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Abstract: Kidney tumors represent a type of cancer that people of advanced age are more likely to
develop. For this reason, it is important to exercise caution and provide diagnostic tests in the later
stages of life. Medical imaging and deep learning methods are becoming increasingly attractive in
this sense. Developing deep learning models to help physicians identify tumors with successful
segmentation is of great importance. However, not many successful systems exist for soft tissue
organs, such as the kidneys and the prostate, of which segmentation is relatively difficult. In such
cases where segmentation is difficult, V-Net-based models are mostly used. This paper proposes a
new hybrid model using the superior features of existing V-Net models. The model represents a more
successful system with improvements in the encoder and decoder phases not previously applied.
We believe that this new hybrid V-Net model could help the majority of physicians, particularly those
focused on kidney and kidney tumor segmentation. The proposed model showed better performance
in segmentation than existing imaging models and can be easily integrated into all systems due to its
flexible structure and applicability. The hybrid V-Net model exhibited average Dice coefficients of
97.7% and 86.5% for kidney and tumor segmentation, respectively, and, therefore, could be used as a
reliable method for soft tissue organ segmentation.

Keywords: medical image segmentation; renal segmentation; computed tomography; kidney cancer;
hybrid V-Net model

1. Introduction

Developing countries are home to the most diverse cancer types, which can be explained by social
and economic factors. However, lifestyle also has a great effect on these statistics [1]. Cancer statistics
data reveal that more than 400,000 cases of kidney cancer were detected worldwide in 2018. Most people
diagnosed with kidney cancer were between the ages of 60 and 70, with the statistics also indicating
that the number of asymptomatic kidney tumors is increasing [2]. Smoking, obesity, and hypertension
are among the determining risk factors for kidney cancer [3].

Kidney tumors can be divided into two distinct groups, namely, benign and malignant.
Benign tumors are mostly harmless, but some may cause symptoms such as muscle pain or hematuria
as the mass grows [4,5]. Malignant tumors are considered risky. The majority of these tumors are
renal cell carcinomas (RCC) [6]. While kidney or tumor removal was an effective treatment method
used in previous years, preventive treatment is gaining more importance thanks to the advanced
imaging techniques available today [7]. Oncological treatments are not ignored, while promising
studies focused on the prevention of unnecessary surgeries are also attracting attention [8]. In recent
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years, deep learning methods have found their footing in the medical field, with medical segmentation
also becoming more popular. However, not many algorithms exist in the literature regarding kidney
and kidney tumor segmentation [9–11]. Therefore, more research is needed on deep learning methods
in regard to their use in kidney tumors.

Recent studies in computerized image recognition emphasized the success of Convolutional
Neural Networks (CNN) in dealing with challenging tasks such as segmentation. This success is
based on the ability of CNNs to learn on their own using original data without the need for human
intervention [12]. Inputs are processed through network layers, with higher values provided from the
extracted features. Deeper layers can even capture a smaller amount of local data due to the filters used
for larger data [13]. However, new studies in this field are still of great importance since effective and
accurate segmentation always has room to improve, especially considering that even minor medical
errors should not be overlooked. New research opens up new routes for future studies while improving
the shortcomings of previous studies. Therefore, our study is also very important in this sense; it is a
flexible model designed to be used not only for kidney and tumor segmentation but in all situations where
segmentation might be difficult. The model we developed, which was designed by taking into account
the basic shortcomings of existing U-Net models, can be easily integrated into local application and all
international application systems. Thus, it can be used easily in all image segmentation models.

The segmentation of kidneys and kidney tumors is a challenging process for physicians, thereby
representing an area for further study. Most kidney image analyses are generally based on kidney
segmentation rather than on kidney tumor measurement because monitoring the evolution of kidney
cancers is difficult with manual segmentation. This process is not only time consuming, but it can
also cause errors in calculations and can lead to bias in two-dimensional (2D) tumor monitoring [14].
Since calcifications and cystic tissues may be present in the tumor [15], it should be considered that some
kidney cancers have diverse appearances on Computed Tomography (CT) images. Different methods
and techniques can be used in accordance with automatic and manual segmentation to solve this
problem [16]. This study was conducted using the KiTS19 dataset to develop a new hybrid V-Net
model with the purpose of achieving the most accurate segmentation results, taking into account the
structural properties of the kidneys, which originate from soft tissue. Our model, which was designed
in a different manner to its counterparts, is supported by original architectural structures. We also
compared the results obtained from this study with results from other models using the same dataset
in the literature. Similar studies found in the literature are included in Section 2. Section 3 discusses
the materials and methods. A discussion and conclusions can be found in Section 4. Conclusions and
future directions form the last section of this manuscript.

2. Related Works

Xin Yang et al. [17] proposed a method for kidney segmentation which firmly provided
segmentation accuracy for a wide variety of Dynamic Contrast Enhanced–Magnetic Resonance
Imaging (DCE–MRI) data, stressing that very few manual operations and parameter settings were
required for this approach. A five-step correction procedure was applied, with the authors reporting
that the model was superior to other models, with an accurate segmentation rate of 95%.

Dehui Xiang et al. [18] proposed a method for automatic renal cortex segmentation, presenting an
approach for the fully automatic identification of kidney and cortex tissues from CT scans. The method
was tested on a dataset consisting of 58 CTs. Experimental results were found to be 97.86% ± 2.41%
and 97.48% ± 3.18% for kidney and renal cortex segmentation, respectively.

Seda Arslan Tuncer and Ahmet Alkan [19] proposed a decision support system for the detection
of renal cell cancer as the most common type of kidney cancer. They reported that the rapid spread of
renal cell cancer and failure of early diagnosis often led to death. A machine learning-based decision
support system was proposed to distinguish between healthy kidney cells and kidney cells with renal
carcinoma, achieving a Dice coefficient segmentation success rate of 89.3% in their study, conducted
using 130 datasets obtained from Fırat University.
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Guanyu Yang et al. [20] proposed a three-dimensional, Fully Convolutional Neural Network
(FCNN) model for the automatic segmentation of kidney and renal tumors. They stated that renal
cancer is one of the ten most common types of cancer and emphasized that the prerequisite for surgical
planning was accurate renal and tumor segmentation on CT images, adding that this is still a problem
in automatic imaging. A new fully convolutional network model (FCN) combining a three-dimensional
(3D) pyramid pooling module (PPM) and a gradually enhanced feature module (GEFM) was proposed.
The proposed network architecture was an end-to-end learning system using 3D volumetric images,
whereby a structure with 3D information was used to improve the lesion of the tumor as well as the
segmentation of the kidney. As a result of experiments on 140 patients, the target structures were
shown to be successfully segmented. The average Dice coefficients obtained for kidney and renal
tumors were calculated as 0.931 and 0.802, respectively.

Florent Marie et al. [21] proposed an approach to segment deformed kidneys using CNN
networks. In a medical context, segmentation provides surgeons with a lot of information but is rarely
performed. These researchers are focused on kidneys deformed by nephroblastoma, proposing a
new CNN assessment after different training sets for manual segmentation. An Over Learning Vector
(OV2 ASSION) for Valid Sparse Segmentation was used to train the CNN. The study achieved a Dice
coefficient rate of 89.7%.

Couteaux et al. [22] developed a 2D U-Net model based on computed tomography images.
Segmentation of the kidney cortex was performed using the current U-Net models, with the authors
reporting that the segmentation results of their algorithm matched the renal cortex with good precision,
reaching a Dice score of 0.867, ranking them first in the data challenge. However, they emphasized that
it would be more accurate to apply the process in 3D by measuring the renal cortex volume, thereby
requiring labeling effort to train deep networks.

Antoniya et al. [23] recently performed a study on renal cyst segmentation using CT images.
They reported making several innovations in the CT images to optimize renal cyst diagnosis using a
new hybrid segmentation approach. The segmentation was based on several basic techniques, with the
study based on the idea that an optimized prepropagation algorithm is the core of kidney segmentation
in CT images. Color-based, k-means clustering algorithms were used, achieving a success rate of
92.12% for kidney segmentation and 91.24% for cyst segmentation.

Rundo et al. [24] developed a U-Net-based model for prostate segmentation, stating that prostate
cancer is very common and its diagnosis with MRI is difficult. They proposed a novel CNN, called
USE-Net, incorporating Squeeze-and-Excitation (SE) blocks into U-Net where the SE blocks were added
after every Encoder (Enc USE-Net) or Encoder–Decoder block (Enc–Dec USE-Net). SE blocks can be
defined as block structures formed by a series of operations of “residual + global pooling + sigmoid”
functions. This model was compared with the classical U-Net models. The Enc-Dec U-Net model showed
higher performance and achieved a better Dice coefficient than the other Enc U-Net and U-Net models.
However, the effectiveness of SE blocks at certain stages remains open for discussion, and its contributions
to the system should be further examined in terms of running speed. However, this developed model
provides important clues regarding the development of new architectures in the future.

Fuzhe et al. [25] proposed a study using artificial neural networks. They tried to both reduce
data size and increase the success of existing algorithms in various. The Heterogeneous Modified
Artificial Neural Network (HMANN) was used for the early detection and segmentation of chronic
kidney disease. These authors aimed to segment the region of interest of the kidneys in the ultrasound
image and reported that the proposed HMANN method achieved 97.5% classification success and
significantly reduced processing time.

Luana Batista da Cruz et al. [26] proposed an automatic method to delimit the kidneys in CT images
using image processing techniques and deep CNNs to minimize false positives. They mentioned that
the precise segmentation of kidneys and kidney tumors could help physicians to diagnose diseases and
improve treatment. Manual segmentation of the kidneys was stated to be difficult, therefore presenting
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the need for automatic. This method was used on the KiTS19 database and reached an average Dice
coefficient of 93.03%.

Chen Li et al. [27] developed a deep learning-based model (ANU-Net) segmentation network for
medical image segmentation. They stated that an automated medical image segmentation model is
required to help doctors diagnose and treat organ lesions. They also stated that medical segmentation
is a challenging task due to the irregular shapes of the target organs. The proposed network model
was stated to have a deeply controlled encoder–decoder architecture and a redesigned dense skip
connection. ANU-Net creates the network structure with nested pleated blocks, then the extracted
features can be combined with a selection. This ANU-Net model achieved four types of medical image
segmentation tasks with a Dice similarity coefficient of 90.10%.

Nithya et al. [28] proposed a method for the detection and segmentation of kidney diseases using
artificial neural networks. They emphasized that ultrasound imaging plays an important role in kidney
stone detection and segmentation for surgery and treatment, adding that kidney stone segmentation in
ultrasound images is often performed manually in clinical practice. Having eliminated noise in the
input image, the authors classified it using artificial neural networks and finally segmented stones and
tumors separately, with a success rate of 99.61%.

Wenshuai Zhao et al. [29] developed a 3D U-Net-based architecture for kidney and tumor
segmentation. They reported that the segmentation was performed by the physicians by examining
the CT images obtained during clinical analysis. They also argued that this process was difficult,
and the system could fail in the case of lack of previous experience. The U-Net-based architecture was,
therefore, developed to segment the kidneys, on the argument that a simpler architecture could be
more successful than complex models. They tested this architecture, called MSS U-Net, in the KiTS19
challenge, finding kidney and tumor Dice coefficients of 0.969 and 0.805, respectively.

Isensee et al. [30] proposed nnU-Net, a deep learning framework condensing the current domain
knowledge and autonomously making the key decisions required to transfer basic architecture to
different datasets and segmentation tasks. The nnU-Net surpassed most specialized deep learning
pipelines without manual tuning. This model is based on the principle of making the system more
simple and orderly using a systematic approach by clearing the complex structure of the system
without adding a new network structure. The authors stated that the model might have deficiencies in
situations that require high performance, since the focus is only on the Dice coefficient. In contrast
to state-of-the-art performance, some hyperparameters, such as missing functions, may need to be
adjusted manually. For this reason, the nnU-Net model can be turned into a semiautomatic system
by manually making additions; therefore, the deficiencies of the model can be eliminated by external
intervention, thereby making the network performance more successful.

3. Materials and Methods

3.1. Image Preprocessing

In this study, 210 datasets were prepared for use, which are open to public access and can be
downloaded through the cancer imaging archive page [31]. Additional explanations on the preparation
of the dataset as well as the ethics committees are available on the main web page of the KiTS19
dataset [32]. Manual segmentation can cause a number of errors in the subsequent monitoring of
the kidney or tumor. Additionally, it is time consuming and could slow system performance [33].
Despite these negative effects, we used the KiTS19 dataset because of the scarcity of available datasets
in the literature. We prepared the clinical features of the existing patients, the imaging data, and the
renal and tumor borders using the manual segmentation method. Figure 1 shows an example dataset
prepared by the manual segmentation method.
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Figure 1. A kidney image prepared by manual segmentation. Figure 1. A kidney image prepared by manual segmentation.

The imaging and ground-truth labels were presented in an anonymized nii file to image (NIFTI)
format [34]. We resized the CT images in the dataset to 16 × 256 × 256 and divided the pixel value by
255 to normalize it between 0 and 1. The model parameters were initialized randomly, and no transfer
learning was used. Patches of 64 × 128 × 128 in size were randomly sampled from the resampled
volumes for training. The dataset consisted of 210 patients in total, with 190 in the training dataset.
The remaining 20 were used for testing. These operations were arranged randomly. The model was
trained by Adam Optimizer with a learning coefficient set at 0.001. The batch size was determined as 3,
and the total epochs were set to 100,000. Training this model took about five days on the NVIDIA Tesla
V100 (32 GB, NVLink) Graphic Processing Unit (GPU). We used the features of the TensorFlow library
during the training. Figure 2 shows 3D volume rendering of the segmented regions (kidney and renal
cancer in blue and purple) and also the 2D kidney and renal cancer images. In the image process phase,
the CT image is analyzed to determine the slice thickness, window width, and position information.
The kidney and renal tumor regions are preserved unchanged. In addition, original pictures and masks
of these regions are created.
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3.2. V-Net Architecture

Figure 3 shows the network structure of the classic V-Net architecture. The network architecture
consists of the encoding and decoding portions, as in the basic U-Net architecture. Therefore, it is a
derivation of U-Net architecture, except with a volumetric design, which is suitable for use in tissues
where it is difficult to identify organs and tumors (such as prostate or kidney) on CT imaging [12].

The V-Net architecture has a convolutional structure to extract features and reduce the resolution
by following the right path. Classical pooling methods sometimes ignore important details during the
segmentation process, so the V-Net convolutions are used to avoid this by downsampling, whereby
the size of the data transmitted as input is reduced and the data are transmitted to the receiving
properties calculated in the next network layers [13]. Each layer on the encoder side of the V-Net
architecture consists of feature set calculation sections that are two times higher than the previous layer.
The decoder section of the network aims to provide two-channel volumetric segmentation. For this
reason, feature maps are provided in order to obtain the necessary information. After each layer in the
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encoder part of the network architecture, a deflection operation is performed to increase the size of
the entries, with the same operations performed in the reverse direction to reduce the dimensions in
the decoder section. The properties of the neural network removed from each stage of the encoder
phase are transferred to the decoder phase. This is shown schematically in Figure 3 with horizontal
connections [35]. Therefore, small details are able to be collected that would otherwise be lost in the
encoder part, thereby increasing the estimated segmentation quality.Mathematics 2020, 8, x FOR PEER REVIEW 6 of 17 
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3.3. Fusion V-Net Architecture

Figure 4 shows the network structure of the fusion V-Net architecture. The aim is to detect more
features of the same scene by using fewer modalities. Coding the basic information for the architectural
structure provides a level of learning without large amounts of data, so the use of a small-scale dataset
also enables successful results in terms of performance [36]. Based on this idea, the fusion V-Net model
inputs multiple parameters to the network in the encoder part. Figure 3 shows the encoder part of this
structure. At this point, there is no limit to the reproduction of input parameters. However, increasing
the number of parameters unnecessarily can disrupt and tire the network architecture; therefore, input
parameters should be increased in a certain format and unnecessary duplication should be avoided.
Figure 5 shows a simple late fusion architecture structure.
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3.4. ET-Net Architecture

In the architecture shown in Figure 6, an edge guidance module (EGM) is used to determine
edge displays and maintain local edge characteristics. A weighted aggregation module (WAM) is
then used to collect the side-outputs from the decoding layers. In this way, Edge-Attention Guidance
Network (ET-Net) architecture is created by combining two different network structures [37]. While
“Conv” symbolizes the convolutional layer, “U”, “C” and “+” mean upsampling, concatenation,
and aggregation, respectively.

The main goal of the architecture is to transmit edge attention impressions to the upper layers to
improve the output from the decoder phase. The first inputs for each encoder block pass through the
feature extraction section, consisting of a (1 × 1)–(3 × 3)–(1 × 1) convolutional layer stack, and then the
system is operated by gathering the shortcuts of the inputs to achieve the desired outputs.

A residual connection allows the architecture to produce class-specific l features [38,39].
The decoding block uses an in-depth convolution to increase the low- and high-level features.
Then, the 1 × 1 convolution layer is processed to combine the number of channels.
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3.5. Hybrid V-Net Architecture

Figure 7 shows the proposed hybrid V-Net architecture consisting of the encoder and decoder
blocks, as in the classic V-Net architecture. (For codes: https://github.com/turkfuat/KiTS19-Hybird-V-
Net-Model). Combining two different V-net models in the encoder and decoder phases, the hybrid
architecture is also supported with a unique ResNet layer before the output layer.

The encoder block was created based on the fusion V-Net model, and the input parameters were
set to be input1 and input2. The decoder block was designed based on the ET-Net architecture. In the
encoder block, the input parameters were aimed to pass through the fusion V-Net model to capture
all features during segmentation. The goal of the ET-Net model was to catch even the smallest edge
features for segmentation. In the decoder phase, the layers were connected by using the edge extraction
features of the ET-Net model, which were forwarded to the ResNet++ block, the architecture of which
is shown in Figure 8 below.
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This block can be thought of as two nested ResNet blocks. Unlike a normal ResNet model, this
block connects the output layer with the preceding two layers. Thus, small residual blocks before the
output can also be captured. Adding this layer to all blocks makes the network very slow, so adding it
to the correct layer is extremely important.

The ResNet1 and ResNet2 structures are shown in Equations (1) and (2). These two blocks
represent the classic ResNet architecture [40].

ResNet1 = F1(x) + x (1)

ResNet2 = F2(x) + x (2)

To clarify Equations (1) and (2), let the output layer be layer_n. In this case, the previous layer is
represented as layer_ (n − 1). This situation is shown in Equations (3) and (4).

ResNet1 = (layer_(n − 2) + layer_(n − 1)) (3)

ResNet2 = (layer_(n − 1) + layer_(n)) (4)

In Equation (5), we see that the ResNet++ architecture combines the two ResNet blocks.
The ResNet1 architecture runs first, followed by the ResNet2 architecture.

ResNet++ = (ResNet1) + (ResNet2) (5)

Equation (6) shows the internal structure of the ResNet1 and ResNet2 blocks.

ResNet++ = ((layer_(n − 2) + layer_(n − 1)) + (layer_(n − 1) + layer_(n))) (6)

In Equation (7), the F3 (x) function is executed last. Here, the architecture turns into a single block
structure, and the last two layers form a nested architecture called ResNet++.

ResNet++ = F3(x) + x (7)

The ResNet++ block is implemented only in the final stage of the decoding phase, while the
ResNet block is implemented in all phases. A detailed demonstration of this hybrid V-Net architecture
is given in Table 1.
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Table 1. Hybrid V-Net model architecture.

Layer Input Size (x1, x2) Operators Layer Input Size (x) Operators

L-Stage1 3 × 3 × 3 × image channel
× 16(input)

Conv, Rectified
Lineer Unit

(ReLU), ResNet
R-Stage1 3 × 3 × 3 × 256 × 128 Up conv,

ReLU, ResNet

L-Stage2 3 × 3 × 3 × (16 × 2) × 16 Down conv,
ReLU, ResNet R-Stage2 3 × 3 × 3 × 128 × 64 Up conv,

ReLU, ResNet

L-Stage3 3 × 3 × 3 × (32 × 2) × 32 Down conv,
ReLU, ResNet R-Stage3 3 × 3 × 3 × 64 × 32 Up conv,

ReLU, ResNet

L-Stage4 3 × 3 × 3 × (64 × 2) × 64 Down conv,
ReLU, ResNet R-Stage4 3 × 3 × 3 × 32 × 16 Up conv,

ReLU, ResNet

L-Stage5 3 × 3 × 3 × (128 × 2) × 128 Down conv,
ReLU, ResNet R-Stage5 3 × 3 × 3 × 16 × 16

Up conv,
ReLU,

ResNet++

L-Stage6 3 × 3 × 3 × (256 × 2) × 256 Down conv,
ReLU, ResNet R-Stage6 1 × 1 × 1 × 16 × 16

EGM, WAM,
conv sigmoid

(output)

3.6. Dice Similarity Coefficient

The Dice similarity coefficient (DSC) measures the spatial similarity or overlap between two
segmentations [41]. It is commonly used as a metric to evaluate the ground truth and segmentation
performance in medical images [42]. Figure 9 shows the DSC area chart.Mathematics 2020, 8, x FOR PEER REVIEW 10 of 17 
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The DSC calculation is shown in Equation (8).

DSC =
2|S∩R|
|S|+ |R|

(8)

where S represents the result of segmentation and R is the corresponding ground-truth label. DSC is
designed for image segmentation and is an accepted method to compare binary segmentation of the
same image. Generally, a comparison is made between segmentation accuracy and the results of
automatic or semiautomatic segmentation methods [43].

4. Results and Discussion

Having run the V-Net, fusion V-Net, the ET-Net, and the hybrid V-Net models, results were
obtained and are discussed below in detail. All four models were run with the same hyperparameters,
though all had different network architectures. We computed the Dice coefficient values for the kidneys,
taking into account the ground-truth values and tumor labels.

The results shown in this section were calculated based on the average of the five-fold,
cross-validation results obtained from the training dataset. Figure 10 demonstrates the five-fold,
cross-validation algorithm scheme. Each section was run separately, and the average validation result
was calculated. In this way, we aimed to obtain a higher validation sensitivity in the training phase.



Mathematics 2020, 8, 1772 11 of 17

Mathematics 2020, 8, x FOR PEER REVIEW 10 of 17 

 

 
Figure 9. Dice similarity coefficient. 

The DSC calculation is shown in Equation (8). ܥܵܦ = 2|ܵ ∩ ܴ||ܵ| + |ܴ| (8) 

where S represents the result of segmentation and R is the corresponding ground-truth label. DSC is 
designed for image segmentation and is an accepted method to compare binary segmentation of the 
same image. Generally, a comparison is made between segmentation accuracy and the results of 
automatic or semiautomatic segmentation methods [43]. 

4. Results and Discussion 

Having run the V-Net, fusion V-Net, the ET-Net, and the hybrid V-Net models, results were 
obtained and are discussed below in detail. All four models were run with the same hyperparameters, 
though all had different network architectures. We computed the Dice coefficient values for the 
kidneys, taking into account the ground-truth values and tumor labels.  

The results shown in this section were calculated based on the average of the five-fold, cross-
validation results obtained from the training dataset. Figure 10 demonstrates the five-fold, cross-
validation algorithm scheme. Each section was run separately, and the average validation result was 
calculated. In this way, we aimed to obtain a higher validation sensitivity in the training phase. 

 
Figure 10. Five-fold, cross-validation algorithm scheme. 

Figure 11 shows the kidney and tumor DSC graphs obtained during the training period. A wavy 
curve was observed during the early stages of the training, possibly because of the difficulty level of 
the segmentation. In the following steps, The DSC values were gradually fixed and reached the 
desired level. Validation Dice loss charts initially showed partial fluctuations but remained at low, 
reasonable levels thereafter. 

Figure 10. Five-fold, cross-validation algorithm scheme.

Figure 11 shows the kidney and tumor DSC graphs obtained during the training period. A wavy
curve was observed during the early stages of the training, possibly because of the difficulty level
of the segmentation. In the following steps, The DSC values were gradually fixed and reached the
desired level. Validation Dice loss charts initially showed partial fluctuations but remained at low,
reasonable levels thereafter.Mathematics 2020, 8, x FOR PEER REVIEW 11 of 17 
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Table 2 shows the Dice coefficients obtained from the validation and test results. The validation
and test results indicated that all V-Net models achieved a certain success rate. For kidney segmentation,
the classical V-Net model produced the most successful result, with a Dice coefficient of 0.940. For
tumor segmentation, the hybrid V-Net model reached the highest Dice coefficient, at 0.865. However,
the hybrid V-Net model, which achieved a more consistent and higher Dice coefficient than other
models, seemed to be more successful in both kidney segmentation and tumor detection. As above,
these results were obtained from the network architecture we prepared for this study using the KiTS19
training dataset.
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Table 2. Testing and validation Dice similarity coefficient (DSC) of the four models.

Kidney Dice Tumor Dice Composite

Model DSC Val. DSC Test DSC Val. DSC Test Test

V-Net 0.940 0.951 0.919 0.823 0.887
Fusion V-Net 0.861 0.937 0.923 0.835 0.886

ET-Net 0.925 0.886 0.905 0.818 0.852
Hybrid V-Net 0.937 0.977 0.931 0.865 0.921

Table 3 shows a general comparison of the results obtained from other kidney and renal tumor
segmentation studies in the literature with the results obtained from this study. Although the datasets
were different, our model seemed to be successful in calculating the Dice coefficient when kidney
segmentation was taken into account. This model for kidney and kidney tumor segmentation was
further compared with the model that came first in the Kits19 challenge. Although the training and test
sets were not the same, our model seemed to be particularly successful in calculating the kidney tumor
membrane coefficient. Currently, 90 test sets in the Kits19 challenge cannot be due to unavailable
public access.

Tuncer and Alkan [19] were able to perform kidney segmentation on 100 images with a Dice
coefficient of 0.893 using the decision support method, which is a machine learning model.

Cuingnet et al. [44] performed 3D kidney segmentation using the random forest machine-learning
algorithm. The average Dice coefficient value reached 0.97.

Zheng et al. [45] developed an architecture called CNN + MSL, with which they performed precise
segmentation, with a Dice coefficient of 0.905.

Milletari et al. [12], though the first implementers of the V-Net model, improved the U-Net model,
aiming to achieve success particularly for organs of which segmentation is challenging. They ran the
model on a total of 27 test sets and achieved a Dice coefficient of 0.856.

Chenglong et al. [46] developed a deep learning architecture based on Fully Convolutional
Networks (FCN). They used the same dataset as Milletari et al. and were able to perform kidney
segmentation with a Dice coefficient of 0.95.

Guanyu Yang et al. [20] developed a 3D-FCN-based deep learning architecture for the diagnosis
of renal cancer. After testing this architecture on 140 patients, Dice coefficients of 0.931 and 0.802 were
achieved for kidney and kidney tumor segmentation, respectively.

Price Jackson et al. [47] managed to segment the left and right kidneys with a CNN-based model,
testing this architecture on 89 CT images and achieving Dice coefficients of 0.91 and 0.86 for the right
and left kidneys, respectively.

Luana Btista et al. [26] developed a CNN-based model using the Kits19 dataset and achieved a
Dice coefficient of 0.963.

Wenshuai Zhao et al. [29] developed a U-Net-based model and tested it on the Kits19
dataset, achieving Dice coefficients of 0.969 and 0.805 for kidney segmentation and tumor
segmentation, respectively.

Isensee et al. [34] designed a U-Net-based model using the Kits19 challenge dataset, securing
first place in the challenge. They obtained Dice coefficients of 0.979 and 0.854 for kidney and tumor
segmentation, respectively.

As for the hybrid-based V-Net model designed in this work, the model achieved coefficients of
0.977 and 0.865 using the Kits19 dataset for kidney and tumor segmentation, respectively.
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Table 3. Comparison of kidney and tumor segmentation methods for Computed Tomography
(CT) images.

Reference Method Case Num Kidney Dice-Tumor Dice

Tuncer and Alkan [19] Decision support 100 images 0.893

Cuingnet et al. [44] Random forest Train: 233, Test: 179 0.97

Zheng et al. [45] CNN + MSL Train: 370, Test: 78 0.905

Milletari et al. [12] VNet 27 (8-fold) 0.856

Chenglong et al. [46] FCN based 27 (8-fold) 0.95

Guanyu Yang et al. [20] 3DFCN-PPM 140 patients 0.931

Price Jackson et al. [47] CNN 89 images 0.91,0.86
0.979–0.854

Luana Batista da Cruz et al. [26] CNN Train: 179, Test: 31 0.963

Wenshuai Zhao et al. [29] U-Net Train: 168, Test: 42 0.969–0.805
Comp. (0.887)

Isensee et al. [34] nnU-Net Train: 210, Test: 90 0.979–0.854
Comp. (0.916)

Our Hybrid V-Net V-Net Train: 190, Test: 20 0.977–0.865
Comp. (0.921)

Figure 12 demonstrates the original images and masks used for kidney segmentation in V-Net
models and the segmentation results. V-Net models demonstrate high training and test success, so the
results appeared very similar. However, a closer look revealed that the hybrid V-Net model was more
successful than the current V-Net models in detecting small details, suggesting that the improvements
made in the hybrid V-Net model yielded positive results.Mathematics 2020, 8, x FOR PEER REVIEW 13 of 17 
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Figure 13 shows the original images and masks used for renal tumor segmentation in the
V-Net models and the segmentation results. The figure indicates that each V-Net model achieved
an acceptable success rate for kidney tumors. Comparing manual segmentation results for tumor
detection, the hybrid V-Net model successfully demonstrated the details, even drawn with sharp lines
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in many cases. The hybrid V-Net model produced more successful output in the encoder portion
when integrated with the fusion V-Net model and in the decoder portion in combination with the
ETV-Net model.
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Our hypothesis was supported by the fact that the hybrid V-Net model, developed for soft tissues
where kidney and tumor segmentation are challenging, yielded more successful results than other
models. We, therefore, designed a model that produced better results by improving the existing V-Net
models. Inspired by the fusion architecture, we used the encoder phase as two separate encoder phases
and combined the layers in the decoder phase to capture edge features. As a result, we obtained a
model with better performance. It is evident from the Dice coefficient results we obtained that, with the
effect of the ResNet++ block on the output, the model can capture even small details. However, despite
the improvements in the hybrid V-Net model, the training took an average of five days. In saying that,
considering the additional processing volume in this model (such as ResNet++), our model could be
thought to run faster than existing models. The creation of new models to shorten the training period
is possible in our future studies. We should also emphasize that such fully automatic segmentation
systems as Fuzzy C-Means clustering and iterative optimal threshold selection algorithms [33] can
be more successful on existing datasets, considering the difficulties of manual segmentation such as
processing time and detection of errors in the segmentation process.

5. Conclusions

In this study, we proposed a new hybrid V-Net model using the superior features of existing
V-Net models. We ran four models, including the hybrid V-Net model, on this dataset and performed
kidney and tumor segmentation separately. The results showed that the hybrid V-Net model yielded
more successful results for kidney and renal tumor segmentation than other V-Net models, with rates
of 0.977 and 0.865 DSC, respectively.

This study showed that V-Net models successfully perform organ and tumor segmentation via
computerized images and that more successful models can be developed from existing V-Net models
by considering the encoding and decoding stages separately. More suitable models could be designed
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for multiple organ segmentation using medical images. This study could also be used as a guide for
future hybrid models as the success of the implementation of the hybrid V-Net model for the first time
was positively contributed to by the ResNet++ architecture. The ResNet++ architecture was applied
only to the output layer, making it possible to capture small details in the segmentation. This situation
is extremely important for model design because each parameter can only be successful when added to
the appropriate blocks of the model. The results presented here suggest that more research regarding
the hyperparameters of this model is pertinent.

Following this study, we aim to investigate the shortcomings of our hybrid V-Net model;
by eliminating these, we plan to develop more practical systems for kidney or other organ segmentation
in medical imaging. Future studies regarding deep learning designs, especially in the field of medical
imaging, should not be based on systems with complex structures. On the contrary, research should be
concentrated on areas where better results can be obtained with small improvements to existing models
(such as changing hyperparameters), thereby removing unnecessary load and improving existing
model effectiveness. Future studies should further focus on shortening the training period of deep
learning models. It is necessary to simplify the systems to which the models could be applied and
reduce complexity to develop more successful models that can be used in various fields.
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