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Summary. For the existence of the solution for the Dirichlet Problem




= −( +)  ∈ 

| =   ∈ ()

(0) = 0 0 ∈ 

in a domain having a smooth boundary ⊂ , necessary conditions are studied.

Here we assumed that  ∈ ,  ∈ (), 0 ∈  and  ∈ ().
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1. Introduction

Various boundary value problems for Generalized Analytic Functions have been

studied by many authors [3], [5]. For instance, in [3] the function space has

been changed and in [5] the boundary values of the problem have been given in

various forms. In [4] , Tutschke presented the existence of a Dirichlet problem

using fixed point theorem. However, these problems have been considered in

various meanings. The purpose of this paper is to study the boundary value
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problems by putting special conditions on the coefficients of the equations. We

consider the system of non-homogenous real-valued partial differential equation

 −  + +  = 0(1)

 +  + +  = 0

It can be easily shown that (1) is equal to the complex-valued partial differential

equation

(2)



=  +  

with

 =
1

4
(− + + )  =

1

4
(+ + − )  = + 

2. A Dirichlet Problem For Generalized Analytic Functions

In this section, we will study the solution of the complex partial differential

equation

(3)



+ () + () = 0  

which belongs to the class of (), with the following boundary conditions:

(4) () =   ∈ 

(5) (0) = 0 0 ∈ 

where  is a bounded and simply connected domain with smooth boundary, 0
is a real constant,  ∈ (), and  ∈ () is Hölder continuous with

Hölder constant .

Now, by assuming  ∈ (), let us consider the operator  such that

 : 
()→ ()

→ () = − 1


Z


Z
()

 − 


where  =  + .

Theorem 1: A function  ∈ 1() is a solution to the Dirichlet problem

(3)-(5) if and only if  solves the integral equation

(6) () = () + [−( +)]
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where  ∈ () is holomorphic in a domain  satisfying the Dirichlet condi-

tions

(7) () =  −[−( +)]()   

(8) (0) = 0 − [−( +)](0) 0 ∈ 

Proof : Assume  ∈ 1() is a solution of (3) satisfying the boundary con-

ditions (4) and (5). We define a function  as follows:

() = ()− [−( +)]

Differentiating  with respect to , we get




=




+ + = 0

at least in Sobolev’s sense. It follows from Weyl lemma that  is a holomorphic

function in , hence the boundary conditions (7) and (8) implies:

() = [ − (− −)]()

=  −(− −)()

and

(0) = [0]− (− −)](0)

= 0 − (− −)(0)

for the holomorphic function . It is given that  ∈ (). Moreover,

[−( + )] ∈ () for  ∈ (). It follows that, [−( +
)] ∈ () in particular. Then  ∈ () and therefore, we have shown

that,  solves the integral equation

() = () + [−( +)]

where  is holomorphic and satisfies the conditions (7) and (8).

Conversely, suppose that  is a solution of the equation (6) where  is a holo-

morphic function satisfying (7) and (8). Differentiating (6) with respect to  we

obtain



= 0− ( +)

and obviously,  satisfies (7) and (8). This shows that  ∈ 1() is a solution

of (3)-(4).

Let us consider a function  ∈ 1() and define an operator

(9)  : ()→ ()
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→  () = () + (− −)

where () is a holomorphic function in  and is uniquely determined by the

boundary conditions

(10) ()() =  −[−( +)]   

(11) ()(0) = 0 − [−( +)](0) 0 ∈ ()

Hence,  () satisfies the boundary condition (7),(8) and if  is a fixed point of

the operator  , that is

 = () + [−( +)]

then  is a solution of (3)-(4).

Theorem 2: If  and  belongs to () then the operator

 : ()→ ()

defined by (10) is contractive if

kk() + kk() 
1

( + 1)kk()

where  is a constant depending on  only.

Proof:Let us choose 1 and 2 in 1(). Then we have

 (1) = (1) + [−(1 +1)]

 (2) = (2) + [−(2 +2)]

where the holomorphic functions (1) and (2) are uniquely determined by

the boundary conditions

(12) (1)() =  −[−(1 +1)]()   

(13) (1)(0) = 0 − [−(1 +1)](0) 0 ∈ 

and

(14) (2)() =  −[−(2 +2)]()   
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(15) (2)(0) = 0 − [−(2 +2)](0) 0 ∈ 

respectively. Therefore we obtain

(16)

 (1)−  (2) = ((1) − (2)) + [−(1 +1) + (2 +2)]

= ((1) − (2)) + [−(1 − 2)−(1 − 2)]

where (1) − (2) have the boundary values

((1) − (2))() = −[−(1 +1) + (2 +2)]()

= −[−(1 − 2)−(1 − 2)]   

((1) − (2))(0) = −[−(1 − 2)−(1 − 2)](0) 0 ∈ 

In order to show that  is contractive, we will compare the distance between the

elements 1 2 ∈ 1() and their corresponding images  (1) and  (2).

Thus we will need the corresponding estimates for the norms of

((1) − (2))  [−(1 − 2)−(−1 − 2)]

We have

k[−(1−2)−(1−2)]k() ≤ kk()k(1−2)+(1−2)k()

≤ kk()[k(1 − 2)k() + k(1 − 2)k()]

= kk()[kk()k1 − 2k() + kk()k1 − 2k()]

= kk()[kk() + kk()]k1 − 2k()

We know

k(1) − (2)k() =



⎧⎨⎩
¯̄
1 − 2

¯̄
 1 6=2

¯̄̄
((1) − (2))(1)− ((1) − (2))(2)

¯̄̄
|1 − 2|

⎫⎬⎭
Now we consider Dirichlet Problem defined for (1)−(2) and investigate the
behaviour of the real part of the function in  .

|−[−(1 − 2)−(1 − 2)](1) +[−(1 − 2)−(1 − 2)](2)|

≤ |−[−(1−2)− ((1)− (2))](1)+[−(1−2)−((1)−(2))](2)|
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≤ k[−(1 − 2)−(1 − 2)]k()|1 − 2|

≤ kk()k[−(1 − 2)−(1 − 2)]k()|1 − 2|
Therefore, the real part is Hölder continuous with the Hölder constant being

not larger than

kk()[kk() + kk()]k1 − 2k()

Then

|((1)−(2))(1)− ((1)−(2))(2)|≤ kk()[kk()

(17)

+kk()]k1−2k()|1−2|

where  is a constant defined by

 =
2+3

(
2
)

∙
2


(1 + 2) + 1

¸


And finally

(18)

|((1) − (2)()| ≤ 2kk()[kk() + kk()]k1 − 2k()

+ |−[−(1 − 2)−(1 − 2)]|
+|− [−(1 − 2)−(1 − 2)](0)|

Here

 |−[−(1 − 2)−(1 − 2)]|

≤  |[−(1 − 2)−(1 − 2)]|
≤  |[−(1 − 2)−(1 − 2)]|
≤ k[−(1 − 2)−(1 − 2)]k()

≤ kk()(kk() + kk())k1 − 2k()

and

|− [−(1 − 2)−(1 − 2)]|

≤ |[−(1 − 2)−(1 − 2)]|
≤  |[−(1 − 2)−(1 − 2)]|
≤ k[−(1 − 2)−(1 − 2)]k()

≤ kk()[kk() + kk()]k1 − 2k()

Thus we obtain
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|((1) − (2)()| ≤ (2 + 2)kk()[kk()(19)

+ kk()]k1 − 2k()

Consequently, using (17) and (19) we have the following estimate

k1−2k() ≤ (2+2)kk()[kk()+kk()]k1−2k()

If we call  = 2 + 2, we get

k (1)−  (2)k()

≤ k(1) − (2)k() + k[−(1 − 2)−(1 − 2]k()

≤ (2 + 2)kk()[kk() + kk()]k1 − 2k()

= ( + 1)kk()[kk() + kk()]k1 − 2k()

Consequently, the operator (9) is contractive if

( + 1)kk()[kk() + kk()]  1

[kk() + kk()] 
1

( + 1)kk()
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