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Abstract: We deal with the approximation properties of a new class of positive linear Durrmeyer type opera-
tors which offer a reconstruction of integral type operators including well known Durrmeyer operators. This
reconstruction allows us to investigate approximation properties of the Durrmeyer operators at the same time.
It is first shown that these operators are a positive approximation process in Lp (R*). While we are showing
this property of the operators we consider the Ditzian-Totik modulus of smoothness and corresponding K-
functional. Then, weighted norm convergence, whose proof is based on Korovkin type theorem on Lp (R*) s
is given. At the end of the paper we show several examples of classical sequences that can be obtained from
the Ibragimov-Gadjiev-Durrmeyer operators.
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1 Introduction

One of the way to obtain an approximation process for spaces of integrable functions on unbounded interval
is studying Durrmeyer type integral modification of the concerned operator. In recent years, this type of mod-
ification has been the subject of investigation of several mathematicians. For example, Ditzian and Ivanov
[1] proved direct and converse results for linear combinations and derivatives of Bernstein type operators in
Ly (R*) spaces. And later in [2] Baskakov-Durrmeyer type operators in Ly (R*) spaces were introduced by
Heilmann. Then Agrawal [3] studied some direct results for a linear combination of a new sequence of linear
positive operators in Ly (R*). Among the others, we refer the readers to [4, 5] and the references therein.

On the other hand, in 1970, Ibragimov and Gadjiev [6] established a sequence of linear positive oper-
ators to collect the many well known operators. They contain Bernstein, Szasz, Bernstein-Cholodwsky and
Baskakov operators and others. More recent results on these operators may be found in [7-11].

Later on, integral version of Ibragimov-Gadjiev operators, called Ibragimov-Gadjiev-Durrmeyer opera-
tors, were constructed and some approximation results were investigated in [12] by Aral and Acar. Authors
presented Voronovskaya type theorem and its quantitative version, thus characterized the order of approxi-
mation of the operators in pointwise manner for function f € C (R*).

In this paper we investigate convergence of Ibragimov-Gadjiev-Durrmeyer operators in Ly (]R*) spaces.
Our first aim is to show that the sequence of operators M,f which will be given below, is an approximation
process in Ly (R*) spaces. We give the proof with a quantitative estimate. This quantitative result is based
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on Ditzian-Totik modulus of smoothness and its equivalence to appropriate K-functional. As a second part of
this work, we give weighted approximation formula using a weighted Korovkin type theorem in a weighted
Ly space.

Now we recall these operators.

Definition 1. Let (¢n (), and (n (1)), be sequences of functions in C (R*) , which is the space of con-
tinuous function on R* := [0, oo), such that @ (0) = 0, Pn (t) > 0, for all t and lim,—,cc 1/n%Pn (0) = 0. Also
let (an), <y denote a sequence of positive numbers which satisfy the following conditions

lim %" = 1 and hm anPn (0) =14, 1 > 0.

n—eo N

Ma(fix) = (1= m)anhn O KY (%, 0, anipn (0)) CE2¥n OF

s w)!

< [ 10K 0.0, a0y EEe OF Cande OF 4, 1

K)(1") (%, 0, anhn (0)) = auv et (0,60 is a sequence of functions of three variable x, t, u, such that

foreach x,t ¢ R* = [0, oo) and for each n € N, Kn(x, t, u) is entire analytic function with respect to variable

u, satisfying the following conditions:

1. Every function of this sequence is an entire function with respect to u for fixed x, t € R* and K (x,0,0) = 1
forx c R*andn e N,

" Kn (x,t,u)

2. [(—1)" auvK" (x, t, u)‘ ] >0forv=0,1,...,any fixed u = u; and x € R*,
u=uy, t=0
(This notation means that the derivative with respect to u is taken v times, then one set u = u; and t = 0)
3. auvK" (x,t,u) = -nx [;J%Kmm (x, t, u)‘ } forallx e R"andn e N,v=0,1,...,misa
u=uq,t=0 u=uq,t=0

number such that m + n = 0 or a natural number.
4. Kn(0,0,u)=1foranyu € R and
lim x’KY (x, 0, u1) =0
X—roo

forany p € Nand fixed u = u;.
5. For any fixed t and u the function Kn(x, t, u) is continuously differentiable with respect to variable x € R*
and satisfying the equality

%Kn (x,0,uy) = —nu1 Kman (x, £, u1)

for fixed u = uq.
We assume that the function Kn (x, t, u) in addition to the condition (1)-(5) satisfies also the condition:

MV ) (x,0, u1) = nKY,, (x, 0, up) forallx e R*, n e N,v=0,1, ..., and fixed u = u;.
1+uymx

Since K (x, t, u) is an entire function with respect to variable u by the assumption (1), we can write Taylor
expansion for Ky, (x, t, u) at any point u; € Ras

(u-uy)”

hnd v
Kn (X, t, u)=z WKH (X, t, u) V'
v=0 ’

u=ui

and replacing u = @n (t) , Uy = aniPn (t) and t = 0, where (an) is the sequence defined in (1),
(—ann (0))”

v!

v

Kn (x,0,0)= %Kn (x, t, u)
v=0

U=y (), t=0

is obtained by the condition ¢, (0) = 0. Taking into account that Ky (x, 0, 0) = 1 by the condition (1), we
have

oo

Z

(—anl/)n (O))V — 1. (2)

v!

Kn(x t,u)

u= ampn(t);t:o
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The family of operators My (f; x) is linear and positive. Also, the operators My (f; x) reduce to following well-

known operators in a special case:

(i) if we choose Kn (x,t,u) = [L+t+ux]™, an = n, Yn (0) = 1/n, the operators (1) reduce to Baskakov-
Durrmeyer operators,

(ii) if we choose Ky (x, t, u) = e ™) q, = n, 1, (0) = 1/n, the operators (1) reduce to Szasz-Durrmeyer
operators,

(iii) If Ky (2) is entire analytic function and Kn (x, t, u) = Kn (t + ux), an = n, Y (0) = 1/n, the operators (1)
reduce to generalized Baskakov-Durrmeyer operators.

2 Auxiliary Results

In this section we give some lemmas which will be required to prove the main results. The proofs of Lemma
1-Lemma 4 were given in [12], but for the readers’ convenience we recall them here again.
Lemma 1. The condition (5) is equivalent to the following equality

d%K;V’ (x,0, uy) = %K&V) (x, 0, u1) - nur K2 (x, 0, up) .

Proof. By v-multiple application of condition (3), we obtain
KV (x,0,u1) = (1) n(n+m)...(n+ (v — 1) m) X" Knsvm (X, 0, u7) . 3)

Applying condition (5) we get
(-1 %Kﬁ,v) (x,0,uy)=nn+m)...(n+(v-1)m)

x {vx"_lanm (x,0,u1) = x" (n+ vm) u1 Kyy (v 1ym (X, O, ul)} .

Using (3) we get desired result. O

Conclusion 1. Using (3) and Lemma 1, we get

d _
I kY (x,0, u1) = (-n) [VKS’H;) (x,0,u1) + u1 k¥, (x, 0, ul)} .

Lemma 2. We have

= v B V!
| K e 0,udx- e

Proof. Using integration by parts and conditions (1) and (4) we have

/ kY (x, 0,u1)dx=—/ X%KS/) (x, 0, uq) dx.
0 0

Using Lemma 1, we get

/ KV (x,0,uy)dx = —v/ KV (x,0, up)dx + nu1/ xK%).. (x, 0, u7) dx.
0 0 0
Also by condition (3), we have
/ kY (x,0,uy)dx = —v/ KV (x,0,uy)dx —u; / Ky (x, 0, uy) dx.
0 0 0

Hence we can write

/ I<;V)(X’O,ul)dx= _ul/ K%V”)(X,O,ul)dx.
0 v+l J,
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By v- times application of above equality and using condition (5) and (1), we get

/ KY (x,0,up)dx = —l/ K™ (x,0, up) dx
0 0

251

' (o ]
(1) %/ Kn (x, 0, uy) dx
0

~ ( 1)v+1
= 7('1 m) u‘”’l dx Kn m(X 0 u1) dx

( ) (Yl m) uv+1
Conclusion 2. Using condition (6) and Lemma 1, we get
x (1 + uymx) —K(V) (x,0,u1) = (v - xurn) K¥ (x, 0, uy) .

Lemma3. Let v, n € N. For any natural number r we have

= e _ D' E+n!
/o XKy (6, 0, 1) dx = (n-m)(n-2m)...(n-pm)(n—(r+1)muy+1’

Proof. Using the condition (3) recursively v- times we get

/ XK (x,0, uy) dx - / XKD (x, 0, up) dx.
0 n-mjo

1
(- my(n—2m) /0 XKD, (%, 0, u) dx

_ (@ v
B (n—m)(n—2m)...(n—rm)/0 Kipm (X, 0, s ) dx.
Using (4) it follows
= _ (1)’ (v+n)!
/o XK (6, 0, w) dx = (n-m)(n-2m)...(n-rm)(n-(r+1)myuyr1’

Lemma 4. Let v, n € N. For any natural r we have

n2r

Mn (£3%) = (n-2m)...(n—pm) (n - (r+1)m) (an)" (n2Pn (0))"

<y " n(n+m)...(n+( - 1)m) G, [anPn (O)F ¥,

=0
where Cj, = JL.'(I’) Also,

Qn

n? 1
(n- 2m)a,, (7X+ n2y, (0))
2, 4 ny)\2 (m+n)  a, 2
Mn (t 'X) (rkZm)Fn—Bm)a% ((%X) m T nZ!/J OK (nzlpn(onz)

Mn (1;x)

1, Mu(t;X) =

(4)

()

(6)
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Proof. Directly from the definition of operator (1) we can write

M (5%) = (n—m)ann (O)iKﬁf) (x, 0, anPn (o))w

e w)!
x /0 'K (t, 0, ann (0)) H‘”E”%dt.
Using (6) with u; = anpn (0) we conclude that
r = Vv —UnW¥n O v
My (E5%) = (n—-m)ann(0) vgxg ) (x, 0, anihn (0)) U‘E/’%
y D)’ (v+n)! [~anthn (0)]"
(m-m)(n-2m)...(n-rm)(n-(r+1)m) (@nPn (0)"F W)
> \% —AUn n 0 v
- ;Kﬁ, ) (X, 0, anthn (0)) le)vi)'()]
1
‘= 2m) - rm)(n—r+ Dm) @)y T D
Using the equality

r

j-1
v+n..v+1)=> C,[[v-D.,
=0

j=1

where Cj, = ]L,'(]’) and (4) we have

[

Ma(€5%) = SOKY (6,0, antpy (0)) 0n O

e w)!

r j-1

1
><(n -2m)...(n-rm)(n-(r+ 1) m) (anpn (0))" ]:21 Cj,rH(V_ D

=0

1
(n-2m)...(n-rm)(n- (r +1)m) (ann (0))"

r oo ]’*1

x> G > JTw-DEY (x, 0, antpn (0)) [=ann O
j=0

v=0 1=0 W)
1
(n-2m)...(n-rm)(n - (r+1) m) (anPn (0))

x Z Cir ik’g) (x, 0, anhn (0)) M

A |
= - (v-)!

1
(n-2m)...(n-rm)(n-(r+1) m)uj

3060 3K (6,0, anip (0y) CU T Gtn O

j=1 v=0 (V)!

an

(n-2m)...(n-rm)(n—(r+1)m) (an) (n>¥n (0))"

xZn(n +m)...(n+(j - 1) m) Cj,, [antpn O)F X
j=1
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Lemma5. Letr € Ng,n € N, n > 2r + 1)m and Tn r(x) = [Mn(x - -)"1(x), x € R*.We have the recursion
formula:

_ _ (1 +2xuym)
Tn,O(X) =1 ’ Tn,l(X) = ul(n — zm) ) (7)
[ugn —uym(r + 2)1Tp 141 (x) = x(1 + ulmx)[—T;,,r(x) +2rTp 1] = (1 + 2xuym) (r + 1) Tnr(x), r € N.
We also have )
w.  [90]" 1 i
Tn2l) =3 _ diar { U } (n-2m)...(n-@2r+m)"* ° ®

i=0

where the real numbers g; ,, are independent of x and bounded uniformly inn and ¢ (x) := \/x (1 + xmann (0)).

Proof. We can easily calculate Ty, o(x) and Ty,1 (x). Using the equality

/ - d w [— n n(o)]u 7 r (v [—an n(O)]U
() = (n_m)anlpn(o);dXK;)(x,o,ul)"‘(‘Il’))!O/(x—y) K;)(y,o,ul)#dy

+rTn,r—1(X)’
and (5) we have

@> O[T, r(X) = 1T -1 ()]

(n - m)anPn(0) i(u - xu;n)KP(x, 0, ul)M /(x -y)'KkY(y,0, ul)Mdy
v=0 0

()

()! (v)!
= v [—anl/)n(o)]u
= (n-manPn(0) UZ;K( )(x, 0, ul)T
x /(v —yus KV (y, 0, us)(x - y)’wdy = nuq Ty, 1 (X)
0
= v [-an',bn(o)]u
= (n-m)anPn(0) ; K )(x, 0, ul)T
x / <p2(y)d£yl<§1”’(y, 0, up)(x - yy 2O 4 Tore1(X).
0

Using integration by parts we deduce
@[T, (%) = 1Ty -1 ()]

= (n-m)anyn(0) i K”(x,0,u

v=0

)[—an Ebn(o)]u
! W)!

[

x/K%")(y,O, u1)w {—(1 +2uimy)(x - y)" + r<p2(y)(x—y)"1} dy
0

—nu, Tn,r+1(X)- 9

Since
r@*(y) — (1 + 2uymy)(x - y) = r@* () - (r + (1 + 2uymx)(x - y) + uym(r + 2)(x - y)%,

we get from (9)

@? O[T, (X) = Ty -1 ()]
= 10?0 Tnr-100 = (r + (A + 2uymx) T, (X) + uym(r + 2) T 1 (0) = g Ty i1 (%),
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which is formula (7). Using the recurrence above it is easy to obtain

= 2 (6m+2n) 2
T"rZ(X) =9 (X) ui(n- %(: 3m) u?(n-2m)(n-3m)”’

_ 4 252uimn+120uli m?+12uin’
T"’l‘(x) =9 (X) [u‘l‘(n—zlm)(n—3m)(ln—l;m)(niSm)}

2 72u1n+120uym 24
P (X) [ 4(n- 2m)(n13m)(n ll;m)(n Sm)} u}(n-2m)(n-3m)(n-4m)(n-5m)

and, recursively, we get the following general form

Tn,2r(X) = iCI‘ v?00]" ! up”'.
nrOT 2 [Ty - 2m) - e Dm)
O
Corollary1. Forallr € Ny and x € R* we have
-r( 2 -1\’
| T2 ()] = C[(n - 2r + Dm)uy ] (gD 00 + ((n - 2r + Ym)uy) ) ,
where C is a constant independent of n.
Proof. Forx e {0, m} we have @2 (x) < % thus by (8) we get
r r-i
n-Q2r+1)m)+m 1 -2i
T < .
‘ "’2r(x)| < ; ’ql’zr‘ [ (n-Qr+ 1)m)2u% ] (n-2m)....(n-Q2r + l)m)u1
< Cluy(n-Qr+1)m) 7.
Forx e [m, oo) we have [(n-(2r+ D)m)u, (,o(x)z]_1 < S < 1, thus by (8) we get
r .
-1
T2 < (1= Qr+1Dmu) 9?0 |gi] [(n -(2r+ 1)m)u1<p(X)2}
i=0
< C((n-Q@Qr+Dmuy) " p* ().
O
Letn,r € N, n>mand s € R* we consider the notation
Hn:(s) = r(n-mu // //
X(S _ y)r—l ZI(SIU)(y’ , )[ anlpn(o)] <(U)(X 0.u )[ anl,bn(o)] dde (10)

) n )

v=0

and we shall obtain a recurrence relation for Hp ;(s) in the following Lemma.
Lemma 6. For n,r € N, n > 2rm we have

u% [~anPn(0)]V [~anipn(0)]”

_ r -
Hnr(s) = s'Kn-m(s,0,u1) - n =t W) ()!

ZK(U+1)(S 0, ul)/ K&y, 0,u1)(s - y)'dy, ()
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_ _ _2¢%(s)
Hn,O(S) =1, Hn,l(s) =0, Hn,z(S) = m,
[uin — wym(r + 1)]Hp,r1(5) = 92 (8)[=Hp,1(5) + 2rHy -1(5)] = r(1 + 2su3m)Hn,r(s), 72 1, (12)
and . )
N, [926] 1 i
Hn,Zr(S) = Z i 2r |: U :| (n-2m)...(n-2rm) u;”, r>0, 13)

i=0

where the real numbers q; ,, are independent of x and bounded uniformly in n.

Proof. We first prove (11).

S S

e[

00 0

Hn,r(s)

x i Kf}’)(y, 0, ul)wl(g’)(x, 0, ul)wdydx

~ () )!
_ _ / -1 - (v) [—anl/Jn(O)]" 7 () [—anl/)n(o)]v
= uyr(n m)o/(s y) VZ(:)KH (y,O,ul)i(U)! O/K,, (x,O,ul)i(v)! dxdy

~uir(n-m) / /(s -yt ZKS’)()/, 0, uﬂ%lé{’)(& 0, ul)wwd}c
, s ! !

Using (2) and Lemma 2 we have

Hp (s)=s" —uir(n-m) i /Kﬁl”)(x, 0, ul)w /(S - y)"lK;")(y, 0, uﬂ%dydx. (14)
0

v=0 3

Since n > mr, using integration by parts we deduce

oo

T : d C ot
r / (s -y 'K (y, 0, ur)dy = / (s- y)'@(K§">(y, O, udy+ {3 5. (15)

0 0
Using Conclusion 1 and the fact Kn-, (0, 0, u) = 1,we get

S S
_(n-muy / KO(x, 0, uy)s dx = s / %K;‘)}m(x, 0, uy)dx. (16)
0 0
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If we replace (15) and (16) in (14), we obtain

v [~ann(0)]”
Hp (s) = s Kn-m(s,0,uy)+ui(n- m)%/K( )(x,0, u )T
0
[ 6= mlKED 0,0, u0) + 1Ky, 0, ) 42O gy
0

= $'Kn-m(s,0,uq) +uin(n-m)

= v r [—ann(0)]VH v+ [-ann(0)]”**
{ZO/(U + 1)K£H)m (v,0,u)(s-y) a(;‘bT/K( D(x, 0, u )“(11’71)'61,“1),
0 0

+Z/u K. (v, 0, up)(s - y)’[_a"(l‘lb);!(O)]v I(g”)(x,o,ul)W}dxdy}
=09 0

=

oo

= -Q
K5, 0,u) +uin Y [ Kn(y, 0, u3)(s -y 2
k=0 0

Pn(0)]" [-ann(0)]”
(v)! ()

X /(n m) [ulK(””)(x 0,u1) + @+ DKY(x, 0, ul)} dxdy.

Using Conclusion 1 we get

Yn(0)]Y [-anypn(0)]”
(v)! )

Hnr(s) = §Knom(s,0,u1) - ulnz / Ky, 0, ur)(s - y) %

K(l”l)(x 0, uq)dxdy

u% [—anllln(O)]U [—an',bn(o)]u
v+1 (L) (v)!

= ern_m(S,O, uy)-n
ZK(“*“(s 0, u1)/K(+m(y,0 u1)(s -y)'dy.

We now prove (12). We can easily calculate Hy 1(s) and Hy »(s). Then we get from (11) that

ui [~anPn(0)]” [~anpn(0)]”

/ _ 18744 —
Hpr(s) = $"Kn-m(s,0,u1)+rHp,r1(s) 1 (w)! ()!

= d
xzﬁK(”“)(s 0, ul)/1<(+m(y,0 ui)(s -y) dy.
k=0

Thus by using (5) we get

u% [-an Ebn(o)]u [-an an(O)]”

Q2 (S)[Hn p(5) = THy 1 (5)] = ¢2(5)er;-m(s’0’u1)_nv+1 W)! )!

x 3 KWi(s, 0,u1) /(v +1 = sus(n - m)KPn(y, 0, u1)(s - y)'dy.
k=0

Since
Ww+1-(n-m)suy) =w-n+myuy) - (n+mu(s-y)+ (1 +2msuy)
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using (5) we can also write

(PZ(S)[H;IJ(S) —rHyp ;-1(8)] + (n + m)uy Hp r1(s) = (1 + 2msuq)Hn,r(s)

ui [~ann(0)]” [~anhn(0)]”

_ 2 re’ _
= @°(s)s"Kn_m(s,0,uy) nv+1 ! )

oo

S K6, 0,1) [0 = (n+ mlyun IRy, 0, un)s -y dy
k=0 >

+Hur(n+ m)s™ = (1 + 2msu;)s 1 Kn-m(s, 0, uy).

First using integration by parts and then using the identity, we get

r@*(y) — (1 + 2uymy)(s - y) = rg>(s) - (r + 1)(1 + 2uyms)(s - y) + uym(r + 2)(s - y)*.

@*(5)[Hp () - rHpp1(S)] + ( + muy Hy 41 (5) — (1 + 2msuty ) Hn,(s)

ul [~anPn(0)]” [-anpn(0)1”
v+1 v)! ()!

= @*(5)s"Kn-m(s,0,us) - n

x Y KW (s, 0, u) / [r>(y) = (1 + 2msua)(s - YIKn(y, 0, u1)(s - y) " dy
k=0 0

+Hur(n+ m)s™ = (1 + 2msu1)s"1Kn-m(s, 0, uy)

= uym(r + 2)Hp 1+1(s) = (r + 1)(1 + 2uyms)Hp r(s) + r@*(s)Hy,r_1(5)

+92(8)s Kn_m(s, 0, u1) + us (n = m)s"™  Kn-m(s, 0, uy).
According to (5) we have

@%(5)s"Kn_m(s, 0, uy) + uz (n — m)s™ Kn-m(s, 0, uy)

= 5"(0 - u1(n-m)s)Kn-m(s, 0, u1) + us(n — m)s"™* Kn-m(s, 0, u;) = 0.

The representations (13) can be easily derived from the recursion formula by induction.

O

From the above mentioned lemma we get the following corollary which can be proved in the same way as we

did in Corollary 1.
Corollary 2. Foralln,r € N,n>2(r+1)m,s € R*, we have
-r( 2 -1\"
|Hp,2r(s)| < C [(n = 2r + )m)u | (go (s)+((n-@2r+ 1Dmuy) ) ,

where C denotes a constant independent of n and s.

In addition to the conditions (1)-(6), throughout the rest of paper we also assume the following condition

for Kn(x, t, u).
7

(1+uq mx)"K%V)(x, 0,uy) = KSIVQ,m(x, 0, uy)an,r,

where (an,r) is a sequence of n which convergence a positive real number.

Lemma 7. Let the functions Kn(x, t, u) satisfy the condition (1)-(7) and f(t) = (1 +uymt)”", t c R*, n,r € N.

Mp (L+umt)"5x) < CL+uymx)”’, xeR*

holds for n > mr, where C denotes a constant independent of n.
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Proof. For m = Q it is trivial. For m > O we obtain

v=0 : s

i _ v
“(-m Y K 0,u L, 1

v! "m-m+rm)’
v=0
Thus we get
Mn(f; x) MZ (1 + uymx)” rngV)rm(X 0, ul)[ u1] Un,r
(n—m+ rm) An-rm,r

IN

_ -u
CA+umx)™” ZKS’,),,,,(X, 0, ul)%
v=0
Cl+umx)™”

3 Main Results

For the consideration of the connections between the smoothness of a function and the rate of approximation
we use the Ditzian Totik modulus of smoothness(see [13]) which in our case is given by

wo(f, )p = sup [[A;f||,, fER", 1spsoco, @(x):= VX (1 + xmanin (0)),

O<hsr

where AL f(x) = Xr: (,Z)(—l)"f (x+ (5 - k) Hywhenever [x-5H,x+3H|] Cc R" and ApLf(x) = O other-
k_

-0
wise. Ditzian and Totik proved (see [[13], Chapter 1, 2, 3]) the equivalence of this modulus to the following
K-functional

8

Wy(9.[0,0) = {g € Lp (R") : 8 € ACiy (0, 0): 98" € L (") |

r o(r) ()

Ky(f, ) - inf {nf—gnp

8EWH(9,[0,09))

where

denote the corresponding weighted Sobolev spaces.
In order to present a quantitative type theorem giving the rate of convergence we consider the following
Ditzian-Totik modulus of continuity and the corresponding K-functional. (More details see [13]).

Lemma8. Let ne N,n>m,f €Ly (R"), 1< p < oo. The inequality

IMafll, < [If1], (17)
holds.
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Proof. By Riesz Thorin Theorem (see [[14], Theorem 1.1.1]), it is enough to give the proof forp = 1 and p = oo.
In the case of p = 1 and by using Lemma 2 and (2) we have

[-ann(0)]" i

v!

IMafl, = (= manpn0) S / K, 0,1) a0

v=0 ¢

/ 0l 5, 2 Ky, 0,0 . —_ Lann @]

v!
/|f()’)’ Z ou VI(n(y,O u) |u anllln(t) M — ||f”1 .
0 v=0
For p = oo, we have
IMafllos < [Iflloe (= m)anlpn(O)Z < O K, 0,u) |, a0 M

[—an Ebn(o)]

/ K, 0,0) Lycg o Y| = [l
t=0 :
0

e8]

We are ready to give our main result.

Theorem 1. Let n € N, n > 5m. Forevery f € L, (R*), 1 < p < oo, we have
1Maf =l < € {Wh(F, (= 3m)ua) ) + (= 3m)u) " 1], } -

Proof. If we use the equivalence of w3(f, (n - 3m)u;)~/?), and the modified K-functional K;(f ,((n -
3m)u;)1)p, it is sufficient to give the proof of inequality.

—2 _ _
IMnf = £ll,, < CKo(f, ((n = 3m)us)™)p + (n = 3m)u)) ™ |If]],, -
Forall g e Wf,((p, R*), by Lemma 8, we can write

[Mn(f-g+8)-(F-g+3),

IN

HMn(f—g)+(f—g)+Mng—g”p

[Mn(f =8|, +[|(F - |, + |1Mng - gl

If - gll, +[If = &ll, + [|Mng - g,

2(If - gll, + [IMng - g, - (18)

IN

IN

IN

Let us estimate the second term in above inequality. By the Taylor expansion of g,
g(t) = g(0) + g ()t - x) + Ra(g, t, ),
where

t
Ry(g,t,x) = /(t -wg (Wdu

we can write
M (g5 %) - 8(x) = My [(t - x)g" ()] + [Mn(Ra(g, t, X))](x). (19)

We shall show the validity of following inequality

IMa(Ra (g, -, )|, = Ctn = 3m))) ™ || (@ + ((n = 3mpu)) g Hp : (20)
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To do this, we benefit from Riesz Thorin Theorem, which directs us to give the proof just for p = 1 and p = oo.
In the case of p = co we have

Ra(g, t,%)| < H(tpz+((n—3m)(u1))_1)gNHw

t
x /\t—u| [(p(u)2 +((n—3m)(ul))‘1yl dul. (21)

Let x < t we can write

[t —u| . [t — x|
[ew)? + ((n-3m)(u1))1] = [p(x)? + ((n - 3m)uq))~1]’

If we replace (22) in (21), we get

(22)

|Ra2(g, t, %) < Ju1)) g H (t-2)*((n - 3m)uy). (23)
. _ _ u|t-u| x|t-x|
For x > t, since |t —u|x < |t — x]u and O TR R i (=TT R have

|t - ul . \t—x|{ X N t } (24)
[pW)? +(n-3mu1))t] ~ x |e0)?+((n-3mu))? @O+ ((n-3mu))t [’

Using (24) in (21) we get
[Ra(e, £, = (@ + ((n=3m)aa) g || _

(t_x)z X t
T {WV N CEETTY) S G (CREEA ) } ' 25)

On the other hand, the inequality [<p(u)2+((|r§:l;|m)u1))—1] < ((n—lstr;z')‘z‘ll)*l holds.

For x €0, m], we obtain ((n - 3m)uy)[@(x)? + ((n - 3m)u;))™] < C; where C; independent of n.
Thus from (23) we see, by using Corollary 1, that

!MH(RZ(ga tr X); X)‘

IN

@ + (= 3m)w ) ™Mg || Malt - )60 - 3m)ur)
|@? + (1 -3m)@) g | _ Calo00? + (= 3m)) "1 To(0)

Cn-3mu)™ (92 + (- 3m)wa ) Mg”|| (26)

IN

IN

we have

t < 1
)2 +(n-3m)uy))t = l+uimt’

1
For x € [ul(n%m),

oo) from (25) using Corollary 1 and

1
[p(x)? + ((n - 3m)uy))~1]

1 5 t
3 s ) 9
H(fp +((n-3muy) Hg" H {C((n 3m)u;) "
(

v [M” {(t_x)zuu th X)}

Using Cauchy Schwarz inequality and Lemma 7 we can write

IN

MalRo(e, 6059 = @2 + (= 3muy g |_{ Tr.200

IN

[MaRa(g, £,0520| = |97+ (= 3mua) Mg || {ctn-3mpu)™

ot [[Mnte=0 ] [ [Mata + amo ] 0] 7}
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|MH(R2(g’ t, X);X)|

_ " _ 1 —
< @+ @-3mu™e||_{c-3mun)™ + 2 [Taat]" €0+ urmy) 1}. @7)
For x € [m, oo) , wehave (1 +uymx) ! < Zm,using (27) and Corollary 1 we obtain

|MH(R2(g’ ts X)); X

< H(<p2 +((n-3m)uy)) Hg” _ {C((n -3mu;)~"

2C; 2
+ [p(x)? + ((n - 3m)uy))1] [Tn,4(0)] }

< Cln-3mun) |07 + (- 3mu) g | (28)

where C, C, are constants and may be different at each occurrence. Hence, (26) and (28) implies (20) in the
case of p = oo,
For p = 1 we derive (20) by applying Fubini’s theorem, using Corollary 2

IN

| Mn(Ra(g, t, )5 0)||, (n — m) ann(0) / kZO:Kf;’)(x, 0, ugw

oo

x/Kﬁ,V)(y,O, ul)[_anl{:!n(o)]v

0

(n — m)antn(0) / il(,(f)(x, 0, ul)w
k=0 !

dydx

t
/(t ~u)g (W)du

IN

X X

X/ngv)(y,O,uOM/(u—t)‘g”(u)’dudydx
t

0

+(n- m)an¢n(0)/§:1($,v)(x, 0, ul)mﬁw
k=0 ’

y / k%, 0, ul)w dudydx

X

(n - m)anipn(0) /x @) { ]o / - / ]o } -0
0 u o 0 u

x Z KV(x, 0, ul)wmp(% 0, ul)wdydxdu

t
/ (- wg' W

X

||Mn(R2(g’ t’ X); X)Hl

12

g (u)’ |Hp,2(u)| du

C

IN

8" )| ((n - 3m)uy) " [@? + ((n - 3m)uy)) ' |du

k=0
L
2
0
0

- Cn-3mu)™ (97 + (- 3mu) g ||

For 1 < p < oo we get (20) by means of the Riesz Thorin theorem. And thus we get (18).
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On the other hand, forall g € Wf,((p, R*) we get

(1,00)
p

N

IMug =gll, = Cn=3mua) ™ {[lg/][}" + @+ 2umg [ + |92 + (n - 3m)ur) g

)
)

where the last term of above inequality is obtained from (a) and (c) in the proof of Theorem 9.5.3 in [13].
Together with (18) this leads to

IN

S+ @? - 3muy g

e =3mu) " {gl, + 07"

IMaf = £ll, = 21f - gll, + Cn = 3mpu)™
{1 =gy + 11, + 02"
< c{If-gl, + (@ -3mu) £,

,7F ((n-3m)uy) > ||g”Hp} .

@+ - 3muy e

)

+((n-3muy)™" H(ng”

Taking the infimum over all g € Wf,((p, R*) we can write
72 -1 -1
IMaf = £ll, = € {Rp(f, ((n = 3mu)y! + ((n = 3mpu) ™ ], }
which completes the proof. O
Theorem 2. Let n € N, n>5m, f € Ly (R*), 1 < p < o we have

Tim || Maf - f]], = 0.

Proof. According to equivalence K; (f, (n-3m)uy)™)p and wa (£, (n-3m)u;)~*/2)p, the proof is immediately
obtained. O

4 Weighted approximation

This section is devoted to obtain weighted approximation properties of the operators M, (f; x) in weighted
Lp,2-(R"). Let us recall the mentioned space and the corresponding norm. We denote the L, »,(R*), (1 < p <

oo) by 1
LpyR)=(f:R" > R; Ifllp,2r 2= ( |f(t)‘ dt) < oo

1+t
0

No doubtly, we must show that the operators Mx(f; x) are acting from L, »,(R*) to L, 5,(R").
Lemma9. Letf € Ly (R"), 7 €N, 1< p < cowe have

HM"pr,Zr < Hf”p,Zr . (29)
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Proof. In view of the definition of the operators and using (2) we have

|M (f X)| ~ 7 [—(an,bn(O)]V
1n+ 2T < (n-manpn(0)) Kn(X 0, u) SR dx
0 v=0 0 ——
t=0
T f@)| o [~antpn(0)]"
x I<Yl(yy O’ u) 7dy
0/ 1+y2r ouw u=a;.:1[/)1n(t) ]
Sy anpn(O))
+(n ~m)anpn(0) ) / Suv Kn(x, 0, u) e dx
0o U= a0
t=0
i o
/ }:_);,2|r auvKn(y, 0 u) [ anl{)/:l( )]
0 u= a;r:'é’n(t)
From Lemma 2, we can write
[ M (i) 7’ FO) & o i O)F
e dx < [ R0 S Ky, 0,u) Fandn(OF 4,
2 2 i
" 1+ x?r / 1+y2r s ouv u:a;,:éon(t) Vi
T ( ind oV _ o)
+/ 1’f+y)2‘ry2r auVKn(y,O, u) Mdy
0 y v=0 U=ﬂ?:!(l)/n(t) :

and using the fact (2) with the condition (4) we get

[ 1M (f; Oy o [ IO,
C1+x2 1+y2r
0 0

Fanpn 1 [ fO)]
V! 1+ y2’
0

oo

2r av
+ supy Kn(y, 0, u)
; y=0 auv

u=a,Pn(t)
t=0
< flly,., 1+ 0,

which means that (29) is true for p = 1, where C is a constant independent of n.
Let us now give the proof for p = so. We can easily get

[-anpn(0)]"

v!

IMn (f;x)] = (n—m)ann(0) Z S0 —Kn(x,0,u)

u=an P (t)
t=0

anpn(O)

v!

[ ) "
L ey Loty 0
0

u=anPn(t)
t=0

IN

v!

flloo,2r § (M= mM)@npn(0) » < Kn(x, 0, u)
' ; auv u:a[n:lfn(t)

v _ v
[ 9 2 Kaly, 0,u) [Fann(0))" “"lp;’(o)] dy
ou wmapn(® V!
0 t=0
= 0" [—aann(O)]V
+(n — m)ann(0) Kn(x,0,u) —r
; ouv u=a;.:z(/);n(t) v!

S}

/Y o Kn(y,0,u) 7[ an¥n(O))
0

v!

auv u= anl/)n(t)
t=0

[—an’,bn(o)]v

— 171
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Using (1) we can write
(M (F5 )1 = e o { M (1)) + My (£7) 5}

Also using Lemma 4

M3 2] "(f )| ClIflloo 21 »

where C is a constant independent of n. Finally by the Riesz-Thorin theorem we get (29). O

IMnfllos,2r = =Sup

The weighted Korovkin type theorem in weighted L, spaces was presented in [5]. Considering that the theo-
rem we investigate the uniform convergence of the operators in weighted L, spaces.

Theorem 3. (see [5]) For a fixed p € [1, o), let w be positive continuous function on the whole real axis
satisfying the condition

/ t*Pw(t)dt < oo.

R
Let (Ln)nen be a uniformly bounded sequence of positive linear operators from Ly, w(R) into Ly, w(R), satisfying
the conditions

La(t';x) - X =0, i=0,1,2.

lim ‘
n—oo p,w

Then for every f € Lp,w(R), we have
lim HLVlf_pr,w =0
n—oo

If we choose w(x) = (1 + x>, we can give following theorem.

Theorem 4. Letf € Ly 5/ (R*),1<p<ocoandr e N, r-p > 1/2. Then we have
i ([Maf - £, = 0.

Proof. According to Theorem 3 it is sufficient to verify the following three conditions
lim ||Mn(t";x)-x"|| =0, v=0,1,2. (30)
n—oo p,w

Since My, (1; x) = 1, the first condition of (30) is fulfilled for v = 0. By Lemma 4 we have for n > 2m that

1

oo p

|Mn (t X) X‘pd ’ - 1 nz ﬁx.}_ ; _Xp
1+ x27 / 1+x2" |(n-2m)ap \ 1~ n2¢n(0)

dx

ST

p

n N 1
((n—Zm) )X (n - 2m)ann(0)

oo =)

n _1 / xP dx ’ N 1 / dx
(n-2m) 1+ x2r (n-2m)anpn(0) 1+ x2r
0 0

and the second condition of (30) holds for v = 1 as n — oo. Similarly we can write for n > 3m that

1

S}

[ M (5) -2\ n(m + n) X2
/ 1+ x2r dx B ((n—Zm)(n—Bm)_1> /1+x2’dx
0

0

RS

oo

4n xP
* ((n—Zm)(n—Bm)anl,bn(O)) / 1+x2’dx
0

o p

2 1
= 2m) (= 3m) (@ pn(0))? / T
(0]
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and the third condition of (30) holds for v =2 as n — oo. O

5 Examples

The operators My (f) reduce to following well-known operators in special case as shown in the following
table:

Mn (f; %) Kn(x, t,u) an PYn(0)
Baskakov-Durrmeyer [1+¢+ux]™ n 1/n
Szasz-Durrmeyer e n(trux) n 1/n
Generalized Baskakov-Durrmeyer Kn (t + ux) n 1/n

Other classical sequences of linear positive operators can be obtained by making an adequate selection of

K.

a) If Ky (z) is an entire analytic function and Kn (x, t, u) = Kn (t + ux), an = n, Yn(0) = 1/n, m = 1, the
operators (1) reduce to generalized Baskakov-Durrmeyer operators given in [2]

6alfix) = (1= Y Wi ) [ Wak (OF (O d,
0

k=0

where wy, (x) = (-1)¥% ¢ (x).
¢n(x) = (1 - x)" for the interval [0, 1] with ¢ = 1
¢Pn(x) = e™™ for the interval [0, oo) with ¢ = 0
Pn(x) =1+ cx) "¢ for the interval [0, o) with ¢ > 0.
b) If we choose Kn (x,t,u) = [L+t+ux]™, an = n, Pn(0) = 1/n, m = 1, the operators (1) reduce to
Baskakov-Durrmeyer operators given in [16]

Ba(fix) = (1= 1Yo () [ Vs OF @0t
0

k=0

k (1 + X)n+k :
c) If we choose Kn (x, t,u) = e ") q, = n, ,(0) = 1/n, m = O the operators (1) reduce to Szasz-
Durrmeyer operators given in [15]

_ k
where v, (x) = [ k-1 } X

S}

S1/5) = 1Y i) [ Pas (OOt

k=0 0

where p,, ; (X) = e‘”x("ki,)k.

Under the assumptations of Theorem 1 we can give following results for Szasz-Durrmeyer and Baskakov-
Durrmeyer operators.
Theorem 5. Iff € Ly (R*) ,1<p < oo, wehave
ISnf = Flly < € {wp(f, (72 + 0 11,
Iff e Ly (R*),1<p<eo,n>3wehave

1Buf =l < € {wp(f, (=302 + (=30 " If1, }
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