t>0

V−
1
p (t)

( ∫ ∞

0
Uq(min{τ, t})w(τ) dτ

) 1
q

;

(v) p ≤ 1 and q= ∞, and in this case c= E0, where

E0 := ess sup
t>0

V−
1
p (t)

(
ess sup

τ>0
U(min{τ, t})w(τ)

)
;

(vi) 1 < p < ∞ and q= ∞, and in this case c= F0, where

F0 := ess sup
t>0

w(t)
( ∫ t

0

( ∫ t

τ

u(y)V−1(y) dy
)p′

v(τ) dτ
) 1

p′

;

(vii) p = ∞ and0 < q < ∞, and in this case c= G0, where

G0 :=
( ∫ ∞

0

( ∫ t

0

u(y) dy
ess supτ∈(0,y) v(τ)

)q

w(t) dt
) 1

q

;
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(viii) p = q = ∞, and in this case c= H0, where

H0 := ess sup
t>0

( ∫ t

0

u(y) dy
ess supτ∈(0,y) v(τ)

)
w(t).

The following theorem holds true.

Theorem 5.2. Let 0 < q, p ≤ ∞. Then inequality(5.2) with the best constant c holds if and only if:

(i) 1 < p ≤ q < ∞, and in this case c≈ A∗0 + A∗1, where

A∗0 : = sup
t>0

( ∫ ∞

t
Uq
∗ (τ)w(τ) dτ

) 1
q

V
− 1

p
∗ (t),

A∗1 : = sup
t>0

W
1
q (t)

( ∫ ∞

t

(U∗(τ)
V∗(τ)

)p′

v(τ) dτ
) 1

p′

;

(ii) q < p < ∞ and1 < p < ∞, and in this case c≈ B∗0 + B∗1, where

B∗0 : =
( ∫ ∞

0
V
− r

p
∗ (t)

( ∫ ∞

t
Uq
∗ (τ)w(τ) dτ

) r
p

Uq
∗ (t)w(t) dt

) 1
r

,

B∗1 : =
( ∫ ∞

0
W

r
p (t)

( ∫ ∞

t

(U∗(τ)
V∗(τ)

)p′

v(τ) dτ
) r

p′

w(t) dt
)1

r

;

(iii) q < p ≤ 1, and in this case c≈ B∗0 +C∗1, where

C∗1 : =
( ∫ ∞

0

(
ess sup

y∈(t,∞)

Up
∗ (y)

V∗(y)

) r
p

W
r
p (t)w(t) dt

)1
r

;

(iv) p ≤ q < ∞ and p≤ 1, and in this case c= D∗0, where

D∗0 := sup
t>0

V
− 1

p
∗ (t)

( ∫ ∞

0
Uq
∗ (max{τ, t})w(τ) dτ

)1
q

.

(v) p ≤ 1 and q= ∞, and in this case c= E0, where

E∗0 := ess sup
t>0

V
− 1

p
∗ (t)

(
ess sup

τ>0
U∗(max{τ, t})w(τ)

)
;

(vi) 1 < p < ∞ and q= ∞, and in this case c= F∗0, where

F∗0 := ess sup
t>0

w(t)
( ∫ ∞

t

( ∫ τ

t
u(y)V−1

∗ (y) dy
)p′

v(τ) dτ
) 1

p′

;

(vii) p = ∞ and0 < q < ∞, and in this case c= G∗0, where

G∗0 :=
( ∫ ∞

0

( ∫ ∞

t

u(y) dy
ess supτ∈(y,∞) v(τ)

)q

w(t) dt
) 1

q

;

(viii) p = q = ∞, and in this case c= H∗0, where

H∗0 := ess sup
t>0

( ∫ ∞

t

u(y) dy
ess supτ∈(y,∞) v(τ)

)
w(t).

Proof. By change of variablesx = 1/t, it is easy to see that inequality (5.2) holds if and only if
∥∥∥Hp,ũ( f )

∥∥∥
q,w̃,(0,∞)

≤ c‖ f ‖p,ṽ,(0,∞), f ∈ M↓

holds, where

ũ(t) = u
(1

t

) 1
t2
, w̃(t) = w

(1
t

) 1
t2
, ṽ(t) = v

(1
t

)( 1
t2

)
, t > 0,



WEIGHTED ITERATED HARDY-TYPE INEQUALITIES 19

when 0< p < ∞, 0 < q < ∞, and

ũ(t) = u
(1

t

) 1
t2
, w̃(t) = w

(1
t

)
, ṽ(t) = v

(1
t

)( 1
t2

)
, t > 0,

when 0< p < ∞, q = ∞, and

ũ(t) = u
(1

t

) 1
t2
, w̃(t) = w

(1
t

)( 1
t2

)
, ṽ(t) = v

(1
t

)
, t > 0,

whenp = q = ∞, and

ũ(t) = u
(1

t

) 1
t2
, w̃(t) = w

(1
t

)
, ṽ(t) = v

(1
t

)
, t > 0.

Using Theorem5.1, and then applying substitution of variables mentioned above three times, we get

the statement. �

The following theorem is true.

Theorem 5.3. Let 0 < q ≤ ∞ and0 < p < ∞. Assume that u, w ∈ W(0,∞) and v∈ W(0,∞) be such

that V∗(x) < ∞ for all x > 0 holds. Recall that

V∗1(x) :=
( ∫ x

0
V−2
∗ v

)1/3

, (x > 0).

Denote by

U∗1(x) :=
∫ x

0
u(t)[V∗1]

4
p (t) dt, (x > 0).

Then inequality(5.3) with the best constant c holds if and only if:

(i) 1 < p ≤ q < ∞, and in this case

c ≈ Ã0 + Ã1 + ‖Hu(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞),

where

Ã0 : = sup
t>0

( ∫ t

0
[U∗1]q(τ)w(τ) dτ

) 1
q

[V∗1]−
1
p (t),

Ã1 : = sup
t>0

W
1
q
∗ (t)

( ∫ t

0
[U∗1]p′(τ)[V∗1]−(2+p′)(τ)V−2

∗ (τ)v(τ) dτ
) 1

p′

;

(ii) q < p < ∞ and1 < p < ∞, and in this case

c ≈ B̃0 + B̃1 + ‖Hu(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞),

where

B̃0 : =
( ∫ ∞

0
[V∗1]−

r
p (t)

( ∫ t

0
[U∗1]q(τ)w(τ) dτ

) r
p

[U∗1]q(t)w(t) dt
)1

r

,

B̃1 : =
( ∫ ∞

0
W

r
p
∗ (t)

( ∫ t

0
[U∗1]p′(τ)[V∗1]−(2+p′)(τ)V−2

∗ (τ)v(τ) dτ
) r

p′

w(t) dt
) 1

r

;

(iii) q < p ≤ 1, and in this case

c ≈ B̃0 + C̃1 + ‖Hu(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞),

where

C̃1 : =
( ∫ ∞

0

(
ess sup
τ∈[0,t]

[U∗1]p(τ)

V∗1(τ)

) r
p

W
r
p
∗ (t)w(t) dt

) 1
r

;
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(iv) p ≤ q < ∞ and0 < p ≤ 1, and in this case

c = D̃0 + ‖Hu(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞),

where

D̃0 := sup
t>0

[V∗1]−
1
p (t)

( ∫ ∞

0
[U∗1]q(min{τ, t})w(τ) dτ

)1
q

;

(v) p ≤ 1 and q= ∞, and in this case

c = Ẽ0 + ‖Hu(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞),

where

Ẽ0 := ess sup
t>0

[V∗1]−
1
p (t)

(
ess sup

τ>0
[U∗1](min{τ, t})w(τ)

)
;

(vi) 1 < p < ∞ and q= ∞, and in this case

c = F̃0 + ‖Hu(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞),

where

F̃0 := ess sup
t>0

w(t)
( ∫ t

0

( ∫ t

τ

u(y)[V∗1]
4−p

p (y) dy
)p′

[V∗1]−2(τ)V−2
∗ (τ)v(τ) dτ

) 1
p′

.

Proof. By Corollary4.4applied withβ = q, s= p andT = Hu, inequality (5.3) holds if and only if both

(5.5)
∥∥∥Hu[V∗1]4/p( f )

∥∥∥
q,w,(0,∞)

≤ c‖ f ‖p,{V∗1·V∗}−2v,(0,∞), f ∈ M↓,

and

(5.6) ‖Hu(1)‖q,w,(0,∞) ≤ c‖1‖p,v,(0,∞)

hold.

Now the statement follows by applying Theorem5.1. �

Theorem 5.4. Let 0 < q ≤ ∞ and0 < p < ∞. Recall that

V1(x) :=
( ∫ ∞

x
V−2v

) 1
3

, (x > 0).

Denote by

U1(x) :=
∫ ∞

x
u(t)V

4
p

1 (t) dt, (x > 0).

Then inequality(5.4) with the best constant c holds if and only if:

(i) 1 < p ≤ q < ∞, and in this case

c ≈ Ã∗0 + Ã∗1 + ‖H
∗
u(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞),

where

Ã∗0 : = sup
t>0

( ∫ ∞

t
Uq

1(τ)w(τ) dτ
) 1

q

V
− 1

p

1 (t),

Ã∗1 : = sup
t>0

W
1
q (t)

( ∫ ∞

t
Up′

1 (τ)V−(2+p′)
1 (τ)V−2(τ)v(τ) dτ

) 1
p′

;

(ii) q < p < ∞ and1 < p < ∞, and in this case

c ≈ B̃∗0 + B̃∗1 + ‖H
∗
u(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞),
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where

B̃∗0 : =
( ∫ ∞

0
V
− r

p

1 (t)
( ∫ ∞

t
Uq

1(τ)w(τ) dτ
) r

p

Uq
1(t)w(t) dt

) 1
r

,

B̃∗1 : =
( ∫ ∞

0
W

r
p (t)

( ∫ ∞

t
Up′

1 (τ)V−(2+p′)
1 (τ)V−2(τ)v(τ) dτ

) r
p′

w(t) dt
) 1

r

;

(iii) q < p ≤ 1, and in this case

c ≈ B̃∗0 + C̃∗1 + ‖H
∗
u(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞),

where

C̃∗1 : =
( ∫ ∞

0

(
ess sup
τ∈(t,∞)

Up
1 (τ)

V1(τ)

) r
p

W
r
p (t)w(t) dt

) 1
r

;

(iv) p ≤ q < ∞ and p≤ 1, and in this case

c = D̃∗0 + ‖H
∗
u(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞),

where

D̃∗0 := sup
t>0

V
− 1

p

1 (t)
( ∫ ∞

0
Uq

1(max{s, t})w(s) ds
)1

q

.

(v) p ≤ 1 and q= ∞, and in this case

c = Ẽ0 + ‖H
∗
u(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞),

where

Ẽ∗0 := ess sup
t>0

V
− 1

p

1 (t)
(
ess sup

τ>0
U1(max{τ, t})w(τ)

)
;

(vi) 1 < p < ∞ and q= ∞, and in this case

c = F̃∗0 + ‖H
∗
u(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞),

where

F̃∗0 := ess sup
t>0

w(t)
( ∫ ∞

t

( ∫ τ

t
u(y)V−1

1 (y) dy
)p′

V−2
1 (τ)V−2(τ)v(τ) dτ

) 1
p′

.

Proof. By change of variablesx = 1/t, it is easy to see that inequality (5.4) holds if and only if
∥∥∥Hp,ũ( f )

∥∥∥
q,w̃,(0,∞)

≤ c‖ f ‖p,ṽ,(0,∞), f ∈ M↑

holds, where

ũ(t) = u
(1

t

) 1
t2
, w̃(t) = w

(1
t

) 1
t2
, ṽ(t) = v

(1
t

)( 1
t2

)
, t > 0,

when 0< p < ∞, 0 < q < ∞, and

ũ(t) = u
(1

t

) 1
t2
, w̃(t) = w

(1
t

)
, ṽ(t) = v

(1
t

)( 1
t2

)
, t > 0,

when 0< p < ∞, q = ∞, and

ũ(t) = u
(1

t

) 1
t2
, w̃(t) = w

(1
t

)( 1
t2

)
, ṽ(t) = v

(1
t

)
, t > 0,

whenp = q = ∞, and

ũ(t) = u
(1

t

) 1
t2
, w̃(t) = w

(1
t

)
, ṽ(t) = v

(1
t

)
, t > 0.

Using Theorem5.3, and then applying substitution of variables mentioned above three times, we get

the statement. �
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6. The weighted norm inequalities for iterated Hardy-type operators

In this section we give complete characterization of inequalities (1.5) - (1.6) and (1.7) - (1.8).

Using results obtained in the previous section we can reducethe characterization of inequality (1.5) to

the weighted Hardy inequality on the cones of non-increasing functions.

The following theorem is true.

Theorem 6.1. Let0 < p < ∞, 0 < q ≤ ∞ and1 < s< ∞. Assume that u, w ∈ W(0,∞) and v∈ W(0,∞)

be such that(3.1) holds. Recall that

Φ
[
v; s

]
(x) =

( ∫ x

0
v1−s′(t) dt

) 1
s′+1

, x > 0.

Denote by

Φ1(τ) :=
∫ τ

0
u(x)Φ

[
v; s

]2p(x) dx=
∫ τ

0
u(x)

( ∫ x

0
v1−s′(t) dt

) 2p
s′+1

dx, τ > 0.

Then inequality(1.5) with the best constant c1 holds if and only if:

(i) p < s≤ q < ∞, and in this case c1 ≈ A1,1 + A1,2, where

A1,1 : = sup
t>0

( ∫ t

0
[Φ1]

q
p (τ)w(τ) dτ

) 1
q

Φ[v; s]−
1
s (t),

A1,2 : = sup
t>0

W
1
q
∗ (t)

( ∫ t

0

(
Φ1(τ)
Φ[v; s](τ)

) s
s−p

φ[v; s](τ) dτ
) s−p

ps

;

(ii) q < s< ∞ and p< s, and in this case c1 ≈ B1,1 + B1,2, where

B1,1 : =
( ∫ ∞

0
Φ[v; s]

q
q−s(t)

( ∫ t

0
[Φ1]

q
p (τ)w(τ) dτ

) q
s−q

[Φ1]
q
p (t)w(t) dt

) s−q
qs

,

B1,2 : =
( ∫ ∞

0
W

q
s−q
∗ (t)

( ∫ t

0

(
Φ1(τ)
Φ[v; s](τ)

) s
s−p

φ[v; s](τ) dτ
) q(s−p)

p(s−q)

w(t) dt
) s−q

qs

;

(iii) q < s≤ p, and in this case c1 ≈ B1,1 +C1, where

C1 : =
( ∫ ∞

0

(
ess sup
τ∈(0,t)

[Φ1]
s
p (τ)

Φ[v; s](τ)

) q
s−q

W
q

s−q
∗ (t)w(t) dt

) s−q
sq

;

(iv) s≤ q < ∞ and s≤ p, and in this case c1 = D1, where

D1 := sup
t>0
Φ[v; s]−

1
s (t)

( ∫ ∞

0
[Φ1]

q
p (min{τ, t})w(τ) dτ

) 1
q

;

(v) s≤ p and q= ∞, and in this case c1 = E1, where

E1 := ess sup
t>0

Φ[v; s]−
1
s (t)

(
ess sup

τ>0
Φ1(min{τ, t})w(τ)

) 1
p

;

(vi) p < s and q= ∞, and in this case c1 = F1, where

F1 := ess sup
t>0

w(t)
( ∫ t

0

( ∫ t

τ

u(y)Φ[v; s]−1(y) dy
) s

s−p

φ[v; s](τ) dτ
) s−p

sp

.

Proof. By Theorem3.1(with the operatorT = Hp,u), ineqality (1.5) holds if and only if

(6.1)
∥∥∥∥∥
∫ x

0
f uΦ[v; s]2p

∥∥∥∥∥
q/p,w,(0,∞)

≤ Cp
1 ‖ f ‖s/p,φ[v;s],(0,∞), f ∈ M↓

holds. Moreover,c1 ≈ C1. It remains to apply Theorem5.1. �
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We have the following statement whens= 1.

Theorem 6.2. Let 0 < p < ∞ and0 < q ≤ ∞. Assume that u, w ∈ W(0,∞) and v∈ W(0,∞) be such

that V(x) < ∞ for all x > 0. Denote by

V2(τ) :=
∫ τ

0
u(x)V2p(x) dx, τ > 0.

Then inequality

(6.2)
∥∥∥∥∥Hp,u

( ∫ x

0
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c1

1 ‖h‖1,V−1,(0,∞), h ∈ M+

with the best constant c1
1 holds if and only if:

(i) p < 1 ≤ q < ∞, and in this case c11 ≈ A1
1,1 + A1

1,2, where

A1
1,1 : = sup

t>0

( ∫ t

0
[V2]

q
p (τ)w(τ) dτ

) 1
q

V−1(t),

A1
1,2 : = sup

t>0
W

1
q
∗ (t)

( ∫ t

0

(V2(τ)
V(τ)

) 1
1−p

v(τ) dτ
) 1−p

p

;

(ii) q < 1 and p< 1, and in this case c11 ≈ B1
1,1 + B1

1,2, where

B1
1,1 : =

( ∫ ∞

0
V

q
q−1 (t)

( ∫ t

0
[V2]

q
p (τ)w(τ) dτ

) q
1−q

[V2]
q
p (t)w(t) dt

)1−q
q

,

B1
1,2 : =

( ∫ ∞

0
W

q
1−q
∗ (t)

( ∫ t

0

(V2(τ)
V(τ)

) 1
1−p

v(τ) dτ
) q(1−p)

p(1−q)

w(t) dt
) 1−q

q

;

(iii) q < 1 ≤ p, and in this case c11 ≈ B1
1,1 +C1

1, where

C1
1 : =

( ∫ ∞

0

(
ess sup
τ∈(0,t)

[V2]
1
p (τ)

V(τ)

) q
1−q

W
q

1−q
∗ (t)w(t) dt

)1−q
q

;

(iv) 1 ≤ q < ∞ and1 ≤ p, and in this case c11 = D1
1, where

D1
1 := sup

t>0
V−1(t)

( ∫ ∞

0
[V2]

q
p (min{τ, t})w(τ) dτ

)1
q

;

(v) 1 ≤ p and q= ∞, and in this case c11 = E1
1, where

E1
1 := ess sup

t>0
V−1(t)

(
ess sup

τ>0
V2(min{τ, t})w(τ)

) 1
p

;

(vi) p < 1 and q= ∞, and in this case c11 = F1
1, where

F1
1 := ess sup

t>0
w(t)

1
p

( ∫ t

0

( ∫ t

τ

u(y)V2p−1(y dy)
) 1

1−p

v(τ) dτ
) 1−p

p

.

Proof. By Theorem3.11applied to the operatorHp,u, inequality (6.2) with the best constantc1 holds if

and only if inequality

(6.3)
∥∥∥∥∥
∫ x

0
f V2pu

∥∥∥∥∥
q/p,w,(0,∞)

≤ Cp
1 ‖ f ‖1/p,v,(0,∞), f ∈ M↓

holds. Moreover,c1 ≈ C1. In order to complete the proof, it remains to apply Theorem5.1. �

The following theorems give us another more simpler and natural method for characterization of in-

equality (1.6), which is different from that one worked out in [18] and [19].
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Theorem 6.3. Let0 < p < ∞, 0 < q ≤ ∞ and1 < s< ∞. Assume that u, w ∈ W(0,∞) and v∈ W(0,∞)

be such that(3.13) holds. Denote by

Φ2(τ) :=
∫ τ

0
u(x)

(
Ψ
[
v; s

]
· Φ

[
Ψ[v; s]sψ[v; s]1−s; s

])2p

(x) dx, τ > 0.

Recall that

Ψ
[
v; s

]
(x) =

( ∫ ∞

x
v1−s′(t) dt

) 1
s′+1

, x > 0,

φ
[
Ψ[v; s]sψ[v; s]1−s; s

]
(x)

≈

{ ∫ x

0

( ∫ ∞

t
v1−s′

)− 2s′

1+s′

v1−s′(t) dt
}− s′

1+s′
( ∫ ∞

x
v1−s′

)− 2s′

1+s′

v1−s′(x), x > 0,

Φ
[
Ψ[v; s]sψ[v; s]1−s; s

]
(x) ≈

{ ∫ x

0

( ∫ ∞

t
v1−s′

)− 2s′

1+s′

v1−s′(t) dt
} 1

1+s′

, x > 0.

Then inequality(1.6) with the best constant c2 holds if and only if:

(i) p < s≤ q < ∞, and in this case

c2 ≈ A2,1 + A2,2 + ‖‖1‖p,Ψ[v;s]2pu,(0,t)‖q,w,(0,∞)/‖1‖s,ψ[v;s],(0,∞),

where

A2,1 : = sup
t>0

( ∫ t

0
[Φ2]

q
p (τ)w(τ) dτ

) 1
q

Φ
[
Ψsψ1−s; s

]− 1
s (t),

A2,2 : = sup
t>0

W
1
q
∗ (t)

( ∫ t

0

(
Φ2(τ)

Φ
[
Ψsψ1−s; s

]
(τ)

) s
s−p

φ
[
Ψsψ1−s; s

]
(τ) dτ

) s−p
ps

;

(ii) q < s< ∞ and p< s, and in this case

c2 ≈ B2,1 + B2,2 + ‖‖1‖p,Ψ[v;s]2pu,(0,t)‖q,w,(0,∞)/‖1‖s,ψ[v;s],(0,∞),

where

B2,1 : =
( ∫ ∞

0
Φ
[
Ψsψ1−s; s

] q
q−s(t)

( ∫ t

0
[Φ2]

q
p (τ)w(τ) dτ

) q
s−q

[Φ2]
q
p (t)w(t) dt

) s−q
qs

,

B2,2 : =
( ∫ ∞

0
W

q
s−q
∗ (t)

( ∫ t

0

(
Φ2(τ)

Φ
[
Ψsψ1−s; s

]
(τ)

) s
s−p

φ
[
Ψsψ1−s; s

]
(τ) dτ

) q(s−p)
p(s−q)

w(t) dt
) s−q

qs

;

(iii) q < s≤ p, and in this case

c2 ≈ B2,1 +C2 + ‖‖1‖p,Ψ[v;s]2pu,(0,t)‖q,w,(0,∞)/‖1‖s,ψ[v;s],(0,∞),

where

C2 : =
( ∫ ∞

0

(
ess sup
τ∈(0,t)

[Φ2]
s
p (τ)

Φ
[
Ψsψ1−s; s

]
(τ)

) q
s−q

W
q

s−q
∗ (t)w(t) dt

) s−q
sq

;

(iv) s≤ q < ∞ and s≤ p, and in this case

c2 = D2 + ‖‖1‖p,Ψ[v;s]2pu,(0,t)‖q,w,(0,∞)/‖1‖s,ψ[v;s],(0,∞),

where

D2 := sup
t>0
Φ
[
Ψsψ1−s; s

]− 1
s (t)

( ∫ ∞

0
[Φ2]

q
p (min{τ, t})w(τ) dτ

)1
q

;

(v) s≤ p and q= ∞, and in this case

c2 = E2 + ‖‖1‖p,Ψ[v;s]2pu,(0,t)‖q,w,(0,∞)/‖1‖s,ψ[v;s],(0,∞),
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where

E2 := ess sup
t>0

Φ
[
Ψsψ1−s; s

]− 1
s (t)

(
ess sup

τ>0
Φ2(min{τ, t})w(τ)

) 1
p

;

(vi) p < s and q= ∞, and in this case

c2 = F2 + ‖‖1‖p,Ψ[v;s]2pu,(0,t)‖q,w,(0,∞)/‖1‖s,ψ[v;s],(0,∞),

where

F2 := ess sup
t>0

w(t)
( ∫ t

0

( ∫ t

τ

u(y)Φ
[
Ψsψ1−s; s

]−1(y) dy
) s

s−p

φ
[
Ψsψ1−s; s

]
(τ) dτ

) s−p
sp

.

Proof. By Corollary3.5 (applied toHp,u with δ = 1), inequality (1.6) with the best constantc2 holds if

and only if both

(6.4)

∥∥∥∥∥∥Hp,Ψ[v;s]2pu

(∫ x

0
h

)∥∥∥∥∥∥
q,w,(0,∞)

≤ c2,1 ‖h‖s,Ψ[v;s]sψ[v;s]1−s,(0,∞), h ∈ M+,

and

(6.5) ‖‖1‖p,Ψ[v;s]2pu,(0,t)‖q,w,(0,∞) ≤ c2,2‖1‖s,ψ[v;s],(0,∞),

hold.

Moreover,c2 ≈ c2,1 + ‖‖1‖p,Ψ[v;s]2pu,(0,t)‖q,w,(0,∞)/‖1‖s,ψ[v;s],(0,∞).

Now the statement follows by Theorem6.1. �

We have the following statement whens= 1.

Theorem 6.4. Let 0 < p < ∞ and0 < q ≤ ∞. Assume that u, w ∈ W(0,∞) and v∈ W(0,∞) be such

that V∗(x) < ∞ for all x > 0. Denote by

V∗3(τ) :=
∫ τ

0
u(x){V∗ · [V

∗
1]2}2p(x) dx, τ > 0.

Recall that

V∗1(x) :=
( ∫ x

0
V−2
∗ (t)v(t) dt

)1/3

, (x > 0).

Then inequality

(6.6)
∥∥∥∥∥Hp,u

( ∫ ∞

x
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c1

2 ‖h‖1,V−1
∗ ,(0,∞), h ∈ M+

with the best constant c1
2 holds if and only if:

(i) p < 1 ≤ q < ∞, and in this case

c1
2 ≈ A1

2,1 + A1
2,2 +

∥∥∥‖1‖p,V2p
∗ u,(0,t)

∥∥∥
q,w,(0,∞)

/‖1‖1,v,(0,∞),

where

A1
2,1 : = sup

t>0

( ∫ t

0
[V∗3]q/p(τ)w(τ) dτ

)1/q

[V∗1]−1(t),

A1
2,2 : = sup

t>0
W

1
q
∗ (t)

( ∫ t

0

(V∗3(τ)

V∗1(τ)

) 1
1−p

{V∗ · [V
∗
1]}−2(τ)v(τ) dτ

) 1−p
p

;

(ii) q < 1 and p< 1, and in this case

c1
2 ≈ B1

2,1 + B1
2,2 +

∥∥∥‖1‖p,V2p
∗ u,(0,t)

∥∥∥
q,w,(0,∞)

/‖1‖1,v,(0,∞),
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where

B1
2,1 : =

( ∫ ∞

0
[V∗1]

q
q−1 (t)

( ∫ t

0
[V∗3]

q
p (τ)w(τ) dτ

) q
1−q

[V∗3]
q
p (t)w(t) dt

)1−q
q

,

B1
2,2 : =

( ∫ ∞

0
W

q
1−q
∗ (t)

( ∫ t

0

(V∗3(τ)

V∗1(τ)

) 1
1−p

{V∗ · [V
∗
1]}−2(τ)v(τ) dτ

) q(1−p)
p(1−q)

w(t) dt
)1−q

q

;

(iii) q < 1 ≤ p, and in this case

c1
2 ≈ B1

2,1 +C1
2 +

∥∥∥‖1‖p,V2p
∗ u,(0,t)

∥∥∥
q,w,(0,∞)

/‖1‖1,v,(0,∞),

where

C1
2 : =

( ∫ ∞

0

(
ess sup
τ∈(0,t)

[V∗3]
1
p (τ)

V∗1(τ)

) q
1−q

W
q

1−q
∗ (t)w(t) dt

)1−q
q

;

(iv) 1 ≤ q < ∞ and1 ≤ p, and in this case

c1
2 = D1

2 +
∥∥∥‖1‖p,V2p

∗ u,(0,t)

∥∥∥
q,w,(0,∞)

/‖1‖1,v,(0,∞),

where

D1
2 := sup

t>0
[V∗1]−1(t)

( ∫ ∞

0
[V∗3]

q
p (min{τ, t})w(τ) dτ

) 1
q

;

(v) 1 ≤ p and q= ∞, and in this case

c1
2 = E1

2 +
∥∥∥‖1‖p,V2p

∗ u,(0,t)

∥∥∥
q,w,(0,∞)

/‖1‖1,v,(0,∞),

where

E1
2 := ess sup

t>0
[V∗1]−1(t)

(
ess sup

τ>0
[V∗3](min{τ, t})w(τ)

) 1
p

;

(vi) p < 1 and q= ∞, and in this case

c1
2 = F1

2 +
∥∥∥‖1‖p,V2p

∗ u,(0,t)

∥∥∥
q,w,(0,∞)

/‖1‖1,v,(0,∞),

where

F1
2 := ess sup

t>0
w(t)

1
p

( ∫ t

0

( ∫ t

τ

u(y)[V∗1]2p−1(y) dy
) 1

1−p

{V∗ · [V
∗
1]}−2(τ)v(τ) dτ

) 1−p
p

.

Proof. By Corollary3.23applied to the operatorHp,u, inequality (6.6) with the best constantc1
2 holds if

and only if both

(6.7)
∥∥∥∥∥
∫ x

0
{V∗ · [V

∗
1]2}2pu f

∥∥∥∥∥
q/p,w,(0,∞)

≤ cp
2,1 ‖ f ‖1/p,{V∗·[V∗1]}−2v,(0,∞), f ∈ M↓,

and

(6.8)
∥∥∥‖1‖p,V2p

∗ u,(0,t)

∥∥∥
q,w,(0,∞)

≤ c2,2‖1‖1,v,(0,∞),

hold. Moreover,c1
2 ≈ c2,1 +

∥∥∥‖1‖p,V2p
∗ u,(0,t)

∥∥∥
q,w,(0,∞)

/‖1‖1,v,(0,∞). Applying Theorem5.1we obtain the state-

ment. �

For the sake of completeness we give the characterizations of inequalities of (1.7) and (1.8) here.
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Theorem 6.5. Let0 < p < ∞, 0 < q ≤ ∞ and1 < s< ∞. Assume that u, w ∈ W(0,∞) and v∈ W(0,∞)

be such that(3.13) holds. Recall that

Ψ
[
v; s

]
(x) =

( ∫ ∞

x
v1−s′(t) dt

) 1
s′+1

, x > 0.

Denote by

Ψ1(τ) :=
∫ ∞

τ

u(x)Ψ[v; s]2p(x) dx=
∫ ∞

τ

u(x)
( ∫ ∞

x
v1−s′(t) dt

) 2p
s′+1

dx, τ > 0.

Then inequality(1.7) with the best constant c3 holds if and only if:

(i) p < s≤ q < ∞, and in this case c3 ≈ A3,1 + A3,2, where

A3,1 : = sup
t>0

( ∫ ∞

t
[Ψ1]

q
p (τ)w(τ) dτ

) 1
q

Ψ[v; s]−
1
s (t),

A3,2 : = sup
t>0

W
1
q (t)

( ∫ ∞

t

(
Ψ1(τ)
Ψ[v; s](τ)

) s
s−p

ψ[v; s](τ) dτ
) s−p

ps

;

(ii) q < s< ∞ and p< s, and in this case c3 ≈ B3,1 + B3,2, where

B3,1 : =
( ∫ ∞

0
Ψ[v; s]

q
q−s(t)

( ∫ ∞

t
[Ψ1]

q
p (τ)w(τ) dτ

) q
s−q

[Ψ1]
q
p (t)w(t) dt

) s−q
qs

,

B3,2 : =
( ∫ ∞

0
W

q
s−q (t)

( ∫ ∞

t

(
Ψ1(τ)
Ψ[v; s](τ)

) s
s−p

ψ[v; s](τ) dτ
) q(s−p)

p(s−q)

w(t) dt
) s−q

qs

;

(iii) q < s≤ p, and in this case c3 ≈ B3,1 +C3, where

C3 : =
( ∫ ∞

0

(
ess sup
τ∈(t,∞)

[Ψ1]
s
p (τ)

Ψ[v; s](τ)

) q
s−q

W
q

s−q (t)w(t) dt
) s−q

sq

;

(iv) s≤ q < ∞ and s≤ p, and in this case c3 = D3, where

D3 := sup
t>0
Ψ[v; s]−

1
s (t)

( ∫ ∞

0
[Ψ1]

q
p (max{τ, t})w(τ) dτ

) 1
q

;

(v) s≤ p and q= ∞, and in this case c3 = E3, where

E3 := ess sup
t>0

Ψ[v; s]−
1
s (t)

(
ess sup

τ>0
Ψ1(max{τ, t})w(τ)

) 1
p

;

(vi) p < s and q= ∞, and in this case c3 = F3, where

F3 := ess sup
t>0

w(t)
( ∫ ∞

t

( ∫ τ

t
u(y)Ψ[v; s]−1(y) dy

) s
s−p

ψ[v; s](τ) dτ
) s−p

sp

.

Proof. By change of variablesx = 1/t, it is easy to see that inequality (1.7) holds if and only if
∥∥∥∥∥Hp,ũ

( ∫ x

0
h
)∥∥∥∥∥

q,w̃,(0,∞)
≤ c‖h‖s,ṽ,(0,∞)

holds, where

ũ(t) = u
(1

t

) 1
t2
, w̃(t) = w

(1
t

) 1
t2
, ṽ(t) = v

(1
t

)( 1
t2

)1−s

, t > 0,

when 0< q < ∞, and

ũ(t) = u
(1

t

) 1
t2
, w̃(t) = w

(1
t

)
, ṽ(t) = v

(1
t

)( 1
t2

)1−s

, t > 0,

whenq = ∞.
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Using Theorem6.1, and then applying substitution of variables mentioned above three times, we get

the statement. �

Theorem 6.6. Let 0 < p < ∞ and0 < q ≤ ∞. Assume that u, w ∈ W(0,∞) and v∈ W(0,∞) be such

that V∗(x) < ∞ for all x > 0. Denote by

V∗2(τ) :=
∫ ∞

τ

u(x)V2p
∗ (x) dx, τ > 0.

Then inequality

(6.9)
∥∥∥∥∥H∗p,u

( ∫ ∞

x
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c1

3 ‖h‖1,V−1
∗ ,(0,∞), h ∈ M+

with the best constant c1
3 holds if and only if:

(i) p < 1 ≤ q < ∞, and in this case c13 ≈ A1
3,1 + A1

3,2, where

A1
3,1 : = sup

t>0

( ∫ ∞

t
[V∗2]

q
p (τ)w(τ) dτ

) 1
q

V−1
∗ (t),

A1
3,2 : = sup

t>0
W

1
q (t)

( ∫ ∞

t

(V∗2(τ)

V∗(τ)

) 1
1−p

v(τ) dτ
) 1−p

p

;

(ii) q < 1 and p< 1, and in this case c13 ≈ B1
3,1 + B1

3,2, where

B1
3,1 : =

( ∫ ∞

0
V

q
q−1
∗ (t)

( ∫ ∞

t
[V∗2]

q
p (τ)w(τ) dτ

) q
1−q

[V∗2]
q
p (t)w(t) dt

) 1−q
q

,

B1
3,2 : =

( ∫ ∞

0
W

q
1−q (t)

( ∫ ∞

t

(V∗2(τ)

V∗(τ)

) 1
1−p

v(τ) dτ
) q(1−p)

p(1−q)

w(t) dt
)1−q

q

;

(iii) q < 1 ≤ p, and in this case c13 ≈ B1
3,1 +C1

3, where

C1
3 : =

( ∫ ∞

0

(
ess sup
τ∈(t,∞)

[V∗2]
1
p (τ)

V∗(τ)

) q
1−q

W
q

1−q (t)w(t) dt
)1−q

q

;

(iv) 1 ≤ q < ∞ and1 ≤ p, and in this case c13 = D1
3, where

D1
3 := sup

t>0
V−1
∗ (t)

( ∫ ∞

0
[V∗2]

q
p (max{τ, t})w(τ) dτ

) 1
q

;

(v) 1 ≤ p and q= ∞, and in this case c13 = E1
3, where

E1
3 := ess sup

t>0
V−1
∗ (t)

(
ess sup

τ>0
V∗2(max{τ, t})w(τ)

) 1
p

;

(vi) p < 1 and q= ∞, and in this case c13 = F1
3, where

F1
3 := ess sup

t>0
w(t)

1
p

( ∫ ∞

t

( ∫ τ

t
u(y)V2p−1

∗ (y) dy
) 1

1−p

v(τ) dτ
) 1−p

p

.

Proof. By change of variablesx = 1/t, it is easy to see that inequality (6.9) holds if and only if
∥∥∥∥∥Hp,ũ

( ∫ x

0
h
)∥∥∥∥∥

q,w̃,(0,∞)
≤ c‖h‖1,Ṽ−1,(0,∞), h ∈ M+

holds, where

ũ(t) = u
(1

t

) 1
t2
, w̃(t) = w

(1
t

) 1
t2
, Ṽ(t) =

∫ t

0
v
(1
y

) 1
y2

dy, t > 0,
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when 0< q < ∞, and

ũ(t) = u
(1

t

) 1
t2
, w̃(t) = w

(1
t

)
, Ṽ(t) =

∫ t

0
v
(1
y

) 1
y2

dy, t > 0,

whenq = ∞.

Applying Theorem6.2, and then using substitution of variables mentioned above three times, we get

the statement. �

Theorem 6.7. Let0 < p < ∞, 0 < q ≤ ∞ and1 < s< ∞. Assume that u, w ∈ W(0,∞) and v∈ W(0,∞)

be such that(3.1) holds. Denote by

Ψ2(τ) :=
∫ ∞

τ

u(x)
(
Φ
[
v; s

]
· Ψ

[
Φ[v; s]sφ[v; s]1−s; s

])2p

(x) dx, τ > 0.

Recall that

Φ
[
v; s

]
(x) =

( ∫ x

0
v1−s′(t) dt

) 1
s′+1

, x > 0,

ψ
[
Φ[v; s]sφ[v; s]1−s; s

]
(x)

≈

{ ∫ ∞

x

( ∫ t

0
v1−s′

)− 2s′

1+s′

v1−s′(t) dt
}− s′

1+s′
( ∫ x

0
v1−s′

)− 2s′

1+s′

v1−s′(x),

Ψ
[
Φ[v; s]sφ[v; s]1−s; s

]
(x) ≈

{ ∫ ∞

x

( ∫ t

0
v1−s′

)− 2s′

1+s′

v1−s′(t) dt
} 1

1+s′

,

Then inequality(1.8) with the best constant c4 holds if and only if:

(i) p < s≤ q < ∞, and in this case

c4 ≈ A4,1 + A4,2 + ‖‖1‖p,Φ[v;s]2pu,(t,∞)‖q,w,(0,∞)/‖1‖s,φ[v;s],(0,∞),

where

A4,1 : = sup
t>0

( ∫ ∞

t
[Ψ2]

q
p (τ)w(τ) dτ

) 1
q

Ψ
[
Φsφ1−s; s

]− 1
s (t),

A4,2 : = sup
t>0

W
1
q (t)

( ∫ ∞

t

(
Ψ2(τ)

Ψ
[
Φsφ1−s; s

]
(τ)

) s
s−p

φ
[
Φsφ1−s; s

]
(τ) dτ

) s−p
ps

;

(ii) q < s< ∞ and p< s, and in this case

c4 ≈ B4,1 + B4,2 + ‖‖1‖p,Φ[v;s]2pu,(t,∞)‖q,w,(0,∞)/‖1‖s,φ[v;s],(0,∞),

where

B4,1 : =
( ∫ ∞

0
Ψ
[
Φsφ1−s; s

] q
q−s(t)

( ∫ ∞

t
[Ψ2]

q
p (τ)w(τ) dτ

) q
s−q

[Ψ2]
q
p (t)w(t) dt

) s−q
qs

,

B4,2 : =
( ∫ ∞

0
W

q
s−q (t)

( ∫ ∞

t

(
Ψ2(τ)

Ψ
[
Φsφ1−s; s

]
(τ)

) s
s−p

ψ
[
Φsφ1−s; s

]
(τ) dτ

) q(s−p)
p(s−q)

w(t) dt
) s−q

qs

;

(iii) q < s≤ p, and in this case

c4 ≈ B4,1 +C4 + ‖‖1‖p,Φ[v;s]2pu,(t,∞)‖q,w,(0,∞)/‖1‖s,φ[v;s],(0,∞),

where

C4 : =
( ∫ ∞

0

(
ess sup
τ∈(t,∞)

[Ψ2]
s
p (τ)

Ψ
[
Φsφ1−s; s

]
(τ)

) q
s−q

W
q

s−q (t)w(t) dt
) s−q

sq

;
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(iv) s≤ q < ∞ and s≤ p, and in this case

c4 = D4 + ‖‖1‖p,Φ[v;s]2pu,(t,∞)‖q,w,(0,∞)/‖1‖s,φ[v;s],(0,∞),

where

D4 := sup
t>0
Ψ
[
Φsφ1−s; s

]− 1
s (t)

( ∫ ∞

0
[Ψ2]

q
p (max{τ, t})w(τ) dτ

)1
q

;

(v) s≤ p and q= ∞, and in this case

c4 = E4 + ‖‖1‖p,Φ[v;s]2pu,(t,∞)‖q,w,(0,∞)/‖1‖s,φ[v;s],(0,∞),

where

E4 := ess sup
t>0

Ψ
[
Φsφ1−s; s

]− 1
s (t)

(
ess sup

τ>0
Ψ2(max{τ, t})w(τ)

) 1
p

;

(vi) p < s and q= ∞, and in this case

c4 = F4 + ‖‖1‖p,Φ[v;s]2pu,(t,∞)‖q,w,(0,∞)/‖1‖s,φ[v;s],(0,∞),

where

F4 := ess sup
t>0

w(t)
( ∫ ∞

t

( ∫ τ

t
u(y)Ψ

[
Φsφ1−s; s

]−1(y) dy
) s

s−p

ψ
[
Φsφ1−s; s

]
(τ) dτ

) s−p
sp

.

Proof. Obviously, inequality (1.8) holds if and only if
∥∥∥∥∥Hp,ũ

( ∫ ∞

x
h
)∥∥∥∥∥

q,w̃,(0,∞)
≤ c‖h‖s,ṽ,(0,∞)

holds, where

ũ(t) = u
(1

t

) 1
t2
, w̃(t) = w

(1
t

) 1
t2
, ṽ(t) = v

(1
t

)( 1
t2

)1−s

, t > 0,

when 0< q < ∞, and

ũ(t) = u
(1

t

) 1
t2
, w̃(t) = w

(1
t

)
, ṽ(t) = v

(1
t

)( 1
t2

)1−s

, t > 0,

whenq = ∞.

Using Theorem6.3, and then applying substitution of variables mentioned above three times, we get

the statement. �

Theorem 6.8. Let 0 < p < ∞ and0 < q ≤ ∞. Assume that u, w ∈ W(0,∞) and v∈ W(0,∞) be such

that V(x) < ∞ for all x > 0. Recall that

V1(x) :=
( ∫ ∞

x
V−2v

) 1
3

, (x > 0).

Denote by

V3(τ) :=
∫ ∞

τ

u(x){V · V2
1}

2p(x) dx, τ > 0.

Then inequality

(6.10)
∥∥∥∥∥H∗p,u

( ∫ x

0
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c1

4 ‖h‖1,V−1,(0,∞),

with the best constant c1
4 holds if and only if:

(i) p < 1 ≤ q < ∞, and in this case

c1
4 ≈ A1

4,1 + A1
4,2 + ‖‖1‖p,V2pu,(t,∞)‖q,w,(0,∞)/‖1‖1,v,(0,∞),
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where

A1
4,1 : = sup

t>0

( ∫ ∞

t
[V3]

q
p (τ)w(τ) dτ

) 1
q

[V1]
−1(t),

A1
4,2 : = sup

t>0
W

1
q (t)

( ∫ ∞

t

(V3(τ)
V1(τ)

) 1
1−p

{V · [V1]}
−2(τ)v(τ) dτ

) 1−p
p

;

(ii) q < 1 and p< 1, and in this case

c1
4 ≈ B1

4,1 + B1
4,2 + ‖‖1‖p,V2pu,(t,∞)‖q,w,(0,∞)/‖1‖1,v,(0,∞),

where

B1
4,1 : =

( ∫ ∞

0
V

q
q−1

1 (t)
( ∫ ∞

t
[V3]

q
p (τ)w(τ) dτ

) q
1−q

V
q
p

3 (t)w(t) dt
) 1−q

q

,

B1
4,2 : =

( ∫ ∞

0
W

q
1−q (t)

( ∫ ∞

t

(V3(τ)
V1(τ)

) 1
1−p

{V · [V1]}
−2(τ)v(τ) dτ

) q(1−p)
p(1−q)

w(t) dt
)1−q

q

;

(iii) q < 1 ≤ p, and in this case

c1
4 ≈ B1

4,1 +C1
4 + ‖‖1‖p,V2pu,(t,∞)‖q,w,(0,∞)/‖1‖1,v,(0,∞),

where

C1
4 : =

( ∫ ∞

0

(
ess sup
τ∈(t,∞)

[V3]
1
p (τ)

V1(τ)

) q
1−q

W
q

1−q (t)w(t) dt
)1−q

q

;

(iv) 1 ≤ q < ∞ and1 ≤ p, and in this case

c1
4 = D1

4 + ‖‖1‖p,V2pu,(t,∞)‖q,w,(0,∞)/‖1‖1,v,(0,∞),

where

D1
4 := sup

t>0
V−1

1 (t)
( ∫ ∞

0
[V3]

q
p (max{τ, t})w(τ) dτ

) 1
q

;

(v) 1 ≤ p and q= ∞, and in this case

c1
4 = E1

4 + ‖‖1‖p,V2pu,(t,∞)‖q,w,(0,∞)/‖1‖1,v,(0,∞),

where

E1
4 := ess sup

t>0
V−1

1 (t)
(
ess sup

τ>0
[V3](max{τ, t})w(τ)

) 1
p

;

(vi) p < 1 and q= ∞, and in this case

c1
4 = F1

4 + ‖‖1‖p,V2pu,(t,∞)‖q,w,(0,∞)/‖1‖1,v,(0,∞),

where

F1
4 := ess sup

t>0
w(t)

1
p

( ∫ ∞

t

( ∫ τ

t
u(y)V2p−1

1 (y) dy
) 1

1−p

{V · V1}
−2(τ)v(τ) dτ

) 1−p
p

.

Proof. Obviously, inequality (6.10) holds if and only if
∥∥∥∥∥Hp,ũ

( ∫ ∞

x
h
)∥∥∥∥∥

q,w̃,(0,∞)
≤ c‖h‖1,Ṽ−1

∗ ,(0,∞), h ∈ M+

holds, where

ũ(t) = u
(1

t

) 1
t2
, w̃(t) = w

(1
t

) 1
t2
, Ṽ∗(t) =

∫ ∞

t
v
(1
y

) 1
y2

dy, t > 0,
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when 0< q < ∞, and

ũ(t) = u
(1

t

) 1
t2
, w̃(t) = w

(1
t

)
, Ṽ∗(t) =

∫ ∞

t
v
(1
y

) 1
y2

dy, t > 0,

whenq = ∞.

Applying Theorem6.4, and then using substitution of variables mentioned above three times, we get

the statement. �

Remark6.9. It is worth to mention that Theorem6.3 - 6.8 can be proved by reducing corresponding

iterated inequality to the cone of monotone functions. For instance: inequality (1.7) with the best constant

c3 holds if and only if inequality
∥∥∥∥∥
∫ x

0
f uΨ[v; s]2p

∥∥∥∥∥
q/p,w,(0,∞)

≤ cp
3 ‖ f ‖s/p,ψ[v;s],(0,∞), f ∈ M↑

holds, and the statement of Theorem6.5immediately follows by Theorem5.2.
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