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Production-Distribution Problem (PDP) in Supply Chain Management (SCM) is an important tactical decision. One of the
challenges in this decision is the size and complexity of supply chain system (SCS). On the other side, a tactical operation is a mid-
term plan for 6–12 months; therefore, it includes different types of uncertainties, which is the second challenge. In the literature, the
uncertain parameters were modeled as stochastic or fuzzy. However, there are a few studies in the literature that handle stochastic
and fuzzy uncertainties simultaneously in PDP. In this paper, themodeling and solution approaches of PDPwhich contain stochastic
and fuzzy uncertainties simultaneously are investigated for a SCS that includes multiple suppliers, multiple products, multiple
plants, multiple warehouses, multiple retailers, multiple transport paths, andmultiple time periods, which, to the best of the author’s
knowledge, is not handled in the literature.The PDP contains deterministic, fuzzy, fuzzy random, and random fuzzy parameters. To
the best of the author’s knowledge, there is no study in the literature which considers all of them simultaneously in PDP. An analytic
solution approach has been developed by using possibilistic programming and chance-constrained programming approaches. The
proposed modeling and solution approaches are implemented in a numerical example. The solution has shown that the proposed
approaches successfully handled uncertainties and produce robust solutions for PDP.

1. Introduction

The global competition enforces the firms to manage their
facilities more effectively and to make right decisions in the
market. Supply Chain Management (SCM), which is defined
as the integration of key business processes from end user
through original suppliers which provides products, services,
and information that add value for customers and other
stakeholders by the Global Supply Chain Forum (GSCF) [1],
is a usefulmanagement approach to survive in the globalmar-
ket. SCM includes several processes such as supplier relation
management, product development and commercialization,
procurement, order fulfillment, manufacturing flow man-
agement, demand management, customer relationship man-
agement, returns management, and information manage-
ment [1]. Production-Distribution Problem (PDP) in SCM
is an important planning operation that affects several pro-
cesses such as procurement, order fulfillment, and manufac-
turing flow management.

PDP starts to plan by determining rawmaterials provided
by suppliers and makes decisions about the production plan-
ning and the distribution of final products to customers. The
researchers and practitioners have been interested in PDP
over the past years. Fahimnia et al. [2] indicated that there
might be two main reasons increasing the number of studies
on PDP: (1) affecting the profitability and (2) responding
to the market changes quickly. The studies on the PDP can
be classified into the different clusters according to the dif-
ferent criteria such as complexity of the supply chain system
(SCS), decision levels, solution approaches, and structure of
parameters.

PDP can be handled at different decision levels such as
operational, tactical, and strategical levels.The strategic deci-
sions are long-term plans that have vital effects on surviving
in the market. The papers in this cluster focus on supply
chain network design. They also consider opening plants,
warehouses, and so forth [3–5]. In tactical perspective, PDP
can be used to determine the production and transportation
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quantities for aggregate production planning anddistribution
planning. Besides, it is useful for capacity and resources
planning decisions [6–9]. The PDP in operational level seeks
to optimize the SCS by adding operational decisions to the
aggregate models such as scheduling problem and routing
problem [10–13].

There are several differences between operational, tacti-
cal, and strategical decisions such as time period, detail of
information, responsibility, and the cost of a wrong decision.
One of them is uncertainty which depends on the length
of time period. The precision and exactness of information
about problem parameters decrease when the time period
of decision increases. Therefore, uncertainty is a challenge
in PDP. PDP can be classified into four groups according to
the structure of parameters. The first group is deterministic
parameters: these models do not include any uncertainty in
their parameters. All of the parameters are exact and are
known at the beginning of solution process [12, 14]. The
second group is stochastic parameters: the parameters include
stochastic uncertainty. The probability theory models these
parameters [3, 15–17]. The third group is fuzzy parameters:
the fuzzy set theory is an effective modeling approach when
the information on parameters is imprecise or inexact. It
enables reflecting the decision maker’s judgements into the
problem [18–21]. The fourth group is fuzzy and stochastic
parameters: in some situations, both fuzzy and stochastic
uncertainties can occur in parameters simultaneously such as
fuzzy random or random fuzzy parameters [22–24].

On the other hand, the size and complexity of supply
chain system (SCS) are big challenges in PDP like uncertainty.
Fahimnia et al. [2] classified the studies into seven clusters
according to the SCS complexity. These clusters are given
as follows: Cluster 1: single-product models [25–28]; Cluster
2: multi-product, single-plant models [29–31]; Cluster 3:
multiple-products, multiple-plants, single- or no-warehouse
models [32–34]; Cluster 4: multiple-products, multiple-
plants, multiple-warehouses, single-/no-end-user models
[35–37]; Cluster 5: multiple-products, multiple-plants, multi-
ple-warehouses, multiple end users, single-transport-path
models [20, 38, 39]; Cluster 6: multiple-products, multiple-
plants, multiple-warehouses, multiple-end-users, multiple-
transport-paths, no time period models [40, 41]; Cluster
7: multiple-products, multiple-plants, multiple-warehouses,
multiple-end-users, multiple-transport-paths, multible-peri-
od-models [2]. To the best of the author’s knowledge, a
new cluster (Cluster 8) can be added to these classifica-
tions: Cluster 8: multiple-products, multiple-plants, multi-
ple-warehouses, multiple-end-users, single-transport-path,
multiple-periods models [42, 43].

The PDP requires using various techniques for solving
this problem because of the properties of the PDP which
are discussed above. Fahimnia et al. [2] classified these
techniques into four clusters: analytic techniques, heuristic
techniques, simulation, and genetic algorithms. For analytic
techniques, the studies in this cluster use mathematical
programming to solve PDP, that is, linear programming,
nonlinear programming, mixed integer programming, and
Lagrangian relaxation [44–46]. For heuristic techniques, since
analytic techniques have a limitation on solving large-scale

PDP, the researchers developed heuristic techniques that
obtain feasible solution close to an optimal solution [16, 35,
47]. For simulation modeling, simulation is a very useful tool
to analyze the system’s behavior and performance criteria
when the considered system is very complex to solve analyt-
ically [30, 48]. For genetic algorithms (GA), they are effective
algorithms that use direct and stochastic search methods to
solve large-scale problems [49, 50].

In this paper, the PDP has been handled from a tactical
perspective for a SCS. The SCS includes multiple suppliers,
multiple products, multiple plants, multiple warehouses,
multiple retailers, multiple transport paths, andmultiple time
periods, which, to the best of the author’s knowledge, is not
handled in the literature. A, 0-1 mixed-integer programming
model has been developed for the PDP which includes deter-
ministic, fuzzy, fuzzy random, and random fuzzy parameters.
To the best of the author’s knowledge, there is no study
in the literature which considers deterministic, fuzzy, fuzzy
random, and random fuzzy parameters simultaneously in
PDP. An analytic solution approach has been developed
for 0-1 mixed-integer programming model by using possi-
bilistic programming and chance-constrained programming
approaches.

The paper is organized as follows: the modeling uncer-
tainty is given in Section 2. Section 3 representsmathematical
model and uncertain parameters for PDP. The proposed
solution approach is given in Section 4. The implementation
of the proposed solution approach for a real-life industry case
is presented in Section 5.The paper is finalized with conclud-
ing remarks in Section 6.

2. Modeling Uncertainty

Let us give the definitions of some uncertainty types such as
random, fuzzy, random fuzzy, and fuzzy random variables.

Definition 1. If 𝜉 is an experiment having sample space ℘
and 𝑋 is a function that assigns a real number 𝑋(𝑒) to every
outcome 𝑒 ∈ ℘, then𝑋(𝑒) is called a random variable [51].

Definition 2. Let Ω be a set of all outcomes of a random
experiment. A (nonempty) collection 𝐴 of subsets (called
events) of Ω is assumed to have the following properties: (a)Ω ∈ 𝐴; (b) if A ∈ 𝐴, then A𝑐 ∈ 𝐴; and (c) if A𝑛 ∈ 𝐴
is a countable sequence of events, then ⋃𝑛 𝐴𝑛 ∈ 𝐴. Such a
collection 𝐴 is called a 𝜎-algebra. For each random event 𝐴,
there is a nonnegative number Pr{𝐴}, called its probability,
such that (i) Pr{⌀} = 0 and Pr{Ω} = 1 and (ii) Pr{⋃𝑛 𝐴𝑛} =∑𝑛 Pr{𝐴𝑛} for every countable sequence of mutually disjoint
events 𝐴𝑛. The triplet (Ω, 𝐴,Pr) is called a probability space
and the function Pr is referred to as a probability measure.
A random variable on the probability space (Ω, 𝐴,Pr) is a
function 𝜉 from Ω to the real line R for any Borel set 𝑂 of
R [52].

Normal distribution is very important in both theory
and application of statistics. The notation 𝑋 ∼ 𝑁(𝜇, 𝜎2) is
often used to indicate that the random variable𝑋 is normally
distributed with mean 𝜇 and variance 𝜎2.
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After random variable definition, now we can get fuzzy
variable definition and properties. Fuzzy set theory was
proposed by L. Zadeh and applications of his theory can be
found, for example, in artificial intelligent, computer science,
control engineering, operation research, and decision theory
[53].

Definition 3. Let𝑈 denote a universal set.Then a fuzzy subset𝐴 of𝑈 is defined by its membership function 𝜇𝐴 : 𝑈 → [0, 1]
which assigns to each element 𝑥 ∈ 𝑈 a real number 𝜇𝐴(𝑥)
in the interval [0, 1], where the value of 𝜇𝐴(𝑥) at 𝑥 represents
the grade ofmembership of 𝑥 in𝐴.A fuzzy variable is defined
as a function from the possibility space (Θ, 𝑃(Θ),Pos) to the
real lineR [52].

Triangular fuzzy variable is the most known and used
fuzzy variable which is denoted by the triplet (𝑎𝑙, 𝑎, 𝑎𝑢) and
has the shape of a triangle.

The concept of the random fuzzy variable was initialized
by Liu and defined as a fuzzy variable taking “randomvalues.”

Definition 4. A random fuzzy variable is defined as a function
from the possibility space (Θ, 𝑃(Θ),Pos) to the set of random
variables [54].

Assume that 𝜂1, 𝜂2, . . . , 𝜂𝑚 are random variables and that𝑢1, 𝑢2, . . . , 𝑢𝑚 are real numbers in [0, 1] such that 𝑢1 ∨ 𝑢2 ∨⋅ ⋅ ⋅ ∨ 𝑢𝑚 = 1. Then

𝜁 = {{{{{{{{{
𝜂1, with possibility 𝑢1,𝜂2, with possibility 𝑢2,𝜂𝑚, with possibility 𝑢𝑚

(1)

is a clearly discrete random fuzzy variable [54].

Definition 5. Assume that 𝜁 is a random fuzzy variable. Then
the probability Pr{𝜁(𝜃) ∈ 𝐵} is a fuzzy variable for any Borel
set 𝐵 ofR [54].

Definition 6. A random fuzzy variable 𝜁 is said to be normal
if, for each 𝜃, 𝜁(𝜃) is a normally distributed random variable;
that is, 𝜁(𝜃) ∼ 𝑁(𝑋(𝜃), 𝑌(𝜃)), with 𝑋 and 𝑌 being fuzzy
variables defined on the spaceΘ such that 𝑌 > 0. A normally
distributed random fuzzy variable is usually denoted as 𝜁(𝜃) ∼𝑁(𝑋, 𝑌), and the fuzziness of random fuzzy variable 𝜁 is said
to be characterized by fuzzy vector (𝑋, 𝑌) [55].

Roughly speaking, a fuzzy random variable is a measur-
able function from a probability space to the set of fuzzy
variables. In otherwords, a fuzzy randomvariable is a random
variable taking fuzzy values.

Definition 7. A fuzzy random variable is a function 𝜉 from a
probability space (Ω, 𝐴,Pr) to the set of fuzzy variables such
that Pos(𝜉(𝑤) ∈ 𝐵) is ameasurable function of𝑤 for any Borel
set 𝐵 ofR.

A random fuzzy variable is defined as a function that
assigns a random value to each fuzzy subset. On the other
hand, a fuzzy random variable is defined as a function that
assigns a fuzzy subset to each possible output of a random
experiment.

3. Mathematical Model and Uncertain
Parameters for PDP

3.1. Mathematical Model. The SCS includes multiple suppli-
ers, multiple products, multiple plants, multiple warehouses,
multiple retailers, multiple transport paths, andmultiple time
periods. In the PDP, multiple rawmaterials are supplied from
multiple suppliers and transported to the multiple plants by
using multiple transport paths. In plants, multiple products
aremanufactured by using regular time and overtime and the
final products are transported to the multiple warehouses by
using multiple transport paths. Multiple warehouses deliver
multiple products to the multiple retailers by using multiple
transport paths. The customers pick up their products from
multiple retailers.

Several assumptions have been made to construct a 0-
1 mixed-integer programming model which are given as
follows:

(i) The quantities of raw materials in suppliers are re-
stricted.

(ii) The number and capacity of transport paths between
all the components in SCS are restricted.

(iii) The starting and ending inventories of product and
raw materials in plants, warehouses, and retailers are
zero.

(iv) The plants have ability to produce several products.
(v) The plants have ability to store raw materials and

products.
(vi) The storage capacities of plants are restricted.
(vii) The plants have regular-time and overtime produc-

tion.
(viii) The warehouses have ability to store products.
(ix) The storage capacities of warehouses are restricted.
(x) The retailers have ability to store products.
(xi) The storage capacities of retailers are restricted.
(xii) The unsatisfied demands are lost.

In this paper, the PDP in SCM has been considered in
tactical level. Since it is a mid-term plan, it includes a lot
of uncertainties. The uncertainties make the problem more
complex compared to the deterministic ones because there
are challenges in modeling parameters and obtaining robust
solutions. In the literature, the researchers have tried to
overcome these challenges by using fuzzy set theory or
probability theory.

The fuzzy set theory provides a highly effective means
of handling imprecise data. It enables incorporating the
decision-maker’s expertise and judgements into the problem.
However, it is not a powerful theory like probability theory
for modeling and solution. On the other side, the probability
theory is an effective tool for modeling uncertainties in the
stochastic process. It acts with the past data analysis for the
forecasting of future events and does not include decision-
makers into the decision-making process.
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However, the decision-makers have an impact on the
future events by the way of their decisions. In PDP, the unit
cost of raw materials may change based on the purchased
quantity. The unit production cost directly depends on lot
size. Producing in overtime or producing and holding in
regular time at previous periods are based on planning
manager’s decision. The unit transportation cost is related
to path type and transported quantity. The unit price of
a product may be changed by making discount, giving an
advertisement. The capacity of raw materials supplied from
the market is based on the contracts made by the decision-
makers. The decision-maker can change the workforce level
by hiring and firing; therefore, the production capacity can
be changed. The parameters in the model related to the
above discussion can be modeled by using triangular fuzzy
numbers. The triangular fuzzy numbers are well known
and are commonly used in many applications because the
decision-maker has opinions about pessimistic, optimistic,
and most possible values by using his/her expertise and
expectation.

The transportation capacities of all echelons in the SCS
are related to the number of the transporters in the portfolio
of the decision-makers, transportation quantities, and vehicle

routing decisions that make the transportation capacity
uncertain. Therefore, transportation capacities can be mod-
eled as triangular fuzzy numbers by using the decision-
maker’s expertise and judgements. However, the available
transportation capacity can occur in different situations
based on the suitability of the transporter in the market
which are defined as discrete events.These discrete events are
determined as high,medium, and low capacities. It is possible
to increase the number of situations; however, it will cause
confusion in the categorization process. By analyzing the past
data, probability levels can be determined for occurrences of
each of the situations.Therefore, the transportation capacities
can be modeled as fuzzy random parameters.

The demand of product can be modeled as a probability
distribution by analyzing the past data. Since the PDP is a
mid-term plan, a sum of identically distributed independent
demand variables has a normal distribution according to
the central limit theorem. However, the decision-maker can
affect the demand quantity by making discount, advertise-
ment, or other strategies.Thesemarketing strategies are based
onmanagement decisions.Therefore, the demand quantity is
modeled as a random fuzzy variable.

The mathematical model is given in Notations.

max 𝑍
= [[

𝑇∑
𝑡=1

𝐽∑
𝑗=1

(P̃OP𝑗𝑡 ∗ 𝐶∑
𝑐=1

𝑅∑
𝑟=1

SPQ𝑗𝑟𝑡𝑐)]]
− [ 𝑇∑

𝑡=1

𝑆∑
𝑠=1

𝐼∑
𝑖=1

(R̃UP𝑖𝑠𝑡 ∗ 𝑃∑
𝑝=1

𝐾∑
𝑘=1

TRQ𝑖𝑠𝑝𝑘𝑡)]
− [ 𝑇∑

𝑡=1

𝐾∑
𝑘=1

𝑃∑
𝑝=1

𝑆∑
𝑠=1

(FTCS𝑠𝑝𝑘𝑡 ∗ UKS𝑠𝑝𝑘𝑡)]
− [ 𝑇∑

𝑡=1

𝐾∑
𝑘=1

𝑃∑
𝑝=1

𝑆∑
𝑠=1

𝐼∑
𝑖=1

(ṼTCS𝑖𝑠𝑝𝑘𝑡 ∗ TRQ𝑖𝑠𝑝𝑘𝑡)]
− [ 𝑇∑

𝑡=1

𝑃∑
𝑝=1

𝐼∑
𝑖=1

(S̃RC𝑖𝑝𝑡 ∗ SRP𝑖𝑝𝑡)]
− [[

𝑇∑
𝑡=1

𝑃∑
𝑝=1

𝐽∑
𝑗=1

(R̃PC𝑗𝑝𝑡 ∗ RPQ𝑗𝑝𝑡)]]
− [[

𝑇∑
𝑡=1

𝑃∑
𝑝=1

𝐽∑
𝑗=1

(ÕPC𝑗𝑝𝑡 ∗OPQ𝑗𝑝𝑡)]]
− [[

𝑇∑
𝑡=1

𝑃∑
𝑝=1

𝐽∑
𝑗=1

(P̃HC𝑗𝑝𝑡 ∗ SLP𝑗𝑝𝑡)]]
− [ 𝑇∑

𝑡=1

𝐾∑
𝑘=1

𝑊∑
𝑤=1

𝑃∑
𝑝=1

(FTCP𝑝𝑤𝑘𝑡 ∗ UKP𝑝𝑤𝑘𝑡)]
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− [[
𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝑊∑
𝑤=1

𝑃∑
𝑝=1

𝐽∑
𝑗=1

(ṼTCP𝑗𝑝𝑤𝑘𝑡 ∗ TPQP𝑗𝑝𝑤𝑘𝑡)]]
− [[

𝑇∑
𝑡=1

𝑊∑
𝑤=1

𝐽∑
𝑗=1

(W̃HC𝑗𝑤𝑡 ∗ SLW𝑗𝑤𝑡)]]
− [ 𝑇∑

𝑡=1

𝐾∑
𝑘=1

𝑅∑
𝑟=1

𝑊∑
𝑤=1

(FTCW𝑤𝑟𝑘𝑡 ∗ UKW𝑤𝑟𝑘𝑡)]
− [[

𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝑅∑
𝑟=1

𝑊∑
𝑤=1

𝐽∑
𝑗=1

(ṼTCW𝑗𝑤𝑟𝑘𝑡 ∗ TPQW𝑗𝑤𝑟𝑘𝑡)]]
− [[

𝑇∑
𝑡=1

𝑅∑
𝑟=1

𝐽∑
𝑗=1

(H̃CR𝑗𝑟𝑡 ∗ SLR𝑗𝑟𝑡)]]
− [[

𝑇∑
𝑡=1

𝑅∑
𝑟=1

𝐽∑
𝑗=1

(B̃CR𝑗𝑟𝑡 ∗ ( 𝐶∑
𝑐=1

BLR𝑗𝑟𝑡𝑐))]]
(2)

s.t. 𝐾∑
𝑘=1

𝑃∑
𝑝=1

TRQ𝑖𝑠𝑝𝑘𝑡 ≤ R̃C𝑖𝑠𝑡

∀𝑖, ∀𝑠, ∀𝑡, (3)

𝐼∑
𝑖=1

(RRC𝑖 ∗ TRQ𝑖𝑠𝑝𝑘𝑡) ≤ TCSP𝑠𝑝𝑘𝑡 + (1 − UKS𝑠𝑝𝑘𝑡) ∗𝑀
∀𝑠, ∀𝑝, ∀𝑘, ∀𝑡, (4)

𝐼∑
𝑖=1

(RRC𝑖 ∗ TRQ𝑖𝑠𝑝𝑘𝑡) ≤ UKS𝑠𝑝𝑘𝑡 ∗𝑀
∀𝑠, ∀𝑝, ∀𝑘, ∀𝑡, (5)

( 𝐾∑
𝑘=1

𝑆∑
𝑠=1

TRQ𝑖𝑠𝑝𝑘𝑡 + SRP𝑖𝑝(𝑡−1))
− 𝐽∑
𝑗=1

(RRM𝑖𝑗 ∗ (RPQ𝑗𝑝𝑡 +OPQ𝑗𝑝𝑡)) = SRP𝑖𝑝𝑡

∀𝑖, ∀𝑝, ∀𝑡,
(6)

𝐽∑
𝑗=1

(UPT𝑗𝑝𝑡 ∗ RPQ𝑗𝑝𝑡) ≤ ÃRC𝑝𝑡

∀𝑝, ∀𝑡,
(7)

𝐽∑
𝑗=1

(UPT𝑗𝑝𝑡 ∗OPQ𝑗𝑝𝑡) ≤ ÃOC𝑝𝑡

∀𝑝, ∀𝑡, (8)
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𝐽∑
𝑗=1

(RHC𝑗 ∗ SLP𝑗𝑝𝑡) ≤ PIC𝑝

∀𝑝, ∀𝑡, (9)

RPQ𝑗𝑝𝑡 +OPQ𝑗𝑝𝑡 + SLP𝑗𝑝(𝑡−1) − 𝐾∑
𝑘=1

𝑊∑
𝑤=1

TPQP𝑗𝑝𝑤𝑘𝑡

= SLP𝑗𝑝𝑡∀𝑗, ∀𝑝, ∀𝑡,
(10)

𝐽∑
𝑗=1

(RTC𝑗 ∗ TPQP𝑗𝑝𝑤𝑘𝑡)
≤ TCPW𝑝𝑤𝑘𝑡 + (1 − UKP𝑝𝑤𝑘𝑡) ∗𝑀
∀𝑝, ∀𝑤, ∀𝑘, ∀𝑡,

(11)

𝐽∑
𝑗=1

(RTC𝑗 ∗ TPQP𝑗𝑝𝑤𝑘𝑡) ≤ UKP𝑝𝑤𝑘𝑡 ∗𝑀
∀𝑝, ∀𝑤, ∀𝑘, ∀𝑡,

(12)

𝐾∑
𝑘=1

𝑃∑
𝑝=1

TPQP𝑗𝑝𝑤𝑘𝑡 + SLW𝑗𝑤(𝑡−1) − 𝐾∑
𝑘=1

𝑅∑
𝑟=1

TPQW𝑗𝑤𝑟𝑘𝑡

= SLW𝑗𝑤𝑡∀𝑗, ∀𝑤, ∀𝑡,
(13)

𝐽∑
𝑗=1

(RHC𝑗 ∗ SLW𝑗𝑤𝑡) ≤WIC𝑤

∀𝑤, ∀𝑡,
(14)

𝐽∑
𝑗=1

(RTC𝑗 ∗ TPQW𝑗𝑤𝑟𝑘𝑡)
≤ TCWR𝑤𝑟𝑘𝑡 + (1 − UKW𝑤𝑟𝑘𝑡) ∗ 𝑀
∀𝑤, ∀𝑟, ∀𝑘, ∀𝑡,

(15)

𝐽∑
𝑗=1

(RTC𝑗 ∗ TPQW𝑗𝑤𝑟𝑘𝑡) ≤ UKW𝑤𝑟𝑘𝑡 ∗𝑀
∀𝑤, ∀𝑟, ∀𝑘, ∀𝑡,

(16)

𝐾∑
𝑘=1

𝑊∑
𝑤=1

TPQW𝑗𝑤𝑟𝑘𝑡 + SLR𝑗𝑟(𝑡−1) − 𝐶∑
𝑐=1

SPQ𝑗𝑟𝑡𝑐

= SLR𝑗𝑟𝑡 − 𝐶∑
𝑐=1

BLR𝑗𝑟𝑡𝑐

∀𝑗, ∀𝑟, ∀𝑡,
(17)
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𝐽∑
𝑗=1

(RHC𝑗 ∗ SLR𝑗𝑟𝑡) ≤ RIC𝑟

∀𝑟, ∀𝑡, (18)

SPQ𝑗𝑟𝑡𝑐 ≤ CDP𝑗𝑟𝑡𝑐∀𝑗, ∀𝑟, ∀𝑡, ∀𝑐, (19)

TRQ𝑖𝑠𝑝𝑘𝑡, SRP𝑖𝑝𝑡,RPQ𝑗𝑝𝑡,OPQ𝑗𝑝𝑡, SLP𝑗𝑝𝑡,TPQP𝑗𝑝𝑤𝑘𝑡≥ 0,
SLR𝑗𝑟𝑡,BLR𝑗𝑟𝑡𝑐, SPQ𝑗𝑟𝑡𝑐, SLW𝑗𝑤𝑡,TPQW𝑗𝑤𝑟𝑘𝑡 ≥ 0,
UKS𝑠𝑝𝑘𝑡,UKP𝑝𝑤𝑘𝑡,UKW𝑤𝑟𝑘𝑡 = 0, 1.

(20)

The objective function, given in (2), maximizes the total
profit. Total profit is obtained by total revenue, which is
gained from total sales, plus total cost. Total cost includes
raw material purchasing cost, fixed costs of using path 𝑘 for
transportations between all components of SCS, unit trans-
portation costs between all components of SCS, unit pro-
duction costs in regular time and overtime, holding costs in
plants, warehouses, and retailers, and backorder cost. Equa-
tion (3) is a capacity constraint for the supplier that ensures
that the total transported quantity from supplier 𝑠 for
material 𝑖 at each period will be less than or equal to total
capacity. Equations (4) and (5) are constructed to select the
transportation path from supplier to plant and not to exceed
its capacity where 𝑀 is a big number. Equation (6) is an
inventory balance constraint for the raw material in a plant.
Equations (7), (8), and (9) are capacity constraints for regular
production, overtime production, and inventory level in
plants, respectively. Equation (10) is an inventory balance
constraint for the product in a plant. Equations (11) and (12)
are designed to select the transportation path from a plant to
the warehouse and not to exceed its capacity. Equation (13) is
an inventory balance constraint in awarehouse. Equation (14)
is an inventory capacity constraint for awarehouse. Equations
(15) and (16) are designed to select the transportation path
from a warehouse to the retailer and not to exceed its
capacity. Equation (17) is a balance constraint for inventory
and backorder level. Equation (18) is an inventory capacity
constraint for a retailer. Equation (19) ensures meeting
customer demand. Equation (20) gives the definitions of the
decisions variables.

3.2. Uncertain Parameters in PDP. The 0-1 mixed-integer
mathematical model given in (2)–(20) includes uncertain
parameters in both objective function and constraints which
are fuzzy, fuzzy random, and random fuzzy.

3.2.1. Fuzzy Parameters. Fuzzy parameters, which are sym-
bolized by “∼,” are R̃UP𝑖𝑠𝑡, ṼTCS𝑖𝑠𝑝𝑘𝑡, S̃RC𝑖𝑝𝑡, R̃PC𝑗𝑝𝑡, ÕPC𝑗𝑝𝑡,
P̃HC𝑗𝑝𝑡, ṼTCP𝑗𝑝𝑤𝑘𝑡, ṼTCW𝑗𝑤𝑟𝑘𝑡, W̃HC𝑗𝑤𝑡, H̃CR𝑗𝑟𝑡, B̃CR𝑗𝑟𝑡,

and P̃OP𝑗𝑡 in objective function and R̃C𝑖𝑠𝑡, ÃRC𝑝𝑡, and
ÃOC𝑝𝑡 in constraints. All of the fuzzy parameters in objective
function and constraints are modeled by using triangular
fuzzy numbers. As mentioned above, triangular fuzzy num-
ber is denoted by the triplet (𝑎𝑙, 𝑎, 𝑎𝑢):

(1) The most possible value (𝑎) that definitely belongs to
the set of available values (membership degree = 1 if
normalized)

(2) The most optimistic value (𝑎𝑢) that has a very low
likelihood of belonging to the set of available values
(membership degree = 0 if normalized)

(3) The most pessimistic value (𝑎𝑙) that has a very low
likelihood of belonging to the set of available values
(membership = 0 if normalized)

3.2.2. Fuzzy Random Parameters. Fuzzy random parameters,
which are symbolized by “ ,” are TCSP𝑠𝑝𝑘𝑡, TCPW𝑝𝑤𝑘𝑡, and
TCWR𝑤𝑟𝑘𝑡 in constraints. Fuzzy random parameters are
related to the capacities of transportation paths. They can be
modeled by using triangular fuzzy number as follows:

𝜉 = {{{{{{{{{
(𝑎𝑙, 𝑎, 𝑎𝑢) , with probabilty Pr𝑎,(𝑏𝑙, 𝑏, 𝑏𝑢) , with probabilty Pr𝑏,(𝑐𝑙, 𝑐, 𝑐𝑢) , with probabilty Pr𝑐,

(21)

where Pr𝑎, Pr𝑏, and Pr𝑐 represent the probabilities of trans-
portation capacity situations such as high, medium, and low
capacities. On the other hand, triangular fuzzy numbers(𝑎𝑙, 𝑎, 𝑎𝑢), (𝑏𝑙, 𝑏, 𝑏𝑢), and (𝑐𝑙, 𝑐, 𝑐𝑢) represent the amounts of
each of the transportation capacities for probability levels.

3.2.3. Random Fuzzy Parameters. There is one random fuzzy
parameter, CDP𝑗𝑟𝑡𝑐, which represents the customer demand.
The customer demand includes two main parameters: the
probability and quantity. Therefore, the demand can be
calculated as the sum of multiplication of probability value
and quantity which can be referred to as expected value of
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Table 1: Random fuzzy demand probability.

Situation Pol. dev. Comp. str. Sec. exp. Possibility Probability of demand status
High Medium Low

(1) Good Medium Good 1 0.8 0.15 0.05
(2) Good Strong Good 0.8 0.6 0.3 0.1
(3) Medium Weak Medium 0.7 0.15 0.7 0.15
(4) Medium Medium Bad 0.6 0.1 0.5 0.4
(5) Bad Medium Medium 0.5 0.1 0.4 0.5
(6) Bad Strong Bad 0.4 0.05 0.15 0.8
Pol. dev.: political development. Comp. str.: competitors’ strategy. Sec. exp.: sectoral expectation.

discrete random variable. The probability and quantity of
demand are random fuzzy variables.

The probability of demand is modeled as follows: there
are three states about the demand; it may be high, medium,
or low. Assume that these three probabilities are represented
as Pr(𝐷)high, Pr(𝐷)medium, and Pr(𝐷)low. The probability of
demand state is affected by three indicators which are (1)
political developments, (2) competitors’ strategies, and (3)
sectoral expectation. For example, if the competitors perform
a strong strategy in the market, the demand quantity will
be affected by this situation; most likely it will decrease.
These indicators are related to the expertise and expectations.
Therefore, it is a very difficult task to model the demand
states in deterministic or stochastic case. However, random
fuzzy variables enable modeling these situations easier than
the remaining ones. It is possible to reflect the decision-
maker’s judgements and expectations into the demand state
by using random fuzzy variables. The modeling of demand
states by using random fuzzy variables can be explained with
an example for situations (1) and (2) in Table 1.

The first situation assumes that political development will
be good, competitors’ strategy will be medium, and sectoral
expectation will be good. According to the decision-maker’s
judgements, expertise, and expectation, the possibility of
occurrence of situation (1) is one. It means that situation (1)
is an event that can absolutely occur.The analysis of historical
data shows that when situation (1) occurs, the probabilities of
demand which may be high, medium, and low are 0.8, 0.15,
and 0.05, respectively. Situation (2) can be interpreted like
situation (1). Consequently, the only way to model Pr(𝐷)high,
Pr(𝐷)medium, and Pr(𝐷)low is using random fuzzy variables.
According to Definition 4, Pr(𝐷)high can be modeled as
follows:

𝜁 (Pr (𝐷)high) = {{{
0.8, with possibility 1.0,0.6, with possibility 0.8. (22)

Aftermodeling the probability of demand,modeling demand
quantity is needed. Assume that the demand quantity
follows normal distribution for each demand situation.
According to Definition 6, the demand quantities are rep-
resented as 𝜁(𝜃high) ∼ 𝑁(𝑋(𝜃high), 𝑌(𝜃high)), 𝜁(𝜃medium) ∼𝑁(𝑋(𝜃medium), 𝑌(𝜃medium)) and 𝜁(𝜃low) ∼ 𝑁(𝑋(𝜃low),𝑌(𝜃low)), where mean parameters 𝑋(𝜃high/medium/low) are
fuzzy variables defined on the spaceΘ for high, medium, and

low demand situations, respectively. The reason of modeling
mean parameter as fuzzy variable is the ability to manage
demand by using advertisements, discounts, and dynamic
pricing which depend on decision makers’ actions.

All of the remaining parameters in the model are deter-
ministic.

4. Solution Approach

The idea of uncertain programming is to convert the uncer-
tain nature of a model into an equivalent deterministic
one [56]. Therefore, the uncertain parameters in PDP will
be transformed into some equivalent deterministic ones by
using properties of fuzzy, fuzzy random, and random fuzzy
variables.

4.1. Transforming Uncertain Parameters into Deterministic
Equivalents. Theuncertain parameters have occurred in both
objective function and constraints. Therefore, transforming
operations of uncertain parameters are considered based on
the location of uncertain parameters in the mathematical
model.

4.1.1. Uncertain Parameters in Constraints. Let transforma-
tion operation of fuzzy parameter start and that operation is
called “defuzzification” in the literature [57].

Definition 8. The 𝛼-cut of a fuzzy set 𝐴 is a crisp subset of 𝑋
and is denoted by 𝐴𝛼 = {𝑥 | 𝜇𝐴(𝑥) ≥ 𝛼 and 𝑥 ∈ 𝑋}.

The 𝛼-cut of the triangular fuzzy variable 𝐴 = (𝑎𝑙, 𝑎, 𝑎𝑢)
is the closed interval 𝐴𝛼 = [𝑎𝑙𝛼, 𝑎𝑢𝛼] = [(𝑎 − 𝑎𝑙)𝛼 + 𝑎𝑙, −(𝑎𝑢 −𝑎)𝛼 + 𝑎𝑢], 𝛼 ∈ (0, 1].
Definition 9. The multiplication of a fuzzy variable 𝐴 by a
real number 𝑘 > 0 can be defined [58]: (𝑘𝐴)𝛼 = 𝑘𝐴𝛼 =[𝑘𝑎𝑙𝛼, 𝑘𝑎𝑢𝛼]. A real number 𝑚 can be defined as a triangular
fuzzy number by the triplet (𝑚𝑙, 𝑚,𝑚𝑢), where𝑚𝑙 = 𝑚, 𝑚 =𝑚, and𝑚𝑢 = 𝑚.
Definition 10. Assume that 𝑋 and 𝑌̃ are two fuzzy numbers.
The result 𝑍 of the addition of the fuzzy numbers 𝑋 and 𝑌̃
can be defined by the 𝛼-cut sets [59]. That is, 𝑍𝛼 = 𝑋𝛼 + 𝑌̃𝛼 =[𝑥𝑙𝛼 + 𝑦𝑙𝛼, 𝑥𝑢𝛼 + 𝑦𝑢𝛼].



Mathematical Problems in Engineering 9

All of the fuzzy parameters in the right-hand sides of
(3), (7), and (8) can be transformed into deterministic close
interval by using 𝛼-cut approach.

Now let consider fuzzy random parameters.

Definition 11. Let 𝑋 be a discrete random variable taking
values 𝑥1, 𝑥2, . . . with probabilities Pr1,Pr2, . . ., respectively.
Then the expected value of this random variable is the infinite
sum

𝐸 (𝑋) = ∞∑
𝑖=1

Pr𝑖 ∗ 𝑥𝑖. (23)

Corollary 12. If the capacities of transportation paths
(𝑇𝐶𝑆𝑃𝑠𝑝𝑘𝑡, 𝑇𝐶𝑃𝑊𝑝𝑤𝑘𝑡, or 𝑇𝐶𝑊𝑅𝑤𝑟𝑘𝑡) are discrete fuzzy
random variables, the expected value of transportation
capacity can be calculated by using Definitions 8, 9, and 11 as
follows (for 𝑇𝐶𝑆𝑃𝑠𝑝𝑘𝑡):𝐸 (𝑇𝐶𝑆𝑃𝑠𝑝𝑘𝑡) = Pr𝑎 ∗ (𝑎𝑙, 𝑎, 𝑎𝑢) + Pr𝑏 ∗ (𝑏𝑙, 𝑏, 𝑏𝑢)+ Pr𝑐 ∗ (𝑐𝑙, 𝑐, 𝑐𝑢) ,𝐸 (𝑇𝐶𝑆𝑃𝑠𝑝𝑘𝑡) = Pr𝑎 ∗ [𝑎𝑙𝛼, 𝑎𝑢𝛼] + Pr𝑏 ∗ [𝑏𝑙𝛼, 𝑏𝑢𝛼]+ Pr𝑐 ∗ [𝑐𝑙𝛼, 𝑐𝑢𝛼] ,𝐸 (𝑇𝐶𝑆𝑃𝑠𝑝𝑘𝑡) = [Pr𝑎 ∗ 𝑎𝑙𝛼 + Pr𝑏 ∗ 𝑏𝑙𝛼 + Pr𝑐 ∗ 𝑐𝑙𝛼,Pr𝑎∗ 𝑎𝑢𝛼 + Pr𝑏 ∗ 𝑏𝑢𝛼 + Pr𝑐 ∗ 𝑐𝑢𝛼] ,𝐸 (𝑇𝐶𝑆𝑃𝑠𝑝𝑘𝑡) = [𝑇𝐶𝑆𝑃𝐿, 𝑇𝐶𝑆𝑃𝑈] ,

(24)

where 𝑇𝐶𝑆𝑃𝐿 = [Pr𝑎 ∗𝑎𝑙𝛼 +Pr𝑏 ∗𝑏𝑙𝛼 +Pr𝑐 ∗𝑐𝑙𝛼] and 𝑇𝐶𝑆𝑃𝑈 =[Pr𝑎 ∗ 𝑎𝑢𝛼 + Pr𝑏 ∗ 𝑏𝑢𝛼 + Pr𝑐 ∗ 𝑐𝑢𝛼].
All of the fuzzy random parameters in the right-hand

sides of (4), (11), and (15) are transformed into deterministic
close interval according to Corollary 12.

Now let consider random fuzzy parameters. As defined
in Section 3.2, the customer demand has three discrete
events; it may be high, medium, or low with probability
values Pr(𝐷)high, Pr(𝐷)medium, and Pr(𝐷)low, respectively.
On the other side, the demand quantity for each event
follows normal distributionwith different fuzzymean param-
eters and different variances which are𝑁(𝑋(𝜃high/medium/low),𝑌(𝜃high/medium/low)). According to Definition 11, total cus-
tomer demand can be written as follows:
Total customer demand

= Pr (𝐷)high ∗ 𝑁(𝑋(𝜃high) , 𝑌 (𝜃high))
+ Pr (𝐷)medium ∗ 𝑁(𝑋 (𝜃medium) , 𝑌 (𝜃medium))
+ Pr (𝐷)low ∗ 𝑁(𝑋 (𝜃low) , 𝑌 (𝜃low)) ,

(25)

where Pr(𝐷)high/medium/low and 𝑁(𝑋(𝜃high/medium/low),𝑌(𝜃high/medium/low)) are random fuzzy parameters; therefore,
total customer demand is a random fuzzy parameter.

In order to transform total customer demand into its
deterministic equivalent, it is required to transform the
probabilities and quantities into deterministic cases.

The following definition and corollary have beenmade for
transforming the probabilities.

Definition 13. Let 𝜉 be a normalized discrete fuzzy variable
whose possibility distribution function is defined by 𝜇(𝑟) ={𝜇1, if 𝑟 = 𝑏1; 𝜇2, if 𝑟 = 𝑏2; 𝜇𝑛, if 𝑟 = 𝑏𝑛}.

The expected value of 𝜉 is as follows:
𝐸 [𝜉] = 𝑛∑

𝑖=1

𝑏𝑖𝑝𝑖, (26)

where the weights are given by

𝑝𝑖 = 12 (max
1≤𝑗≤𝑖

𝜇𝑗 − max
0≤𝑗≤𝑖−1

𝜇𝑗)
+ 12 (max

𝑖≤𝑗≤𝑛
𝜇𝑗 − max

𝑖+1≤𝑗≤𝑛+1
𝜇𝑗) . (27)

(𝜇0 = 0, 𝜇𝑛+1 = 0) for 𝑖 = 1, 2, . . . , 𝑛 and satisfy the following
constraints: 𝑝𝑖 ≥ 0 and ∑𝑛

𝑖=1 𝑝𝑖 = max1≤𝑖≤𝑛𝜇𝑖 = 1, since 𝜉 is a
normalized fuzzy variable [60].

Corollary 14. If the demand state is a discrete random fuzzy
variable, the probabilities of demand states are fuzzy variables
according to Definition 5 and then by using expected value of
the fuzzy variable (Definition 13), crisp expected probability
values can be calculated for high, medium, and low demand
states.

According toCorollary 14, the expected probability values
for high, medium, and low demand states, which are repre-
sented by 𝑇high, 𝑇medium, and 𝑇low to prevent confusions in
next formulations, are written as follows:

𝐸 [Pr (𝐷high)] = 𝑛∑
𝑖=1

Pr (𝐷high)𝑖 𝑝𝑖 = 𝑇high,
𝐸 [Pr (𝐷medium)] = 𝑛∑

𝑖=1

Pr (𝐷medium)𝑖 𝑝𝑖 = 𝑇medium,
𝐸 [Pr (𝐷low)] = 𝑛∑

𝑖=1

Pr (𝐷low)𝑖 𝑝𝑖 = 𝑇low.
(28)

Let us consider demand quantity.

Definition 15. If𝑋 and 𝑌 are identical independent normally
distributed parameters, 𝑋 ∼ 𝑁(𝜇𝑥, 𝜎𝑥2) and 𝑌 ∼ 𝑁(𝜇𝑦, 𝜎𝑦2);
their sum of 𝑍 = 𝑋 + 𝑌 is normally distributed with mean𝜇𝑥 + 𝜇𝑦 and variance 𝜎𝑥2 + 𝜎𝑦2: 𝑍 ∼ 𝑁(𝜇𝑥 + 𝜇𝑦, 𝜎𝑥2 + 𝜎𝑦2).
Multiplication of a normal distribution,𝑋 ∼ 𝑁(𝜇𝑥, 𝜎𝑥2), by a
scalar (𝑘) is a normal distribution: 𝑘𝑋 ∼ 𝑁(𝑘𝜇𝑥, 𝑘2𝜎𝑥2) [51].
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Corollary 16. Total customer demand, given in (25), can be
transformed into a random variable by using Definitions (8),
(9), (10), and (11) as follows:

𝑇𝐶𝐷 = 𝑇ℎ𝑖𝑔ℎ ∗ 𝑁(𝑋 (𝜃ℎ𝑖𝑔ℎ) , 𝑌 (𝜃ℎ𝑖𝑔ℎ)) + 𝑇𝑚𝑒𝑑𝑖𝑢𝑚
∗ 𝑁(𝑋 (𝜃𝑚𝑒𝑑𝑖𝑢𝑚) , 𝑌 (𝜃𝑚𝑒𝑑𝑖𝑢𝑚)) + 𝑇𝑙𝑜𝑤
∗ 𝑁(𝑋 (𝜃𝑙𝑜𝑤) , 𝑌 (𝜃𝑙𝑜𝑤)) = 𝑇ℎ𝑖𝑔ℎ
∗ 𝑁([𝜇(ℎ𝑖𝑔ℎ)𝑙𝛼, 𝜇(ℎ𝑖𝑔ℎ)𝑢𝛼] , 𝑌 (𝜃ℎ𝑖𝑔ℎ))+ 𝑇𝑚𝑒𝑑𝑖𝑢𝑚 ∗ 𝑁 ([𝜇(𝑚𝑒𝑑𝑖𝑢𝑚)𝑙𝛼, 𝜇(𝑚𝑒𝑑𝑖𝑢𝑚)𝑢𝛼] ,𝑌 (𝜃𝑚𝑒𝑑𝑖𝑢𝑚)) + 𝑇𝑙𝑜𝑤 ∗ 𝑁 ([𝜇(𝑙𝑜𝑤)𝑙𝛼, 𝜇(𝑙𝑜𝑤)𝑢𝛼] ,𝑌 (𝜃𝑙𝑜𝑤)) = 𝑁 ([𝑇ℎ𝑖𝑔ℎ ∗ 𝜇(ℎ𝑖𝑔ℎ)𝑙𝛼, 𝑇ℎ𝑖𝑔ℎ∗ 𝜇(ℎ𝑖𝑔ℎ)𝑢𝛼] , 𝑌 (𝜃ℎ𝑖𝑔ℎ)) + 𝑁 ([𝑇𝑚𝑒𝑑𝑖𝑢𝑚∗ 𝜇(𝑚𝑒𝑑𝑖𝑢𝑚)𝑙𝛼, 𝑇𝑚𝑒𝑑𝑖𝑢𝑚 ∗ 𝜇(𝑚𝑒𝑑𝑖𝑢𝑚)𝑢𝛼] ,𝑌 (𝜃𝑚𝑒𝑑𝑖𝑢𝑚)) + 𝑁 ([𝑇𝑙𝑜𝑤 ∗ 𝜇(𝑙𝑜𝑤)𝑙𝛼, 𝑇𝑙𝑜𝑤∗ 𝜇(𝑙𝑜𝑤)𝑢𝛼] , 𝑌 (𝜃𝑙𝑜𝑤)) = 𝑁 ([𝑇ℎ𝑖𝑔ℎ ∗ 𝜇(ℎ𝑖𝑔ℎ)𝑙𝛼+ 𝑇𝑚𝑒𝑑𝑖𝑢𝑚 ∗ 𝜇(𝑚𝑒𝑑𝑖𝑢𝑚)𝑙𝛼 + 𝑇𝑙𝑜𝑤 ∗ 𝜇(𝑙𝑜𝑤)𝑙𝛼, 𝑇ℎ𝑖𝑔ℎ∗ 𝜇(ℎ𝑖𝑔ℎ)𝑢𝛼 + 𝑇𝑚𝑒𝑑𝑖𝑢𝑚 ∗ 𝜇(𝑚𝑒𝑑𝑖𝑢𝑚)𝑢𝛼 + 𝑇𝑙𝑜𝑤∗ 𝜇(𝑙𝑜𝑤)𝑢𝛼] , 𝑇2ℎ𝑖𝑔ℎ ∗ 𝑌 (𝜃ℎ𝑖𝑔ℎ) + 𝑇2𝑚𝑒𝑑𝑖𝑢𝑚
∗ 𝑌 (𝜃𝑚𝑒𝑑𝑖𝑢𝑚) + 𝑇2𝑙𝑜𝑤 ∗ 𝑌 (𝜃𝑙𝑜𝑤)) = 𝑁 ([𝜇𝑙𝑜, 𝜇𝑢𝑝] ,
𝜎2) ,

(29)

where

𝑇ℎ𝑖𝑔ℎ ∗ 𝜇(ℎ𝑖𝑔ℎ)𝑙𝛼 + 𝑇𝑚𝑒𝑑𝑖𝑢𝑚 ∗ 𝜇(𝑚𝑒𝑑𝑖𝑢𝑚)𝑙𝛼 + 𝑇𝑙𝑜𝑤∗ 𝜇(𝑙𝑜𝑤)𝑙𝛼 = 𝜇𝑙𝑜,𝑇ℎ𝑖𝑔ℎ ∗ 𝜇(ℎ𝑖𝑔ℎ)𝑢𝛼 + 𝑇𝑚𝑒𝑑𝑖𝑢𝑚 ∗ 𝜇(𝑚𝑒𝑑𝑖𝑢𝑚)𝑢𝛼 + 𝑇𝑙𝑜𝑤∗ 𝜇(𝑙𝑜𝑤)𝑢𝛼 = 𝜇𝑢𝑝,
𝑇2ℎ𝑖𝑔ℎ ∗ 𝑌 (𝜃ℎ𝑖𝑔ℎ) + 𝑇2𝑚𝑒𝑑𝑖𝑢𝑚 ∗ 𝑌 (𝜃𝑚𝑒𝑑𝑖𝑢𝑚) + 𝑇2𝑙𝑜𝑤
∗ 𝑌 (𝜃𝑙𝑜𝑤) = 𝜎2.

(30)

According to Corollary 16, the right-hand side of (19)
is transformed into a random parameter; however, it is still
uncertain.The chance-constrained programming can be used
to obtain its deterministic equivalent.

The structure of a chance-constraint is as follows [56]:

𝑃{ 𝑁∑
𝑖=1

𝑎𝑖𝑥𝑖 ≤ 𝑏} ≥ 1 − 𝛽, 𝑥𝑖 ≥ 0 ∀𝑖, 0 < 𝛽 < 1. (31)

It means that the constraint is realized with a minimum
probability of 1 − 𝛽. If 𝑏 is normally distributed parameter,𝑏 ∼ 𝑁(𝜇𝑏, 𝜎2𝑏), the constraint is converted as follows:

𝑃{{{{{
∑𝑁
𝑖=1 𝑎𝑖𝑥𝑖 − 𝜇𝑏√𝜎2

𝑏

≤ 𝑏 − 𝜇𝑏√𝜎2
𝑏

}}}}} ≥ 1 − 𝛽, (32)

where (𝑏−𝜇𝑏)/√𝜎2𝑏 represents a standard normal variate with
a mean of zero and a variance of one. Then, the stochastic
chance-constraint is transformed into the following inequal-
ity:

Φ(∑𝑁
𝑖=1 𝑎𝑖𝑥𝑖 − 𝜇𝑏√𝜎2

𝑏

) ≤ Φ(𝐾1−𝛽) , (33)

where Φ(𝐾1−𝛽) = 1 − 𝛽 and Φ( ) represents the standard
normal cumulative distribution function. This yields the
following linear deterministic constraint:

𝑁∑
𝑖=1

𝑎𝑖𝑥𝑖 ≤ 𝜇𝑏 + 𝐾1−𝛽√𝜎2𝑏 . (34)

4.1.2. Uncertain Parameters in Objective Function. Theuncer-
tainties in the constraints are converted into their determin-
istic equivalents. However, objective function still includes
fuzzy parameters. Therefore, Lai and Hwang’s [59] approach
has been used to obtain deterministic equivalent of the
objective function.

Lai and Hwang [59] had handled a mathematical model
as given in the following equation:

max 𝑐𝑥,
s.t. 𝐴𝑥 ≤ 𝑏̃,𝑥 ≥ 0,

(35)

where 𝐴, 𝑏̃, and 𝑐 are triangular fuzzy numbers.
The fuzzy objective function is fully defined by three

corner points (𝐶𝑝, 0), (𝐶𝑚, 1), and (𝐶𝑜, 0) geometrically.
Lai and Hwang [59] suggested that maximizing the fuzzy
objective can be obtained by pushing these three critical
points in the direction of the right-hand side. The vertical
coordinates of the critical points are fixed at 1 or 0. The
only considerations then are the three horizontal coordinates.
Therefore, the objective function is translated to the form
given in the following equation:

max (𝐶𝑚𝑥, 𝐶𝑝𝑥, 𝐶𝑜𝑥) ,𝑥 ∈ 𝑋. (36)

Instead of maximizing these three objectives simultaneously,
Lai and Hwang [59] proposed maximizing 𝐶𝑚𝑥, minimizing[𝐶𝑚𝑥 − 𝐶𝑝𝑥], and maximizing [𝐶𝑜𝑥 − 𝐶𝑚𝑥]. The proposed
approach involves maximizing the most possible value of
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the profit, minimizing the risk of obtaining lower profit, and
maximizing the possibility of obtaining higher profit.The last
two objectives actually are relative measures from 𝐶𝑚𝑥. This
leads us to the auxiliary multiobjective linear programming
model given in the following equation:

min 𝑧1 = (𝐶𝑚 − 𝐶𝑝) 𝑥,
max 𝑧2 = 𝐶𝑚𝑥,
max 𝑧3 = (𝐶𝑜 − 𝐶𝑚) 𝑥,
s.t. 𝑥 ∈ 𝑋.

(37)

Lai and Hwang suggested using Zimmermann’s [61] fuzzy
programmingmethod to convert the auxiliarymultiobjective
linear programming model into an equivalent single-goal LP
problem. First, the positive ideal solutions (PIS) and negative
ideal solutions (NIS) of the objective functions can be
specified as follows [59]:

𝑧1PIS = min (𝐶𝑚 − 𝐶𝑝) 𝑥,𝑥 ∈ 𝑋,
𝑧1NIS = max (𝐶𝑚 − 𝐶𝑝) 𝑥,𝑥 ∈ 𝑋,
𝑧2PIS = max (𝐶𝑚) 𝑥,𝑥 ∈ 𝑋,
𝑧2NIS = min (𝐶𝑚) 𝑥,𝑥 ∈ 𝑋,
𝑧3PIS = max (𝐶𝑜 − 𝐶𝑚) 𝑥,𝑥 ∈ 𝑋,
𝑧3NIS = min (𝐶𝑜 − 𝐶𝑚) 𝑥,𝑥 ∈ 𝑋.

(38)

The linear membership function of each objective function is
defined as follows:

𝑓1 (𝑧1) =
{{{{{{{{{{{
1, 𝑧1 < 𝑧1PIS,(𝑧1NIS − 𝑧1)(𝑧1NIS − 𝑧1PIS) , 𝑧1PIS ≤ 𝑧1 ≤ 𝑧1NIS,0, 𝑧1 > 𝑧1NIS,

𝑓2 (𝑧2) =
{{{{{{{{{{{
1, 𝑧2 > 𝑧2PIS,(𝑧2NIS − 𝑧2)(𝑧2NIS − 𝑧2PIS) , 𝑧2NIS ≤ 𝑧2 ≤ 𝑧2PIS,0, 𝑧2 < 𝑧2NIS;

(39)

𝑓3(𝑧3) is similar to 𝑓2(𝑧2).

Lai and Hwang used fuzzy ranking concepts for the con-
straints and combined them with their strategy for imprecise
objective function. The constraints can be modeled by using𝛼-cut approach as follows:

𝐴𝑚𝛼𝑥 ≤ 𝑏𝑚𝛼 ,𝐴𝑝𝛼𝑥 ≤ 𝑏𝑝𝛼 ,𝐴𝑜𝛼𝑥 ≤ 𝑏𝑜𝛼, 𝑥 ≥ 0.
(40)

If only the right-hand sides include fuzzy parameters, Lai and
Hwang propose the weighted average method to obtain crisp
right-hand side values. Assume that only the right-hand side
of the constraint in (35) (𝑏̃) is fuzzy. For a given minimum
acceptable possibility, 𝛼, the crisp equality constraints can be
constructed as follows:

𝑛∑
𝑖=1

𝐴 𝑖𝑋𝑖 ≤ 𝑤1 ∗ 𝑏𝑝𝛼 + 𝑤2 ∗ 𝑏𝑚𝛼 + 𝑤3 ∗ 𝑏𝑜𝛼, (41)

where𝑤1 +𝑤2 +𝑤3 = 1;𝑤1,𝑤2, and𝑤3 represent the weights
of the most pessimistic, most possible, and most optimistic
values of the imprecise right-hand side, respectively.

Finally, Zimmermann’s following equivalent single-
objective linear programming model is used to solve the
model [60].

max 𝜆,
s.t. 𝑓𝑖 (𝑧𝑖) ≥ 𝜆,𝑖 = 1, 2, 3,

𝐴𝑚𝛼𝑥 ≤ 𝑏𝑚𝛼 ,𝐴𝑝𝛼𝑥 ≤ 𝑏𝑝𝛼 ,𝐴𝑜𝛼𝑥 ≤ 𝑏𝑜𝛼,𝑥 ≥ 0.

(42)

4.2. Proposed Solution Approach. The proposed solution
approach has been developed by integrating both fuzzy
programming and stochastic programming.

The objective function which is fully fuzzy has been
handled by using Zimmermann’s [60] fuzzy programming
method.Therefore, there is no different technique in the pro-
posed approach to convert the objective function. However,
different techniques are used in constraints.

The goals of determining positive and negative ideal
solutions are to calculate the minimum andmaximum values
of objective functions. Therefore, the positive and negative
ideal solutions are determined according to the pessimistic
and optimistic scenarios in uncertainmodels to obtain robust
solutions. However, Lai and Hwang proposed a weighted
average method in constraints that only includes fuzziness
on right-hand side for obtaining positive and negative ideal
solutions. In weighted average method, 𝑤1 = 𝑤3 = 1/6 and
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𝑤2 = 4/6. This method produces a crisp value that is very
close to themost possible value.Therefore, the weighted aver-
age method prevents obtaining lower and higher ideal solu-
tions. Naturally, the weighted average method may produce
unfeasible solution.

In the proposed approach, the most pessimistic and
optimistic values of the right-hand side are used in the fuzzy
constraints for the minimum and maximum values of 𝑧1, 𝑧2,
and 𝑧3, respectively, instead of weighted average method.The
proposed ranking concepts are given as follows (for (3)):

𝐾∑
𝑘=1

𝑃∑
𝑝=1

TRQ𝑖𝑠𝑝𝑘𝑡 ≤ RC𝑝
𝛼,𝑖𝑠𝑡

∀𝑖, ∀𝑠, ∀𝑡 for minimum value of 𝑧1, 𝑧2, 𝑧3,
𝐾∑
𝑘=1

𝑃∑
𝑝=1

TRQ𝑖𝑠𝑝𝑘𝑡 ≤ RC𝑜
𝛼,𝑖𝑠𝑡

∀𝑖, ∀𝑠, ∀𝑡 for minimum value of 𝑧1, 𝑧2, 𝑧3.

(43)

On the other side, the right-hand side of (19) (CDP𝑗𝑟𝑡𝑐)
is converted into a random variable by using Corollary 16
and defined as 𝑁([𝜇𝑙𝑜, 𝜇𝑢𝑝], 𝜎2). It represents a family of
normal distributions whose mean parameter differs in close
interval [𝜇𝑙𝑜, 𝜇𝑢𝑝]with same variance (𝜎2). It follows a normal
distribution with 𝑁(𝜇𝑙𝑜, 𝜎2) and 𝑁(𝜇𝑢𝑝, 𝜎2) parameters in
pessimistic and optimistic scenarios, respectively. Therefore,
the structure of the chance-constraint for (19) can be written
for the minimum and maximum values of 𝑧1, 𝑧2, and 𝑧3 as
follows:

SPQ𝑗𝑟𝑡𝑐 ≤ (𝜇𝑙𝑜)𝑗𝑟𝑡𝑐 + 𝐾1−𝛽√𝜎2
∀𝑗, ∀𝑟, ∀𝑡, ∀𝑐 for minimum value of 𝑧1, 𝑧2, 𝑧3,

SPQ𝑗𝑟𝑡𝑐 ≤ (𝜇𝑢𝑝)𝑗𝑟𝑡𝑐 + 𝐾1−𝛽√𝜎2∀𝑗, ∀𝑟, ∀𝑡, ∀𝑐 for minimum value of 𝑧1, 𝑧2, 𝑧3.
(44)

The PDP model given in (2)–(20) is converted into a deter-
ministic multiobjective 0-1 mixed-integer linear program-
ming model (MOMILP) as follows:

𝑍1
= [[

𝑇∑
𝑡=1

𝐽∑
𝑗=1

((POP𝑚𝑗𝑡 − POP𝑝𝑗𝑡) ∗ 𝐶∑
𝑐=1

𝑅∑
𝑟=1

SPQ𝑗𝑟𝑡𝑐)]] − [
𝑇∑
𝑡=1

𝑆∑
𝑠=1

𝐼∑
𝑖=1

((RUP𝑚𝑖𝑠𝑡 − RUP𝑝𝑖𝑠𝑡) ∗ 𝑃∑
𝑝=1

𝐾∑
𝑘=1

TRQ𝑖𝑠𝑝𝑘𝑡)]
− [ 𝑇∑

𝑡=1

𝐾∑
𝑘=1

𝑃∑
𝑝=1

𝑆∑
𝑠=1

(FTCS𝑠𝑝𝑘𝑡 ∗ UKS𝑠𝑝𝑘𝑡)] − [ 𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝑃∑
𝑝=1

𝑆∑
𝑠=1

𝐼∑
𝑖=1

((VTCS𝑚𝑖𝑠𝑝𝑘𝑡 − VTCS𝑝𝑖𝑠𝑝𝑘𝑡) ∗ TRQ𝑖𝑠𝑝𝑘𝑡)]
− [ 𝑇∑

𝑡=1

𝑃∑
𝑝=1

𝐼∑
𝑖=1

((SRC𝑚
𝑖𝑝𝑡 − SRC𝑝

𝑖𝑝𝑡) ∗ SRP𝑖𝑝𝑡)] − [[
𝑇∑
𝑡=1

𝑃∑
𝑝=1

𝐽∑
𝑗=1

((RPC𝑚
𝑗𝑝𝑡 − RPC𝑝

𝑗𝑝𝑡) ∗ RPQ𝑗𝑝𝑡)]]
− [[

𝑇∑
𝑡=1

𝑃∑
𝑝=1

𝐽∑
𝑗=1

((OPC𝑚
𝑗𝑝𝑡 −OPC𝑝

𝑗𝑝𝑡) ∗OPQ𝑗𝑝𝑡)]] − [[
𝑇∑
𝑡=1

𝑃∑
𝑝=1

𝐽∑
𝑗=1

((PHC𝑚
𝑗𝑝𝑡 − PHC𝑝

𝑗𝑝𝑡) ∗ SLP𝑗𝑝𝑡)]]
− [ 𝑇∑

𝑡=1

𝐾∑
𝑘=1

𝑊∑
𝑤=1

𝑃∑
𝑝=1

(FTCP𝑝𝑤𝑘𝑡 ∗ UKP𝑝𝑤𝑘𝑡)] − [[
𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝑊∑
𝑤=1

𝑃∑
𝑝=1

𝐽∑
𝑗=1

((VTCP𝑚𝑗𝑝𝑤𝑘𝑡 − VTCP𝑝𝑗𝑝𝑤𝑘𝑡) ∗ TPQP𝑗𝑝𝑤𝑘𝑡)]]
− [[

𝑇∑
𝑡=1

𝑊∑
𝑤=1

𝐽∑
𝑗=1

((WHC𝑚
𝑗𝑤𝑡 −WHC𝑝

𝑗𝑤𝑡) ∗ SLW𝑗𝑤𝑡)]] − [
𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝑅∑
𝑟=1

𝑊∑
𝑤=1

(FTCW𝑤𝑟𝑘𝑡 ∗ UKW𝑤𝑟𝑘𝑡)]
− [[

𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝑅∑
𝑟=1

𝑊∑
𝑤=1

𝐽∑
𝑗=1

((VTCW𝑚
𝑗𝑤𝑟𝑘𝑡 − VTCW𝑝

𝑗𝑤𝑟𝑘𝑡
) ∗ TPQW𝑗𝑤𝑟𝑘𝑡)]]

− [[
𝑇∑
𝑡=1

𝑅∑
𝑟=1

𝐽∑
𝑗=1

((HCR𝑚𝑗𝑟𝑡 −HCR𝑝𝑗𝑟𝑡) ∗ SLR𝑗𝑟𝑡)]] − [[
𝑇∑
𝑡=1

𝑅∑
𝑟=1

𝐽∑
𝑗=1

((BCR𝑚𝑗𝑟𝑡 − BCR𝑝𝑗𝑟𝑡) ∗ ( 𝐶∑
𝑐=1

BLR𝑗𝑟𝑡𝑐))]] ,

(45)
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𝑍2
= [[

𝑇∑
𝑡=1

𝐽∑
𝑗=1

(POP𝑚𝑗𝑡 ∗ 𝐶∑
𝑐=1

𝑅∑
𝑟=1

SPQ𝑗𝑟𝑡𝑐)]] − [
𝑇∑
𝑡=1

𝑆∑
𝑠=1

𝐼∑
𝑖=1

(RUP𝑚𝑖𝑠𝑡 ∗ 𝑃∑
𝑝=1

𝐾∑
𝑘=1

TRQ𝑖𝑠𝑝𝑘𝑡)]
− [ 𝑇∑

𝑡=1

𝐾∑
𝑘=1

𝑃∑
𝑝=1

𝑆∑
𝑠=1

(FTCS𝑠𝑝𝑘𝑡 ∗ UKS𝑠𝑝𝑘𝑡)] − [ 𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝑃∑
𝑝=1

𝑆∑
𝑠=1

𝐼∑
𝑖=1

(VTCS𝑚𝑖𝑠𝑝𝑘𝑡 ∗ TRQ𝑖𝑠𝑝𝑘𝑡)]
− [ 𝑇∑

𝑡=1

𝑃∑
𝑝=1

𝐼∑
𝑖=1

(SRC𝑚
𝑖𝑝𝑡 ∗ SRP𝑖𝑝𝑡)] − [[

𝑇∑
𝑡=1

𝑃∑
𝑝=1

𝐽∑
𝑗=1

(RPC𝑚
𝑗𝑝𝑡 ∗ RPQ𝑗𝑝𝑡)]] − [[

𝑇∑
𝑡=1

𝑃∑
𝑝=1

𝐽∑
𝑗=1

(OPC𝑚
𝑗𝑝𝑡 ∗OPQ𝑗𝑝𝑡)]]

− [[
𝑇∑
𝑡=1

𝑃∑
𝑝=1

𝐽∑
𝑗=1

(PHC𝑚
𝑗𝑝𝑡 ∗ SLP𝑗𝑝𝑡)]] − [

𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝑊∑
𝑤=1

𝑃∑
𝑝=1

(FTCP𝑝𝑤𝑘𝑡 ∗ UKP𝑝𝑤𝑘𝑡)]
− [[

𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝑊∑
𝑤=1

𝑃∑
𝑝=1

𝐽∑
𝑗=1

(VTCP𝑚𝑗𝑝𝑤𝑘𝑡 ∗ TPQP𝑗𝑝𝑤𝑘𝑡)]] − [[
𝑇∑
𝑡=1

𝑊∑
𝑤=1

𝐽∑
𝑗=1

(WHC𝑚
𝑗𝑤𝑡 ∗ SLW𝑗𝑤𝑡)]]

− [ 𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝑅∑
𝑟=1

𝑊∑
𝑤=1

(FTCW𝑤𝑟𝑘𝑡 ∗ UKW𝑤𝑟𝑘𝑡)] − [[
𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝑅∑
𝑟=1

𝑊∑
𝑤=1

𝐽∑
𝑗=1

(VTCW𝑚
𝑗𝑤𝑟𝑘𝑡 ∗ TPQW𝑗𝑤𝑟𝑘𝑡)]]

− [[
𝑇∑
𝑡=1

𝑅∑
𝑟=1

𝐽∑
𝑗=1

(HCR𝑚𝑗𝑟𝑡 ∗ SLR𝑗𝑟𝑡)]] − [[
𝑇∑
𝑡=1

𝑅∑
𝑟=1

𝐽∑
𝑗=1

(BCR𝑚𝑗𝑟𝑡 ∗ ( 𝐶∑
𝑐=1

BLR𝑗𝑟𝑡𝑐))]] ,

(46)

𝑍3
= [[

𝑇∑
𝑡=1

𝐽∑
𝑗=1

((POP𝑜𝑗𝑡 − POP𝑚𝑗𝑡) ∗ 𝐶∑
𝑐=1

𝑅∑
𝑟=1

SPQ𝑗𝑟𝑡𝑐)]] − [
𝑇∑
𝑡=1

𝑆∑
𝑠=1

𝐼∑
𝑖=1

((RUP𝑜𝑖𝑠𝑡 − RUP𝑚𝑖𝑠𝑡) ∗ 𝑃∑
𝑝=1

𝐾∑
𝑘=1

TRQ𝑖𝑠𝑝𝑘𝑡)]
− [ 𝑇∑

𝑡=1

𝐾∑
𝑘=1

𝑃∑
𝑝=1

𝑆∑
𝑠=1

(FTCS𝑠𝑝𝑘𝑡 ∗ UKS𝑠𝑝𝑘𝑡)] − [ 𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝑃∑
𝑝=1

𝑆∑
𝑠=1

𝐼∑
𝑖=1

((VTCS𝑜𝑖𝑠𝑝𝑘𝑡 − VTCS𝑚𝑖𝑠𝑝𝑘𝑡) ∗ TRQ𝑖𝑠𝑝𝑘𝑡)]
− [ 𝑇∑

𝑡=1

𝑃∑
𝑝=1

𝐼∑
𝑖=1

((SRC𝑜
𝑖𝑝𝑡 − SRC𝑚

𝑖𝑝𝑡) ∗ SRP𝑖𝑝𝑡)] − [[
𝑇∑
𝑡=1

𝑃∑
𝑝=1

𝐽∑
𝑗=1

((RPC𝑜
𝑗𝑝𝑡 − RPC𝑚

𝑗𝑝𝑡) ∗ RPQ𝑗𝑝𝑡)]]
− [[

𝑇∑
𝑡=1

𝑃∑
𝑝=1

𝐽∑
𝑗=1

((OPC𝑜
𝑗𝑝𝑡 −OPC𝑚

𝑗𝑝𝑡) ∗OPQ𝑗𝑝𝑡)]] − [[
𝑇∑
𝑡=1

𝑃∑
𝑝=1

𝐽∑
𝑗=1

((PHC𝑜
𝑗𝑝𝑡 − PHC𝑚

𝑗𝑝𝑡) ∗ SLP𝑗𝑝𝑡)]]
− [ 𝑇∑

𝑡=1

𝐾∑
𝑘=1

𝑊∑
𝑤=1

𝑃∑
𝑝=1

(FTCP𝑝𝑤𝑘𝑡 ∗ UKP𝑝𝑤𝑘𝑡)] − [[
𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝑊∑
𝑤=1

𝑃∑
𝑝=1

𝐽∑
𝑗=1

((VTCP𝑜𝑗𝑝𝑤𝑘𝑡 − VTCP𝑚𝑗𝑝𝑤𝑘𝑡) ∗ TPQP𝑗𝑝𝑤𝑘𝑡)]]
− [[

𝑇∑
𝑡=1

𝑊∑
𝑤=1

𝐽∑
𝑗=1

((WHC𝑜
𝑗𝑤𝑡 −WHC𝑚

𝑗𝑤𝑡) ∗ SLW𝑗𝑤𝑡)]] − [
𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝑅∑
𝑟=1

𝑊∑
𝑤=1

(FTCW𝑤𝑟𝑘𝑡 ∗ UKW𝑤𝑟𝑘𝑡)]
− [[

𝑇∑
𝑡=1

𝐾∑
𝑘=1

𝑅∑
𝑟=1

𝑊∑
𝑤=1

𝐽∑
𝑗=1

((VTCW𝑜
𝑗𝑤𝑟𝑘𝑡 − VTCW𝑚

𝑗𝑤𝑟𝑘𝑡) ∗ TPQW𝑗𝑤𝑟𝑘𝑡)]]
− [[

𝑇∑
𝑡=1

𝑅∑
𝑟=1

𝐽∑
𝑗=1

((HCR𝑜𝑗𝑟𝑡 −HCR𝑚𝑗𝑟𝑡) ∗ SLR𝑗𝑟𝑡)]] − [[
𝑇∑
𝑡=1

𝑅∑
𝑟=1

𝐽∑
𝑗=1

((BCR𝑜𝑗𝑟𝑡 − BCR𝑚𝑗𝑟𝑡) ∗ ( 𝐶∑
𝑐=1

BLR𝑗𝑟𝑡𝑐))]] ,

(47)
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s.t. 𝐾∑
𝑘=1

𝑃∑
𝑝=1

TRQ𝑖𝑠𝑝𝑘𝑡 ≤ RC𝑝
𝛼,𝑖𝑠𝑡

∀𝑖, ∀𝑠, ∀𝑡,
(48)

𝐾∑
𝑘=1

𝑃∑
𝑝=1

TRQ𝑖𝑠𝑝𝑘𝑡 ≤ RC𝑜
𝛼,𝑖𝑠𝑡

∀𝑖, ∀𝑠, ∀𝑡,
(49)

𝐼∑
𝑖=1

(RRC𝑖 ∗ TRQ𝑖𝑠𝑝𝑘𝑡) ≤ (TCSP𝐿)𝑠𝑝𝑘𝑡 + (1 − UKS𝑠𝑝𝑘𝑡) ∗𝑀
∀𝑠, ∀𝑝, ∀𝑘, ∀𝑡,

(50)

𝐼∑
𝑖=1

(RRC𝑖 ∗ TRQ𝑖𝑠𝑝𝑘𝑡) ≤ (TCSP𝑈)𝑠𝑝𝑘𝑡 + (1 − UKS𝑠𝑝𝑘𝑡) ∗𝑀
∀𝑠, ∀𝑝, ∀𝑘, ∀𝑡,

(51)

𝐼∑
𝑖=1

(RRC𝑖 ∗ TRQ𝑖𝑠𝑝𝑘𝑡) ≤ UKS𝑠𝑝𝑘𝑡 ∗𝑀
∀𝑠, ∀𝑝, ∀𝑘, ∀𝑡,

(52)

( 𝐾∑
𝑘=1

𝑆∑
𝑠=1

TRQ𝑖𝑠𝑝𝑘𝑡 + SRP𝑖𝑝(𝑡−1)) − 𝐽∑
𝑗=1

(RRM𝑖𝑗 ∗ (RPQ𝑗𝑝𝑡 +OPQ𝑗𝑝𝑡)) = SRP𝑖𝑝𝑡

∀𝑖, ∀𝑝, ∀𝑡,
(53)

𝐽∑
𝑗=1

(UPT𝑗𝑝𝑡 ∗ RPQ𝑗𝑝𝑡) ≤ ARC𝑝
𝛼,𝑝𝑡

∀𝑝, ∀𝑡, (54)

𝐽∑
𝑗=1

(UPT𝑗𝑝𝑡 ∗ RPQ𝑗𝑝𝑡) ≤ ARC𝑜
𝛼,𝑝𝑡

∀𝑝, ∀𝑡, (55)

𝐽∑
𝑗=1

(UPT𝑗𝑝𝑡 ∗OPQ𝑗𝑝𝑡) ≤ AOC𝑝
𝛼,𝑝𝑡

∀𝑝, ∀𝑡, (56)

𝐽∑
𝑗=1

(UPT𝑗𝑝𝑡 ∗OPQ𝑗𝑝𝑡) ≤ AOC𝑜
𝛼,𝑝𝑡

∀𝑝, ∀𝑡,
(57)

𝐽∑
𝑗=1

(RHC𝑗 ∗ SLP𝑗𝑝𝑡) ≤ PIC𝑝

∀𝑝, ∀𝑡, (58)
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RPQ𝑗𝑝𝑡 +OPQ𝑗𝑝𝑡 + SLP𝑗𝑝(𝑡−1) − 𝐾∑
𝑘=1

𝑊∑
𝑤=1

TPQP𝑗𝑝𝑤𝑘𝑡 = SLP𝑗𝑝𝑡

∀𝑗, ∀𝑝, ∀𝑡,
(59)

𝐽∑
𝑗=1

(RTC𝑗 ∗ TPQP𝑗𝑝𝑤𝑘𝑡) ≤ (TCPW𝐿)𝑝𝑤𝑘𝑡 + (1 − UKP𝑝𝑤𝑘𝑡) ∗𝑀
∀𝑝, ∀𝑤, ∀𝑘, ∀𝑡,

(60)

𝐽∑
𝑗=1

(RTC𝑗 ∗ TPQP𝑗𝑝𝑤𝑘𝑡) ≤ (TCPW𝑈)𝑝𝑤𝑘𝑡 + (1 − UKP𝑝𝑤𝑘𝑡) ∗𝑀
∀𝑝, ∀𝑤, ∀𝑘, ∀𝑡,

(61)

𝐽∑
𝑗=1

(RTC𝑗 ∗ TPQP𝑗𝑝𝑤𝑘𝑡) ≤ UKP𝑝𝑤𝑘𝑡 ∗𝑀
∀𝑝, ∀𝑤, ∀𝑘, ∀𝑡,

(62)

𝐾∑
𝑘=1

𝑃∑
𝑝=1

TPQP𝑗𝑝𝑤𝑘𝑡 + SLW𝑗𝑤(𝑡−1) − 𝐾∑
𝑘=1

𝑅∑
𝑟=1

TPQW𝑗𝑤𝑟𝑘𝑡 = SLW𝑗𝑤𝑡

∀𝑗, ∀𝑤, ∀𝑡,
(63)

𝐽∑
𝑗=1

(RHC𝑗 ∗ SLW𝑗𝑤𝑡) ≤WIC𝑤

∀𝑤, ∀𝑡,
(64)

𝐽∑
𝑗=1

(RTC𝑗 ∗ TPQW𝑗𝑤𝑟𝑘𝑡) ≤ (TCWR𝐿)𝑤𝑟𝑘𝑡 + (1 − UKW𝑤𝑟𝑘𝑡) ∗ 𝑀
∀𝑤, ∀𝑟, ∀𝑘, ∀𝑡, (65)

𝐽∑
𝑗=1

(RTC𝑗 ∗ TPQW𝑗𝑤𝑟𝑘𝑡) ≤ (TCWR𝑈)𝑤𝑟𝑘𝑡 + (1 − UKW𝑤𝑟𝑘𝑡) ∗ 𝑀
∀𝑤, ∀𝑟, ∀𝑘, ∀𝑡,

(66)

𝐽∑
𝑗=1

(RTC𝑗 ∗ TPQW𝑗𝑤𝑟𝑘𝑡) ≤ UKW𝑤𝑟𝑘𝑡 ∗𝑀
∀𝑤, ∀𝑟, ∀𝑘, ∀𝑡, (67)

𝐾∑
𝑘=1

𝑊∑
𝑤=1

TPQW𝑗𝑤𝑟𝑘𝑡 + SLR𝑗𝑟(𝑡−1) − 𝐶∑
𝑐=1

SPQ𝑗𝑟𝑡𝑐 = SLR𝑗𝑟𝑡 − 𝐶∑
𝑐=1

BLR𝑗𝑟𝑡𝑐

∀𝑗, ∀𝑟, ∀𝑡, (68)

𝐽∑
𝑗=1

(RHC𝑗 ∗ SLR𝑗𝑟𝑡) ≤ RIC𝑟

∀𝑟, ∀𝑡, (69)
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SPQ𝑗𝑟𝑡𝑐 ≤ (𝜇𝑙𝑜)𝑗𝑟𝑡𝑐 + 𝐾1−𝛽√𝜎2∀𝑗, ∀𝑟, ∀𝑡, ∀𝑐, (70)

SPQ𝑗𝑟𝑡𝑐 ≤ (𝜇𝑢𝑝)𝑗𝑟𝑡𝑐 + 𝐾1−𝛽√𝜎2∀𝑗, ∀𝑟, ∀𝑡, ∀𝑐, (71)

TRQ𝑖𝑠𝑝𝑘𝑡, SRP𝑖𝑝𝑡,RPQ𝑗𝑝𝑡,OPQ𝑗𝑝𝑡, SLP𝑗𝑝𝑡,TPQP𝑗𝑝𝑤𝑘𝑡 ≥ 0,
SLR𝑗𝑟𝑡,BLR𝑗𝑟𝑡𝑐, SPQ𝑗𝑟𝑡𝑐, SLW𝑗𝑤𝑡,TPQW𝑗𝑤𝑟𝑘𝑡 ≥ 0,
UKS𝑠𝑝𝑘𝑡,UKP𝑝𝑤𝑘𝑡,UKW𝑤𝑟𝑘𝑡 = 0, 1.

(72)

In order to obtain PIS and NIS values for 𝑧1, 𝑧2, and 𝑧3, the
mathematical models given below are solved:

For 𝑧1PIS: min 𝑍1
s.t. (48), (50), (52), (53), (54), (56), (58), (59), (60),
(62), (63), (64), (65), (67), (68), (69), (70), and (72)
For 𝑧1NIS: max 𝑍1
s.t. (49), (51), (52), (53), (55), (57), (58), (59), (61), (62),
(63), (64), (66), (67), (68), (69), (71), and (72)
For 𝑧2PIS: max 𝑍2
s.t. (49), (51), (52), (53), (55), (57), (58), (59), (61), (62),
(63), (64), (66), (67), (68), (69), (71), and (72)
For 𝑧2NIS: min 𝑍2

s.t. (48), (50), (52), (53), (54), (56), (58), (59), (60),
(62), (63), (64), (65), (67), (68), (69), (70), and (72)

For 𝑧3PIS: max 𝑍3
s.t. (49), (51), (52), (53), (55), (57), (58), (59), (61), (62),
(63), (64), (66), (67), (68), (69), (71), and (72)

For 𝑧3NIS: min 𝑍3
s.t. (48), (50), (52), (53), (54), (56), (58), (59), (60),
(62), (63), (64), (65), (67), (68), (69), (70), and (72)

Finally, Zimmermann’s following equivalent single-objective
0-1 mixed-integer programming model is used to solve the
model.

max 𝜆,
s.t. 𝑓𝑖 (𝑧𝑖) ≥ 𝜆,𝑖 = 1, 2, 3,

Eq. (48) , (50) , (51) , (52) , (53) , (55) , (57) , (58) , (59) , (60) , (61) , (62) , (63) , (64) , (65) , (66) , (68) , (69) .
(73)

The algorithm of the solutionmethodology for practical PDP
decisions is as follows.

Step 1. Formulate the PDP model.

Step 2. Model the fuzzy parameters as triangular fuzzy
numbers, model the discrete fuzzy random parameters (the
capacities of transportation paths) as triangular fuzzy num-
bers with probability values, and model the random fuzzy
parameter (demand) as normal distributions with triangular
fuzzy mean parameters.

Step 3. Develop three new crisp objective functions of the
auxiliary MOMILP problem from the fully fuzzy objective
function which are equivalent simultaneously maximizing
the most possible total profit, minimizing the risk of obtain-
ing lower profit, and maximizing the of possibility of obtain-
ing higher profit.

Step 4. Determine an 𝛼 value and transform the fuzzy
parameters in the right-hand side of the constraints into
deterministic close intervals by using 𝛼-cut approach. Pro-
duce two separate constraints from these constraints that one
of them uses lower bound of close interval and the other one
uses upper bound of close interval.

Step 5. Transform the discrete fuzzy random parameters in
the right-hand side of the constraints into deterministic close
intervals according to Corollary 12. Produce two separate
constraints from these constraints that one of themuses lower
bound of close interval and the other one uses upper bound
of close interval.

Step 6. Transform the random fuzzy parameters in the
right-hand side of the constraints into normally distributed
random parameters with deterministic close interval mean
parameters according to Corollaries 14 and 16.
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Step 7. Determine an acceptable probability value (𝛽) and
model the constraint obtained in Step 6 as deterministic lin-
ear constraint by using chance-constraint approach. Produce
two separate constraints from this constraint that one of them
uses lower bound of close interval and the other one uses
upper bound of close interval.

Step 8. Solve 𝑧1PIS, 𝑧1NIS, 𝑧2PIS, 𝑧2NIS, 𝑧3PIS, and 𝑧3NIS. Obtain
maximum and minimum values for 𝑧1, 𝑧2, and 𝑧3. Specify
the linear membership functions for each of them, and
then convert the auxiliary MOMILP problem into a single-
objective 0-1 mixed-integer programming model.

Step 9. Solve the single-objective 0-1mixed-integer program-
ming model and obtain the solution.

Step 10. If the DM is not satisfied with the initial solution,
return to Step 4 and modify 𝛼 and 𝛽 values and repeat the
remaining steps until a satisfactory solution is found.

5. Implementation of the Proposed
Solution Approach

The proposed modeling and solution approaches have been
implemented for furniture manufacturer in Turkey. The firm
has two plants (𝑝 = 1, 2) in Ankara and Bursa. It produces
three different types of products (𝑗 = 1, 2, 3) by using six
different types of raw materials (𝑖 = 1, 2, . . . , 6) which are
supplied from three suppliers (𝑠 = 1, 2, 3).The firm uses three
warehouses (𝑤 = 1, 2, 3) and five retailers (𝑟 = 1, 2, . . . , 5) to
deliver the products to the costumers by using three different
types of transportation paths (𝑘 = 1, 2, 3) which are trucks,
trains, and planes. The demands of the products significantly
increase in summer; therefore, time period is three months,
that is, June, July, and August (𝑡 = 1, 2, 3), for planning
horizon.The costumers were not categorized (𝑐 = 1) because
of tactical planning decision. The proposed modeling and
solution approaches were performed at February 2017 for
summer season in 2017. The assumptions given in Section 3.1
are held for this real-life application.

The implementation of the algorithm for real-life applica-
tion is given as follows.

Step 1. PDP for furniture manufacturer has been modeled as
(2)–(20).

Step 2. Unit prices of raw materials (R̃UP𝑖𝑠𝑡) which are given
in Table 8, capacities of raw materials (R̃C𝑖𝑠𝑡) which are given
in Table 9, unit transportation costs of raw material from
suppliers to plants (ṼTCS𝑖𝑠𝑝𝑘𝑡) which are given in Table 12,
unit holding costs of raw materials in plants (S̃RC𝑖𝑝𝑡) which
are given in Table 15, unit production costs of products in
regular time (R̃PC𝑗𝑝𝑡) which are given in Table 17, available
regular time capacities of plants (ÃRC𝑝𝑡) which are given
in Table 18, unit production costs of products in overtime
(ÕPC𝑗𝑝𝑡) which are given in Table 19, available overtime
capacities of plants (ÃOC𝑝𝑡) which are given in Table 20, unit

holding costs of products in plants (P̃HC𝑗𝑝𝑡) which are given
in Table 22, unit transportation costs of products from plants
to warehouses (ṼTCP𝑗𝑝𝑤𝑘𝑡) which are given in Table 26, unit
transportation costs of products from warehouses to retailers
(ṼTCW𝑗𝑤𝑟𝑘𝑡) which are given in Table 30, unit holding costs
of products in warehouses (W̃HC𝑗𝑤𝑡) which are given in
Table 31, unit holding costs of products in retailers (H̃CR𝑗𝑟𝑡)
which are given in Table 33, backorder costs of products
(B̃CR𝑗𝑟𝑡) which are given in Table 35, and price of products
(P̃OP𝑗𝑡) which is given in Table 37 have been modeled as
triangular fuzzy numbers bymaking a discussion and analysis
with a group of staffwhich contains procurement, production
planning, marketing, and warehouse and retailers managers.

It has been observed that the capacities of transportation
paths between echelons of SCS can occur in three different
situations, high, medium, and low capacities, when the
historical transportation data was analyzed.The probabilities
of obtaining high, medium, and low capacities have been
determined as 0.5, 0.35, and 0.15, respectively. However, for
each situation, the quantities of capacities can change based
on the availability of transporters. Therefore, total capacities
of transportation from suppliers to plants (TCSP𝑠𝑝𝑘𝑡) which
are given in Table 10, total capacities of transportation
from plants to warehouses (TCPW𝑝𝑤𝑘𝑡) which are given in
Table 24, and total capacities of transportation from ware-
houses to retailers (TCWR𝑤𝑟𝑘𝑡) which are given in Table 28
have been modeled as triangular fuzzy numbers by making a
discussion and analysis with a group of staff.

It has been observed that the demands of products
can occur in three different states, high, medium, and low
demands, by analyzing the historical demand data with
bubble charts and the quantity of demand follows a proba-
bility distribution for each state. Three indicators have been
identified which affect the demand state, that is, political
development, competitors’ strategy, and sectoral expectation.
Six alternative situations have been generated by using these
three indicators according to the expertise of management
and a possibility value of occurrence has been assigned to
each situation by the managers. The probability values of
demand that can be high, medium, or low at each situation
have been calculated according to the frequency analysis.
Therefore, the probability of demand has been modeled as
random fuzzy number which is given in Table 1. On the
other side, the quantities of the demand for high, medium,
and low states follow a normal distribution with a mean and
variance parameter according to the results of Anderson-
Darling test. However, the managers mentioned that they can
affect the demand by using advertisements and discounts.
Therefore the mean parameters of the normal distributions
have been modeled as triangular fuzzy numbers which are
given in Table 36. Fixed costs of using transport paths
from suppliers to plants, required transportation capacities
of raw materials, required amounts of raw materials for unit
products, unit production times of products in plants at each
period, inventory capacities in plants, required capacities to
store products, fixed cost of using transport paths from plants
to warehouses, required capacities to transport unit products,
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fixed cost of using paths from warehouses to retailers, and
inventory capacities in warehouses are given in Tables 11, 13,
14, 16, 21, 23, 25, 27, 29, and 32, respectively.

Step 3. Three new crisp objective functions of the auxiliary
MOMILP problem have been developed from the fully fuzzy
objective function.

Step 4. The 𝛼 value has been determined as 0.4 and the
constraints that contain fuzzy parameters in the right-hand
side have been transformed into deterministic close intervals
by using 𝛼-cut approach. Two separate constraints have been
produced from these constraints that one of them uses lower
bound of close interval and the other one uses upper bound
of close interval.

Step 5. The constraints that contain the discrete fuzzy ran-
dom parameters in the right-hand side have been trans-
formed into deterministic close intervals according to Corol-
lary 12. Two separate constraints have been produced from
these constraints that one of them uses lower bound of close
interval and the other one uses upper bound of close interval.

Step 6. The constraints which contain the random fuzzy
parameters in the right-hand sides have been transformed
into normally distributed randomparameters with determin-
istic close interval mean parameters according to Corollaries
14 and 16.

Step 7. An acceptable probability value (𝛽) has been deter-
mined as 0.95 and the constraint obtained in Step 6 has
been modeled as deterministic linear constraint by using
chance-constraint approach. Two separate constraints have
been produced from this constraint that one of them uses
lower bound of close interval and the other one uses upper
bound of close interval.

Step 8. 𝑧1PIS, 𝑧1NIS, 𝑧2PIS, 𝑧2NIS, 𝑧3PIS, and 𝑧3NIS have been
solved globally optimally by using GAMS/CPLEX solver.
Maximum and minimum values for 𝑧1, 𝑧2, and 𝑧3 have been
obtained as follows:

𝑧1PIS = min (𝐶𝑚 − 𝐶𝑝) 𝑥 = 1462617.078084, 𝑥 ∈ 𝑋,
𝑧1NIS = max (𝐶𝑚 − 𝐶𝑝) 𝑥 = 2286767.846530, 𝑥 ∈ 𝑋,
𝑧2PIS = max (𝐶𝑚) 𝑥 = 10726634.165484, 𝑥 ∈ 𝑋,
𝑧2NIS = min (𝐶𝑚) 𝑥 = 4993515.423244, 𝑥 ∈ 𝑋,
𝑧3PIS = max (𝐶𝑜 − 𝐶𝑚) 𝑥 = 2142661.24258, 𝑥 ∈ 𝑋,
𝑧3NIS = min (𝐶𝑜 − 𝐶𝑚) 𝑥 = 1392563.360486, 𝑥 ∈ 𝑋.

(74)



1

0 7313900 9021600 10941200

Figure 1

The linear membership functions for each of them have
been specified and then the auxiliary MOMILP problem
has been converted into a single-objective 0-1 mixed-integer
programming model.

Step 9. When the equivalent single-objective 0-1 mixed-
integer programming model has been solved, the total profit
is obtained as a triangular fuzzy variable with 7313900,
9021600, and 10941200, which is given in Figure 1.The overall
degree of DM satisfaction with multiple goal values 𝜆 is
achieved at 0.703. The solutions of the model are represented
in Tables 2–6.

Step 10. DM has been satisfied with the initial solution and
the algorithm has been terminated.

Summary of the results during the three time periods
is given in Tables 2–6. Total sales quantities are represented
in Table 2. According to these solutions, capacities of the
retailers, given in Table 34, are adequate tomeet the demands.
Therefore, the managers do not focus on the retailers.

Total quantities of products transported fromwarehouses
to retailers are given in Table 3. It is seen that transporta-
tion capacities between warehouses and retailers, given in
Table 28, are adequate when compared with the results in
Table 3. Therefore, the managers do not seek additional
transportation capacities.

In Table 4, it is observed that plant 2 has not sent any
products to warehouse 3 based on high transformation costs.
Therefore, the managers search decreasing transformation
costs or any other transformation alternatives from plant 2
to warehouse 3.

On the other hand, plant 1 does not manufacture product
3 according to Table 5. The high production cost may be the
reason. The managers seek the way of decreasing production
costs.

Table 6 shows that the SCS has not satisfied the demands
exactly; therefore, there is a bottleneck in the SCS system.
When the SCS system is analyzed in detail, it is identified
that the reason of the bottleneck in the system is the
limited transportation capacity of products from plants to
warehouses. Therefore, there is abundance in the capacities
of the remaining components of SCS.

It is obvious that the decision-makers can decrease the
backorders costs and consequently increase the total profit
by increasing the transportation capacity from plants to
warehouses supplied by new transporters. However, they
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Table 2: Total sale quantities of product 𝑗 in retailer 𝑟.
𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 𝑟 = 5𝑗 = 1 1761.29 1729.05 1742.92 1604.47 1682.56𝑗 = 2 1264.76 1366.29 1023.31 766.33 1026.82𝑗 = 3 1288.14 1072.73 1096.14 1100 1050.32

Table 3: Total quantities of product 𝑗 transported from warehouse 𝑤 to retailer 𝑟.
𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 𝑟 = 5

𝑤 = 1 𝑗 = 1 1325.01 936.95 1742.92 0 1568.58𝑗 = 2 745.11 0 0 530.38 275.02𝑗 = 3 1288.14 456.61 1096.14 391.64 402.92

𝑤 = 2 𝑗 = 1 0 792.10 0 1604.47 0𝑗 = 2 384.04 1366.29 1023.31 235.94 284.61𝑗 = 3 0 616.12 0 708.35 647.40

𝑤 = 3 𝑗 = 1 436.28 0 0 0 113.97𝑗 = 2 135.60 0 0 0 467.17𝑗 = 3 0 0 0 0 0

Table 4: Total quantities of product 𝑗 transported from plant 𝑝 to warehouse 𝑤.
𝑤 = 1 𝑤 = 2 𝑤 = 3

𝑝 = 1 𝑗 = 1 5573.47 1810.07 550.25𝑗 = 2 107.83 2412.32 602.78𝑗 = 3 0 0 0

𝑝 = 2 𝑗 = 1 0 586.50 0𝑗 = 2 1442.68 881.89 0𝑗 = 3 3635.47 1971.88 0

Table 5: Total quantities of product 𝑗manufactured in plant 𝑝.
Product Plant𝑝 = 1 𝑝 = 2𝑗 = 1 7933.80 586.50𝑗 = 2 3122.95 2324.58𝑗 = 3 0 5607.36

Table 6: Total backorder quantities of product 𝑗 in retailer 𝑟.
𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 𝑟 = 5𝑗 = 1 2.38 2.55 2.54 162.89 2.46𝑗 = 2 491.59 327.63 628.57 979.30 715.75𝑗 = 3 343.09 538.79 550.52 552.48 527.60

predict that the cooperation with new transporters may
cause harmonization problems and extra costs.Therefore, the
decision-makers plan to find new transporters and cooperate
with them for next planning periods after performing a
transporter evaluation system.

The real-life application has been performed at different 𝛼
and𝛽 parameter values. Total profits in triangular fuzzy num-
ber and defuzzified form for different parameter values are
presented in Table 7. The weighted average method was used
in defuzzification with 𝑤1 = 𝑤3 = 1/6 and 𝑤2 = 4/6. In the

first column of Table 7, the effects of changes in 𝛽 parameter
are examined when 𝛼 is fixed.The change in 𝛽 directly affects
the demand quantity. Total unsatisfied demand quantity
increases when 𝛽 increases; therefore, total profit decreases
for 𝛽 = 0.98 and 𝛽 = 0.99. On the other side, it is expected to
obtain lower profit when 𝛽 decreases because of lower
demand. However, it is observed that total profit is increased
for𝛽 = 0.90 based ondecreasing unsatisfied demandquantity.

The change in 𝛼 parameter directly/only affects the
SCS capacity (raw material, transportation, and production).
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Table 7: Total profits at different parameter levels.

Total profit (𝛼 = 0.4) Total profit (𝛽 = 0.95)
Fuzzy Defuzzified Fuzzy Defuzzified𝛽 = 0.85 (7283661; 8891223; 10140210) 8831461 𝛼 = 0.30 (7503750; 9223326; 11283544) 9280100𝛽 = 0.90 (7401500; 9123400; 11032550) 9154608 𝛼 = 0.35 (7410700; 9150245; 11111550) 9187205𝛽 = 0.98 (7113572; 8724770; 9794213) 8634478 𝛼 = 0.45 (7265180; 8824735; 10771893) 8889336𝛽 = 0.99 (7052392; 8671245; 9731677) 8578175 𝛼 = 0.50 (7092630; 8622100; 10480112) 8676857

Table 8: Unit price of raw material 𝑖 in supplier 𝑠 at period 𝑡.
Raw material Supplier𝑠 = 1 𝑠 = 2 𝑠 = 3𝑖 = 1 (40; 42; 43) (39; 40; 41) (37; 38; 39)𝑖 = 2 (35; 36; 37) (37; 38; 39) (38; 40; 41)𝑖 = 3 (39; 40; 41) (37; 38; 39) (41; 42; 44)𝑖 = 4 (28; 30; 32) (29; 30; 33) (29; 30; 31)𝑖 = 5 (31; 32; 33) (32; 33; 34) (30; 31; 32)𝑖 = 6 (16; 18; 19) (20; 21; 22) (18; 19; 21)

Table 9: Capacity of raw material i supplied by s at period 𝑡.
Raw material Supplier𝑠 = 1 𝑠 = 2 𝑠 = 3𝑖 = 1 (10500; 12000; 13000) (11000; 12900; 14000) (13000; 14500; 16000)𝑖 = 2 (10000; 10600; 11500) (8500; 9600; 11000) (15000; 16800; 17500)𝑖 = 3 (10000; 11300; 12000) (12000; 12900; 13800) (13000; 15000; 16000)𝑖 = 4 (11000; 13900; 15000) (10500; 11800; 13200) (15000; 17900; 19000)𝑖 = 5 (12000; 13200; 14000) (9400; 10300; 11500) (15000; 16700; 18000)𝑖 = 6 (10500; 11000; 13500) (9000; 9400; 10800) (16500; 18200; 19000)

Table 10: Capacity of transport path 𝑘 from supplier s to plant 𝑝 at period 𝑡.
Path Supplier High probability (0.5) Medium probability (0.35) Low probability (0.15)𝑝 = 1 𝑝 = 2 𝑝 = 1 𝑝 = 2 𝑝 = 1 𝑝 = 2
𝑘1

𝑆1 (20000; 20800;
21600)

(21500; 22125;
23000)

(15800; 16300;
17000)

(17000; 17850;
18500)

(15000; 16000;
16800)

(16500; 17400;
18000)𝑆2 (20000; 20550;

21300)
(19700; 20600;

21200)
(15500; 16250;

17000)
(17000; 17600;

18000)
(14000; 14500;

15250)
(16500; 17000;

18000)𝑆3 (15800; 16800;
18000)

(23800; 24400;
25000)

(15500; 16100;
16700)

(17000; 17200;
18000)

(14000; 14500;
15000)

(16000; 16600;
17200)

𝑘2
𝑆1 (22750; 23500;

25000) 0 (17000; 18000;
19000) 0 (16500; 17300;

18000) 0

𝑆2 (23800; 24500;
25000) 0 (17000; 17850;

19000) 0 (16000; 17200;
18000) 0

𝑆3 (21600; 22300;
23500) 0 (16000; 16500;

17000) 0 (15600; 16300;
17100) 0

𝑘3
𝑆1 (15900; 16200;

16500)
(14900; 15200;

16000)
(14000; 14600;

15000)
(14000; 14800;

15500)
(12500; 13700;

14300)
(11200; 12000;

12500)𝑆2 (16500; 17300;
18000)

(16900; 17300;
17800)

(14250; 15000;
15500)

(16500; 17200;
17600)

(11800; 12500;
14000)

(12700; 13300;
14000)𝑆3 (17500; 18000;

18500)
(16000; 16400;

17000)
(15000; 15500;

16000)
(16000; 16700;

17000)
(11800; 12500;

13000)
(12500; 13000;

13700)
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Table 11: Fixed cost of transport path 𝑘 from supplier s to plant 𝑝 at period 𝑡.
Path Supplier Plant𝑝 = 1 𝑝 = 2
𝑘1 𝑠 = 1 690 735𝑠 = 2 570 700𝑠 = 3 500 540

𝑘2 𝑠 = 1 810 0𝑠 = 2 965 0𝑠 = 3 990 0

𝑘3 𝑠 = 1 1400 1300𝑠 = 2 1250 1300𝑠 = 3 1120 1200

Table 12: Unit transportation cost of raw material 𝑖 from supplier 𝑠
to plant 𝑝 by using path 𝑘 at period 𝑡.
Path Supplier 𝑝 = 1 𝑝 = 2
𝑘1 𝑠 = 1 (0.4; 0.5; 0.6) (0.45; 0.5; 0.6)𝑠 = 2 (0.5; 0.6; 0.7) (0.4; 0.5; 0.65)𝑠 = 3 (0.4; 0.5; 0.6) (0.45; 0.6; 0.7)

𝑘2 𝑠 = 1 (0.8; 1; 1.2) 0𝑠 = 2 (0.9; 1.1; 1.2) 0𝑠 = 3 (0.9; 1; 1.1) 0

𝑘3 𝑠 = 1 (2.1; 2.4; 2.5) (2.5; 2.6; 2.8)𝑠 = 2 (2; 2.2; 2.4) (2.2; 2.4; 2.6)𝑠 = 3 (1.8; 2; 2.1) (2; 2.2; 2.5)

Table 13: Required transportation capacity of raw material 𝑖.
𝑖 = 1 1.35𝑖 = 2 1.12𝑖 = 3 1.71𝑖 = 4 2.52𝑖 = 5 1.63𝑖 = 6 1.92

Table 14: Required amount of raw material 𝑖 for unit product 𝑗.
Product𝑗 = 1 𝑗 = 2 𝑗 = 3𝑖 = 1 2 3 0𝑖 = 2 1 1 3𝑖 = 3 0 1 3𝑖 = 4 1 3 0𝑖 = 5 1 0 2𝑖 = 6 3 0 2

Therefore, total profit decreases or increases when 𝛼 increases
or decreases, respectively.

The different 𝛼 and𝛽 parameter values represent different
scenarios; therefore, it is not possible to determine the best or
worst solution in Table 7.

Table 15: Unit holding cost of raw material 𝑖 in plant 𝑝 at period 𝑡.
Raw material Plant𝑝 = 1 𝑝 = 2𝑖 = 1 (0.15; 0.2; 0.22) (0.15; 0.2; 0.24)𝑖 = 2 (0.14; 0.16; 0.19) (0.15; 0.18; 0.22)𝑖 = 3 (0.16; 0.18; 0.21) (0.13; 0.16; 0.2)𝑖 = 4 (0.15; 0.18; 0.2) (0.14; 0.17; 0.2)𝑖 = 5 (0.15; 0.18; 0.2) (0.14; 0.16; 0.18)𝑖 = 6 (0.12; 0.14; 0.16) (0.13; 0.17; 0.2)

Table 16: Unit production time of product 𝑗 in plant 𝑝 at period 𝑡.
Product Plant𝑝 = 1 𝑝 = 2𝑗 = 1 6.15 6.02𝑗 = 2 6.92 6.94𝑗 = 3 8.54 6.74

Table 17: Unit production cost of product 𝑗 at regular time in plant𝑝 at period 𝑡.
Product Plant𝑝 = 1 𝑝 = 2𝑗 = 1 (62.12; 64.58; 65.81) (66.22; 72.24; 77.06)𝑗 = 2 (69.89; 72.66; 74.04) (76.34; 83.28; 88.83)𝑗 = 3 (86.25; 89.67; 91.38) (74.14; 80.88; 86.27)

Table 18: Available regular capacity (time) in plant 𝑝 at period 𝑡.
Plant𝑝 = 1 𝑝 = 2

(21000; 23000; 25000) (18000; 19000; 20000)

6. Conclusion

In this paper, a PDP for a SCSwhich includesmultiple suppli-
ers, multiple products, multiple plants, multiple warehouses,
multiple retailers, multiple transport paths, andmultiple time
periods has been considered in uncertain environment at
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Table 19: Unit production cost of product 𝑗 at overtime in plant 𝑝
at period 𝑡.
Product Plant𝑝 = 1 𝑝 = 2𝑗 = 1 (77.64; 80.72; 82.26) (82.78; 90.3; 96.32)𝑗 = 2 (87.37; 90.83; 92.56) (95.43; 104.1; 111.04)𝑗 = 3 (107.82; 112.09; 114.22) (92.68; 101.1; 107.84)

Table 20: Available overtime capacity (time) in plant 𝑝 at period 𝑡.
Plant𝑝 = 1 𝑝 = 2

(4000; 5000; 5500) (3000; 4000; 5000)

Table 21: Inventory capacity in plant 𝑝.
𝑝 = 1 𝑝 = 2 𝑝 = 3
8000 10000 6000

Table 22: Unit holding cost of product 𝑗 in plant 𝑝 at period 𝑡.
Product Plant𝑝 = 1 𝑝 = 2𝑗 = 1 (6.21; 6.46; 6.58) (6.62; 7.22; 7.71)𝑗 = 2 (6.99; 7.27; 7.4) (7.63; 8.33; 8.88)𝑗 = 3 (8.63; 8.97; 9.14) (7.41; 8.09; 8.63)

Table 23: Required capacity to store unit product 𝑗.
𝑗 = 1 𝑗 = 2 𝑗 = 3
2 3 2.5

tactical level. A modeling approach and a solution approach
have been proposed for PDP.

In modeling approach, a 0-1 mixed-integer mathematical
model has been developed for PDP.Theuncertain parameters
in the model have been handled as fuzzy, random, fuzzy
random, and random fuzzy variables. A solution approach is
developed for 0-1mixed-integermathematical model by inte-
grating possibilistic programming and chance-constrained
programming techniques.

The proposed modeling and solution approaches have
been implemented on a PDP of furniture firm. The PDP has
been solved globally optimally by using GAMS optimization
package. The solutions have been represented to the firm
managers and managers have been satisfied with these solu-
tions. The main problem in SCS is the lower transportation
capacity between plants and warehouses. Therefore, man-
agers decide to seek new transporters for the next planning
periods.

The proposed modeling and solution approaches can be
compared with the other PDP approaches such as determin-
istic models, stochastic models, or fully fuzzy models. The
solution of the deterministic PDP can be easily infeasible in
dynamic structure of the system at tactical level because of
ignoring uncertainty. It is an alternative way to perform the

deterministic model several times with different parameter
values to analyze the changes of the parameters. However,
hundreds of solutions are obtained for a SCSwhich includes a
lot of uncertain parameters. Consequently, it causes another
uncertainty called abundance of the solutions.Therefore, it is
not an effective way to make decision at tactical level.

On the other hand, stochastic models only contain prob-
abilistic uncertainties in SCS and do not consider the other
uncertainties that are based on decision-maker’s expertise
and judgements. Probability theory successfully handles the
variation in problem nature by assuming that the conditions
of the experiment will not change. However, the conditions
such as political developments, competitors’ strategy, or
manager’s decision may change in a dynamic system and
that creates a situation which has not been observed in the
past. Therefore, the solutions of the stochastic models can be
infeasible.

Contrary to stochasticmodels, fully fuzzymodels for PDP
donot consider the variations in the problemnature.The fully
fuzzy models produce rough and subjective solutions.

The main advantage of the proposed modeling and
solution approaches is including the decision-maker into the
problem formulation and solving processes with probabilistic
uncertainties. Decision-makers directly affect the problem
parameters by their decisions. Fuzzy, fuzzy random, and ran-
dom fuzzy variables enable including the decision-maker’s
judgements and expertise into the probabilisticmodel. In this
way, the mathematical model produces robust solutions.

There are some limitations of the proposed modeling
and solution approaches. One of them is the determina-
tion of the 𝛼 value. The 𝛼 value represents the minimum
acceptable possibility degree, in otherwords, satisfaction level
of decision-maker. It may not be meaningful in decision-
maker’s mind like probability level. Therefore, it should be
explained clearly to the decision-maker in implementation
process. Another one is the limitation of the optimization
packages. The optimization packages cannot solve the PDP
globally optimally for big-size SCS because of the number
of the binary variables; therefore, it is required to develop a
metaheuristic algorithm.

In this study, single-objective function, maximization
of the total profit, has been considered for the PDP in
uncertain environment. In future studies, it can be modeled
as biobjective functions by considering maximization of
the customer satisfaction level or minimization of the total
transportation time.The proposedmodeling approach can be
used in different optimization problems that have fuzzy and
random parameters in their nature.

Notations

Indices𝑖: Raw materials𝑗: Products𝑠: Suppliers𝑝: Plant𝑤: Warehouses𝑟: Retailers
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Table 24: Transportation capacity of path 𝑘 from plant 𝑝 to warehouse 𝑤 at period 𝑡.
Plants High probability (0.5) Medium probability (0.35) Low probability (0.15)𝑤 = 1 𝑤 = 2 𝑤 = 3 𝑤 = 1 𝑤 = 2 𝑤 = 3 𝑤 = 1 𝑤 = 2 𝑤 = 3

𝑘1 𝑝 = 1 (881; 1030;
1101)

(440; 487;
556)

(80; 88;
96)

(837; 960;
1013)

(408; 454;
510) (68; 80; 91) (705; 775;

837)
(348; 380;

440) (57; 68; 80)

𝑝 = 2 (837; 969;
1101)

(440; 487;
533)

(68; 84;
102)

(749; 863;
969)

(417; 464;
510) (63; 77; 91) (617; 731;

837)
(315; 371;
417) (51; 68; 80)

𝑘2 𝑝 = 1 (881; 1022;
1057)

(394; 464;
556) (0; 0; 0) (793; 960;

1013)
(325; 371;
440) (0; 0; 0) (661; 749;

837)
(302; 348;

394) (0; 0; 0)

𝑝 = 2 (0; 0; 0) (0; 0; 0) (0; 0; 0) (0; 0; 0) (0; 0; 0) (0; 0; 0) (0; 0; 0) (0; 0; 0) (0; 0; 0)

𝑘3 𝑝 = 1 (0; 0; 0) (417; 487;
533)

(74; 86;
102) (0; 0; 0) (371; 431;

487) (68; 82; 93) (0; 0; 0) (325; 371;
417) (51; 63; 80)

𝑝 = 2 (0; 0; 0) (371; 461;
510) (74; 83; 96) (0; 0; 0) (302; 348;

417) (63; 74; 91) (0; 0; 0) (255; 325;
371) (46; 57; 74)

Table 25: Fixed cost of using path 𝑘 from plant 𝑝 to warehouse 𝑤 at period 𝑡.
Path Plants Warehouses𝑤 = 1 𝑤 = 2 𝑤 = 3
𝑘1 𝑝 = 1 500 550 675𝑝 = 2 650 600 550

𝑘2 𝑝 = 1 875 925 0𝑝 = 2 0 0 0

𝑘3 𝑝 = 1 0 1100 130𝑝 = 2 0 1400 1200

Table 26: Unit transportation cost of product 𝑗 from plant 𝑝 to warehouse 𝑤 by using path 𝑘 at period 𝑡.
Path Plants

𝑗 = 1 𝑗 = 2 𝑗 = 3
Warehouses Warehouses Warehouses𝑤 = 1 𝑤 = 2 𝑤 = 3 𝑤 = 1 𝑤 = 2 𝑤 = 3 𝑤 = 1 𝑤 = 2 𝑤 = 3

𝑘1 𝑝 = 1 (15; 15.89;
16.5)

(15.34; 16.11;
17.15)

(15.6; 16.37;
17.2)

(16.98; 17.99;
18.68)

(17.36; 18.24;
19.41)

(15.6; 16.37;
17.2)

(18.05; 19.12;
19.85)

(18.46; 19.38;
20.63)

(18.77; 19.7;
20.69)

𝑝 = 2 (16; 16.71;
17.4)

(16.25; 17.03;
18.3)

(17.68; 18.14;
19.1)

(18.11; 18.91;
19.7)

(17.68; 18.14;
19.1)

(18.39; 19.28;
20.71)

(19.25; 20.11;
20.94)

(19.55;
20.49;
22.02)

(21.27; 21.83;
22.98)

𝑘2 𝑝 = 1 (17.5; 19.76;
20.8)

(18; 18.72;
19.5) 0 (19.81; 22.37;

23.54)
(20.37; 21.19;

22.07) 0 (21.06;
23.77; 25.03)

(21.66;
22.52; 23.46) 0

𝑝 = 2 0 0 0 0 0 0 0 0 0

𝑘3 𝑝 = 1 0 (20.1; 21.74;
23.1)

(19.71; 21.09;
23.22) 0 (22.75;

24.61; 26.15)
(19.71; 21.09;

23.22) 0 (24.18;
26.16; 27.79)

(23.71;
25.38; 27.94)

𝑝 = 2 0 (20.3; 21.37;
23.4)

(20.06;
21.92; 23.83) 0 (20.06;

21.92; 23.83)

(22.98;
24.87;
26.49)

0 (24.42;
26.43; 28.15)

(24.14;
26.37;
28.67)

Table 27: Required capacity to transport unit product 𝑗.
𝑗 = 1 𝑗 = 2 𝑗 = 3
0.7 1.1 0.9

𝑘: Transportation path𝑐: Customers𝑡: Time period.

Parameters

R̃UP𝑖𝑠𝑡: Unit price of raw material 𝑖 in supplier 𝑠 at
period 𝑡

R̃C𝑖𝑠𝑡: Capacity of raw material 𝑖 supplied by 𝑠 at
period 𝑡

TCSP𝑠𝑝𝑘𝑡: Total capacity of transport path 𝑘 from
supplier 𝑠 to plant 𝑝 at period 𝑡
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Table 28: Transportation capacity of path 𝑘 from warehouse 𝑤 to retailer 𝑟 at period 𝑡.
Path Warehouses 𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 𝑟 = 5

High probability (0.5)

𝑘1 𝑤 = 1 (310; 328; 340) (320; 343; 360) (305; 325; 340) (310; 323; 340) (330; 359; 375)𝑤 = 2 (340; 357; 370) (310; 331; 350) (335; 360; 375) (340; 356; 370) (325; 355; 370)𝑤 = 3 (300; 324; 340) (320; 339; 350) (320; 346; 360) (305; 326; 340) (335; 350; 370)

𝑘2 𝑤 = 1 (520; 545; 570) (500; 523; 550) (500; 522; 590) 0 (530; 569; 610)𝑤 = 2 (500; 528; 560) (545; 576; 595) (500; 513; 580) 0 (490; 515; 570)𝑤 = 3 0 0 0 0 0

𝑘3 𝑤 = 1 0 0 0 0 0𝑤 = 2 (240; 272; 300) 0 (215; 246; 280) (240; 268; 300) 0𝑤 = 3 (250; 284; 310) 0 (210; 235; 250) (200; 232; 270) 0
Medium probability (0.3)

𝑘1 𝑤 = 1 (217; 230; 238) (224; 241; 252) (214; 228; 238) (217; 227; 238) (231; 252; 263)𝑤 = 2 (238; 250; 259) (217; 232; 245) (235; 252; 263) (238; 250; 259) (228; 249; 259)𝑤 = 3 (210; 227; 238) (224; 238; 245) (224; 243; 252) (214; 229; 238) (235; 245; 259)

𝑘2 𝑤 = 1 (364; 382; 399) (350; 367; 385) (350; 366; 413) 0 (371; 399; 427)𝑤 = 2 (350; 370; 392) (382; 404; 417) (350; 360; 406) 0 (343; 361; 399)𝑤 = 3 0 0 0 0 0

𝑘3 𝑤 = 1 0 0 0 0 0𝑤 = 2 (168; 191; 210) 0 (151; 173; 196) (168; 188; 210) 0𝑤 = 3 (175; 199; 217) 0 (147; 165; 175) (140; 163; 189) 0
Low probability (0.2)

𝑘1 𝑤 = 1 (155; 164; 170) (160; 172; 180) (153; 163; 170) (155; 162; 170) (165; 180; 188)𝑤 = 2 (170; 179; 185) (155; 166; 175) (168; 180; 188) (170; 178; 185) (163; 178; 185)𝑤 = 3 (150; 162; 170) (160; 170; 175) (160; 173; 180) (153; 163; 170) (168; 175; 185)

𝑘2 𝑤 = 1 (260; 273; 285) (250; 262; 275) (250; 261; 295) 0 (265; 285; 305)𝑤 = 2 (250; 264; 280) (273; 288; 298) (250; 257; 290) 0 (245; 258; 285)𝑤 = 3 0 0 0 0 0

𝑘3 𝑤 = 1 0 0 0 0 0𝑤 = 2 (120; 136; 150) 0 (108; 123; 140) (120; 134; 150) 0𝑤 = 3 (125; 142; 155) 0 (105; 118; 125) (100; 116; 135) 0

Table 29: Fixed cost of using path 𝑘 from warehouse 𝑤 to retailer 𝑟 at period 𝑡.
Paths Warehouses 𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 𝑟 = 5
𝑘1 𝑤 = 1 449 556 414 481 749𝑤 = 2 563 636 572 422 474𝑤 = 3 507 639 422 685 474

𝑘2 𝑤 = 1 721 741 797 0 801𝑤 = 2 860 765 863 0 858𝑤 = 3 0 0 0 0 0

𝑘3 𝑤 = 1 0 0 0 0 0𝑤 = 2 912 0 1059 923 0𝑤 = 3 999 0 820 1031 0

FTCS𝑠𝑝𝑘𝑡: Fixed cost of using path 𝑘 from supplier 𝑠
to plant 𝑝 at period 𝑡

ṼTCS𝑖𝑠𝑝𝑘𝑡: Unit transportation cost of raw material 𝑖
from supplier 𝑠 to plant 𝑝 by using path 𝑘
at period 𝑡

RRC𝑖: Required capacity to transport a unit raw
material 𝑖

RRM𝑖𝑗: Required amount of raw material 𝑖 for unit
product 𝑗

S̃RC𝑖𝑝𝑡: Unit holding cost of raw material 𝑖 in plant𝑝 at period 𝑡
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Table 30: Unit transportation cost of product 𝑗 from warehouse 𝑤 to retailer 𝑟 by using path 𝑘 at period 𝑡.
Warehouses Retailer𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 𝑟 = 5𝑗 = 1

𝑘1 𝑤 = 1 (5.89; 6.79; 7.5) (5.62; 6.47; 7.2) (6.11; 7.03; 7.83) (6.67; 7.17; 7.88) (5.82; 6.55; 7.18)𝑤 = 2 (5.95; 6.85; 7.65) (5.73; 6.71; 7.33) (6.22; 7.08; 7.94) (5.78; 6.34; 7.24) (5.97; 6.85; 7.47)𝑤 = 3 (6.15; 7.17; 7.8) (5.81; 6.53; 7.25) (6.36; 7.07; 7.91) (5.92; 6.56; 7.4) (5.44; 6.39; 7)

𝑘2 𝑤 = 1 (7.12; 8; 8.68) (7.03; 7.53; 8.16) (7.03; 7.73; 8.5) 0 (7.11; 7.92; 8.44)𝑤 = 2 (6.98; 7.62; 8.24) (6.73; 7.33; 7.98) (6.88; 7.56; 8.4) 0 (6.82; 7.3; 8)𝑤 = 3 0 0 0 0 0

𝑘3 𝑤 = 1 0 0 0 0 0𝑤 = 2 (7.58; 8.34; 8.88) 0 (7.43; 8.21; 8.92) (8.1; 8.78; 9.28) 0𝑤 = 3 (7.71; 8.51; 9.05) 0 (7.55; 8.32; 9) (8.15; 8.81; 9.34) 0𝐽 = 2
𝑘1 𝑤 = 1 (6.6; 7.6; 8.4) (6.29; 7.25; 8.06) (6.84; 7.87; 8.77) (7.47; 8.03; 8.83) (6.52; 7.34; 8.04)𝑤 = 2 (6.66; 7.67; 8.57) (6.42; 7.52; 8.21) (6.97; 7.93; 8.89) (6.47; 7.1; 8.11) (6.69; 7.67; 8.37)𝑤 = 3 (6.89; 8.03; 8.74) (6.51; 7.31; 8.12) (7.12; 7.92; 8.86) (6.63; 7.35; 8.29) (6.09; 7.16; 7.84)

𝑘2 𝑤 = 1 (7.97; 8.96; 9.72) (7.87; 8.43; 9.14) (7.87; 8.66; 9.52) 0 (7.96; 8.87; 9.45)𝑤 = 2 (7.82; 8.53; 9.23) (7.54; 8.21; 8.94) (7.71; 8.47; 9.41) 0 (7.64; 8.18; 8.96)𝑤 = 3 0 0 0 0 0

𝑘3 𝑤 = 1 0 0 0 0 0𝑤 = 2 (8.49; 9.34; 9.95) 0 (8.32; 9.2; 9.99) (9.07; 9.83; 10.39) 0𝑤 = 3 (8.64; 9.53; 10.14) 0 (8.46; 9.32; 10.08) (9.13; 9.87; 10.46) 0𝐽 = 3
𝑘1 𝑤 = 1 (7.01; 8.08; 8.93) (6.69; 7.7; 8.57) (7.27; 8.37; 9.32) (7.94; 8.53; 9.38) (6.93; 7.79; 8.54)𝑤 = 2 (7.08; 8.15; 9.1) (6.82; 7.98; 8.72) (7.4; 8.43; 9.45) (6.88; 7.54; 8.62) (7.1; 8.15; 8.89)𝑤 = 3 (7.32; 8.53; 9.28) (6.91; 7.77; 8.63) (7.57; 8.41; 9.41) (7.04; 7.81; 8.81) (6.47; 7.6; 8.33)

𝑘2 𝑤 = 1 (8.47; 9.52; 10.33) (8.37; 8.96; 9.71) (8.37; 9.2; 10.12) 0 (8.46; 9.42; 10.04)𝑤 = 2 (8.31; 9.07; 9.81) (8.01; 8.72; 9.5) (8.19; 9; 10) 0 (8.12; 8.69; 9.52)𝑤 = 3 0 0 0 0 0

𝑘3 𝑤 = 1 0 0 0 0 0𝑤 = 2 (9.02; 9.92; 10.57) 0 (8.84; 9.77; 10.61) (9.64; 10.45; 11.04) 0𝑤 = 3 (9.17; 10.13; 10.77) 0 (8.98; 9.9; 10.71) (9.7; 10.48; 11.11) 0

Table 31: Unit holding cost of product 𝑗 in warehouse 𝑤 at period 𝑡.
Products Warehouses𝑤 = 1 𝑤 = 2 𝑤 = 3𝑗 = 1 (6.83; 7.10; 7.23) (7.28; 7.94; 8.47) (8.86; 9.37; 7.45)𝑗 = 2 (7.68; 7.99; 8.14) (8.39; 9.16; 9.77) (9.92; 10.50; 8.38)𝑗 = 3 (9.48; 9.86; 10.05) (8.15; 8.89; 9.48) (9.79; 10.35; 10.35)

Table 32: Inventory capacity in warehouse 𝑤.
Warehouses𝑤 = 1 𝑤 = 2 𝑤 = 3 𝑤 = 4 𝑤 = 5

8000 8500 8000 9000 8500

UPT𝑗𝑝𝑡: Unit production time of product 𝑗 in plant𝑝 at period 𝑡
R̃PC𝑗𝑝𝑡: Unit production cost of product 𝑗 in

regular time in plant 𝑝 at period 𝑡

ÃRC𝑝𝑡: Available regular capacity (time) in plant 𝑝
at period 𝑡

ÕPC𝑗𝑝𝑡: Unit production cost of product 𝑗 in
overtime in plant 𝑝 at period 𝑡

ÃOC𝑝𝑡: Available overtime capacity (time) in plant𝑝 at period 𝑡
PIC𝑝: Inventory capacity in plant 𝑝
P̃HC𝑗𝑝𝑡: Unit holding cost of product 𝑗 in plant 𝑝 at

period 𝑡
RHC𝑗: Required capacity to store a unit product 𝑗
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Table 33: Unit holding cost of product 𝑗 in retailer 𝑟 at period 𝑡.
Products Retailers𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 𝑟 = 5𝑗 = 1 (2.73; 2.84; 2.9) (2.91; 3.18; 3.39) (3.55; 3.75; 2.98) (3.1; 3.16; 3.18) (3.47; 3.7; 3.87)𝑗 = 2 (3.34; 3.48; 3.54) (3.65; 3.98; 4.25) (4.32; 4.57; 3.65) (3.79; 3.86; 3.98) (4.35; 4.63; 4.71)𝑗 = 3 (4.13; 4.29; 4.37) (3.55; 3.87; 4.13) (4.26; 4.5; 4.5) (4.68; 4.77; 3.87) (4.22; 4.5; 4.64)

Table 34: Inventory capacity in retailer 𝑟.
Retailers𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 𝑟 = 5

5000 4600 4800 4900 4500

Table 35: Backorder cost of product 𝑗 in retailer 𝑟 at period 𝑡.
Products Retailers𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 𝑟 = 5𝑗 = 1 (17.76; 18.47; 18.82) (18.94; 20.66; 22.04) (23.05; 24.38; 19.38) (20.15; 20.53; 20.66) (22.54; 24.04; 25.15)𝑗 = 2 (20.06; 20.85; 21.25) (21.91; 23.9; 25.49) (25.9; 27.4; 21.88) (22.75; 23.18; 23.9) (26.07; 27.81; 28.26)𝑗 = 3 (25.16; 26.16; 26.66) (21.63; 23.6; 25.17) (25.97; 27.47; 27.45) (28.54; 29.08; 23.6) (25.74; 27.46; 28.33)

Table 36: Total demand of customer 𝑐 for product 𝑗 from retailer 𝑟 at period 𝑡.
High Medium Low

Mean Std. dev. Mean Std. dev. Mean Std. dev.𝑗 = 1𝑟 = 1 (540; 650; 730) 29 (378; 455; 511) 26.5 (243; 293; 329) 24.1𝑟 = 2 (570; 640; 710) 31.2 (399; 448; 497) 28.2 (257; 288; 320) 25.4𝑟 = 3 (550; 640; 720) 31.9 (385; 448; 504) 24.6 (248; 288; 324) 23.3𝑟 = 4 (570; 680; 710) 30.6 (399; 476; 497) 26.4 (257; 306; 320) 24.1𝑟 = 5 (550; 610; 700) 30.6 (385; 427; 490) 24.4 (248; 275; 315) 23.9𝑗 = 2𝑟 = 1 (540; 650; 720) 29.1 (378; 455; 504) 29.4 (249; 299; 332) 25.6𝑟 = 2 (510; 570; 730) 29.8 (357; 399; 511) 25.6 (235; 263; 336) 25.2𝑟 = 3 (550; 570; 700) 30.1 (385; 399; 490) 27.2 (253; 263; 322) 25.4𝑟 = 4 (540; 640; 720) 29.1 (378; 448; 504) 28.4 (249; 295; 332) 23.5𝑟 = 5 (490; 630; 720) 31.6 (343; 441; 504) 29.5 (226; 290; 332) 24.1𝑗 = 3𝑟 = 1 (530; 600; 660) 29.7 (371; 420; 462) 28.4 (255; 288; 317) 24.1𝑟 = 2 (470; 550; 680) 29.5 (329; 385; 476) 26.6 (226; 264; 327) 25.5𝑟 = 3 (510; 570; 690) 30.1 (357; 399; 483) 24.6 (245; 274; 332) 26.1𝑟 = 4 (530; 590; 680) 30.1 (371; 413; 476) 27.7 (255; 284; 327) 25.9𝑟 = 5 (450; 560; 650) 29.9 (315; 392; 455) 24.5 (216; 269; 312) 26

Table 37: Price of product j at period t.

𝑗 = 1 𝑗 = 2 𝑗 = 3
(600; 675; 750) (760; 800; 840) (800; 825; 850)

TCPW𝑝𝑤𝑘𝑡: Transportation capacity of path 𝑘 from
plant 𝑝 to warehouse 𝑤 at period 𝑡

FTCP𝑝𝑤𝑘𝑡: Fixed cost of using path 𝑘 from plant 𝑝 to
warehouse 𝑤 at period 𝑡

ṼTCP𝑗𝑝𝑤𝑘𝑡: Unit transportation cost of product 𝑗 from
plant 𝑝 to warehouse 𝑤 by using path 𝑘 at
period 𝑡

RTC𝑗: Required capacity to transport a unit
product 𝑗

TCWR𝑤𝑟𝑘𝑡: Transportation capacity of path 𝑘 from
warehouse 𝑤 to retailer 𝑟 at period 𝑡

FTCW𝑤𝑟𝑘𝑡: Fixed cost of using path 𝑘 from warehouse𝑤 to retailer 𝑟 at period 𝑡
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ṼTCW𝑗𝑤𝑟𝑘𝑡: Unit transportation cost of product 𝑗 from
warehouse 𝑤 to retailer 𝑟 by using path 𝑘
at period 𝑡

W̃HC𝑗𝑤𝑡: Unit holding cost of product 𝑗 in
warehouse 𝑤 at period 𝑡

WIC𝑤: Inventory capacity in warehouse 𝑤
H̃CR𝑗𝑟𝑡: Unit holding cost of product 𝑗 in retailer 𝑟

at period 𝑡
RIC𝑟: Inventory capacity in retailer 𝑟
B̃CR𝑗𝑟𝑡: Backorder cost of product 𝑗 in retailer 𝑟 at

period 𝑡
CDP𝑗𝑟𝑡: Total demand of customer 𝑐 for product 𝑗

from retailer 𝑟 at period 𝑡
P̃OP𝑗𝑡: Price of product 𝑗 at period 𝑡.
Decision Variables

TRQ𝑖𝑠𝑝𝑘𝑡: Quantity of raw material 𝑖 transported
from supplier 𝑠 to plant 𝑝 by using path 𝑘
at period 𝑡

SRP𝑖𝑝𝑡: Inventory level of raw material 𝑖 stored in
plant 𝑝 at the end of the period 𝑡

RPQ𝑗𝑝𝑡: Quantity of product 𝑗manufactured at
regular time in plant 𝑝 at period 𝑡

OPQ𝑗𝑝𝑡: Quantity of product 𝑗manufactured at
overtime in plant 𝑝 at period 𝑡

TPQP𝑗𝑝𝑤𝑘𝑡: Quantity of product 𝑗 transported from
plant 𝑝 to warehouse 𝑤 by using path 𝑘 at
period 𝑡

SLP𝑗𝑝𝑡: Inventory level for product 𝑗 in plant 𝑝 at
the end of the period 𝑡

SLW𝑗𝑤𝑡: Inventory level for product 𝑗 in warehouse𝑤 at the end of the period 𝑡
TPQW𝑗𝑤𝑟𝑘𝑡: Quantity of product 𝑗 transported from

warehouse 𝑤 to retailer 𝑟 by using path 𝑘
at period 𝑡

SLR𝑗𝑟𝑡: Inventory level for product 𝑗 in retailer 𝑟 at
the end of the period 𝑡

BLR𝑗𝑟𝑡𝑐: Backorder level for product 𝑗 in retailer 𝑟
for customer 𝑐 at the end of the period 𝑡

SPQ𝑗𝑟𝑡𝑐: Quantity of product 𝑗 sold from retailer 𝑟
to customer 𝑐 at period 𝑡

UKS𝑠𝑝𝑘𝑡: {1, if path 𝑘 is used between supplier 𝑠 and
plant 𝑝 at period 𝑡; 0, otherwise}

UKP𝑝𝑤𝑘𝑡: {1, if path 𝑘 is used between plant 𝑝 and
warehouse 𝑤 at period 𝑡; 0, otherwise}

UKW𝑤𝑟𝑘𝑡: {1, if path 𝑘 is used between warehouse 𝑤
and retailer 𝑟 at period 𝑡; 0, otherwise}.
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