Tachev, GanchoGupta, VijayAral, Ali2021-01-142021-01-142020closedAccess1072-947X1572-9176https://doi.org/10.1515/gmj-2018-0041https://hdl.handle.net/20.500.12587/12586ARAL, Ali/0000-0002-2024-8607; Gupta, Vijay/0000-0002-5768-5763In the present paper we establish a general form of Voronovskaja's theorem for functions defined on an unbounded interval and having exponential growth. The case of approximation by linear combinations is also considered. Applications are given for some Szasz-Mirakyan and Baskakov-type operators.eninfo:eu-repo/semantics/closedAccessLinear combinationslinear positive operatorsVoronovskaja's theoremSzasz operatorsBaskakov operatorsPhillips operatorsVoronovskaja's theorem for functions with exponential growthArticle27345946810.1515/gmj-2018-00412-s2.0-85049233712Q2WOS:000565809500015Q4