Acar, TuncerAral, AliGonska, Heiner2020-06-252020-06-252017closedAccess1660-54461660-5454https://doi.org/10.1007/s00009-016-0804-7https://hdl.handle.net/20.500.12587/7035Acar, Tuncer/0000-0003-0982-9459A modification of Szasz-Mirakyan operators is presented that reproduces the functions 1 and e(2ax), a > 0 fixed. We prove uniform convergence, order of approximation via a certain weighted modulus of continuity, and a quantitative Voronovskaya-type theorem. A comparison with the classical Szasz-Mirakyan operators is given. Some shape preservation properties of the new operators are discussed as well. Using a natural transformation, we also present a uniform error estimate for the operators in terms of the first- and second-order moduli of smoothness.eninfo:eu-repo/semantics/closedAccessSzasz-Mirakyan operatorsKing operatorsWeighted modulus of continuityUniform convergenceOn Szasz-Mirakyan Operators Preserving e(2ax), a > 0Article14110.1007/s00009-016-0804-72-s2.0-85007421310Q2WOS:000395093400006Q1