Olgun, AliInce, H. GulTasdelen, Fatma2020-06-252020-06-252013Olgun,A.,İnce,H. & Tasdelen,F.(2014).Kantrovich Type Generalization of Meyer-Konig and Zeller Operators via Generating Functions. Analele ştiinţifice ale Universităţii "Ovidius" Constanţa. Seria Matematică,21(3) 209-222.1224-17841844-0835https://doi.org/10.2478/auom-2013-0053https://hdl.handle.net/20.500.12587/5609TASDELEN, Fatma/0000-0002-6291-1649In the present paper, we study a Kantorovich type generalization of Meyer-Konig and Zeller type operators via generating functions. Using Korovkin type theorem we first give approximation properties of these operators defined on the space C [0, Lambda], 0 < Lambda < 1. Secondly, we compute the rate of convergence of these operators by means of the modulus of continuity and the elements of the modified Lipschitz class. Finally, we give an r-th order generalization of these operators in the sense of Kirov and Popova and we obtain approximation properties of them.eninfo:eu-repo/semantics/openAccessPositive Linear operatorsKantorovich-type operatorsMeyer-Konig and Zeller operatorsModulus of contiunityModified Lipschitz classr-th order generalizationKantrovich Type Generalization of Meyer-Konig and Zeller Operators via Generating FunctionsArticle21320922110.2478/auom-2013-00532-s2.0-84888583203Q3WOS:000330136200016Q4