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DETERMINATION OF THE DEFLECTION FUNCTION OF A COMPOSITE
CANTILEVER BEAM USING THEORY OF ANISOTROPIC ELASTICITY

Alaattin Aktas
Department of Mechanical Engineering, Kiritkkale University, Kinkkale

Abstract- In this paper, deflection function of an orthotropic cantilever beam subjected
to point and distributed load are obtained using anisotropic elasticity. The deflections at
the free end of the beam are calculated numerically using obtained formulas for
different fiber directions.

1. INTRODUCTION

Among the major advantages of composite structures over conventional metal structures
are their comparatively high strength-to-weight and stiffness-to-weight ratios. As a
result, fiber reinforced composite materials have been gaining wide application in
spacecraft construction and structural systems[1]. Tuerefore, some researchers have
studied on composite beams. Karakuzu et al [2] have investigated elasto-plastic stress
analysis in metal-matrix composite beam loaded uniformly or by a single force at the
free end by using an analytical solution. Ozcan [3] has investigated elasto-plastic stress
analysis in steel fiber reinforced thermoplastic orthotropic cantilever beam subjected to
single force at the free end of the beam. Ever et al [4] have obtained shear correction
factor and deflection of a composite beam having I cross section.

In this study, the deflection function of an orthotropic composite cantilever is obtained
by means of anisotropic elasticity. The deflection of the free end of the beam (i.e. at
point x=0 and y=0) is calculated numerically, using obtained deflection function, for
different fiber directions

2. SOCLUTION OF ANISOTROPIC ELASTICITY

Stress-strain relations in anisotropic elasticity theory are given as{3 1;

€, =ay0, +a5,0, + 4T, (l.2)
€, =010, + a0, +ayT,, (Lb)

If Cos@ and Sin@ are taken as m and n respectively in above equations, cofficients of
ay’'s are
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ay; =S;mt + (28, + Sgg)m*n® +8y,n’

ap, =S, m* A+ nty+ (S + 8, — Seg)mn’

ay, = Synt + (28, + Ses)m’n® + Syym? (2)
A = (28, — 281, — Sgg)mm® — (285, — 285, — Ses)n°m

s = (28, =28 — Sgg)mn’ — (284, =28y, = See)m’n

Ags = 228, + 285, — 48, — Sg)n’m® = Ses(n +m*)

and
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In addition, strain components in the theory of elasiicity are given as [6];
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Figure 1. a) The Orthotropic cantilever beam subjected to single force (q=0)
b) The Orthotropic cantilever beam subjected to distributed load (P=0)
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2.1. Deflection of The Orthotropic Cantilever Subjected to Single force

Stress components of cantilever beam subjected to single force are given as{5];

P Pa (b
G, = X .+...._,._._§_6_. R, 2 5.3
x I y Ta, |12 ¥ ) (5.2)
o,=0 (3.b)
P(b* '
T T —— — — 5.
o 21( 47 (5€)

hb*
where | =— (Fig. 1
T (Fig.

If equations of (5) are subsituted into Eq.(1a) and, this equation is equalized to Eq. 4a
and is integrated as a function of x, the displacement function in the direction of x, is
found; |

n= mg hxzy_*,, 316(1)2 +12y2)
I 24

x}-f(y) (6)

In the same manner, if equations of (5) are subsituted into eq. (1b) and, this equation is
equalized eq.(4b) and is integrated as a function of y, the displacement function in y
direction is computed as;

v = Pl (Qaga, ~38,,85)b’ y —aﬁxyz + (~28,,8,0 +3,,3,)
I 24a, 2 6a,,

y3}+ gx) (D

To find the displacement in y direction , g(x) should be known. For that reason, if v,y in
Eq.(1.c) is equalized to .y in Eq.(4.c), then following equation is found,;

yxyl myxyd =

B[afﬁ(b?‘ -12y*) _ agb” + a, X’ +a,y + aeeyz}
(8)

I 12a, ~ 8 2
~f(y)-g'x)=0

Because of equality of eq.(8) to zero, the summution of the terms depending x and the
summution of the terms depending y should be equal to separate constants. If ¢ is
constant then;

Ax)-g'(x)=¢ )]

Where A(x) = —I—I{%ixz from the equation (9);
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g(x) = [[A(x) - clix (10)
Integrating this eq.

_Ea 3
g(x)--I

11
—ix” —rxte 11
¢ (11)

is found.

Substituting g(x) value into eq.(7) the deflection of the beam is found in terms o1 ¢ and
e.

. =£r12alza§6 = 3a,,a, b’ y maixyz " (24,0, + a;,4y) y? 4 3
IL 24a,, 2 6a,, 6 (12)

—cxte

Applying v=0 and % =0 boundary conditions at point x =1/, y =0(Fig. 1) in eq.(12),

¢ and e values are determined. In this respect the deflection in y direction is

2
v;f_{(zalzalﬁ'-3alla?_6)b I + (—2a,a16 + ay;05) y?

+%1(x3 — 3%+ 21%))

In order to determine deflection equation in symmetry axis of the beam, y=0 is
substituted into equation (13) and then simplifying it;

_Pay

76 (x° -31%x+21%) (14)

is found.

2.2. Deflectior. of The Orthotropic Cantilever Subjected to Distributed Load

The stress components of the orthotropic cantilever beam subjected to distributed load
are given as follows [5];

2 2 2 3
o =T 4% X 1207 | o 2p T de dic {4y 4y (15a)
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3y 4y’
o, = Eqﬂ(_H“g""”S%m} (15b)
__gx(p? gas(y 4y’
—“E[zﬂ‘ﬁf{a‘? (150
11

The procedure in distrubuted load is similar to single load procedure, if Eqgs. of (15) are
substituted into eqs(l). and these eqs. Are equalized to eq(4) and integrated as a
function of x and y. The deflection function of x and y, respectively, are found as;

o Apgx a;qu2 n 9a,,gxy " alzsqu _ 3agqxy _ 2a,x’y _ ?’aleqxzyz
2h  4bh  10bh  Sa,bh  10bh b*h b*h

3 23 3 (16)
n 2a,qxy”  4a,gxy + 2ag,qxy ra(y)
b’h a, b’h b’h
and
2 2 22 2
- M + 4,80y 3a,qxy  3a;,qy n 3a,,8,,9Y + 3a,,qy
2h a,;bh 2bh  10a,bh  Sa’bh 4bh
_ B58560Y" _ 33;2365(13’2 _ 3312‘17(2}’2 _ 43;2316qu3 2a26qu3 an
2a, bh 20a,,bh b’h a,b’h b*h
anqy’ _ a,qy" _ 2a,2;qy" 4 a,,8,,qy" + a,85,qy" +E(x)
a’b’h  2b’h a’b’h a, b’h 2a,,b’h
it 1 11 ¥
if ¥4y in Eq.(1.c) is equalized to Yxy in Eq.(4.c), then following equation is found;
Yo -y = e 9a,qx _4ajgx + Gagqx _ 2a,,qx’ + 8a,2,qy
W™ oh  10bh  Sa,bh 5bh bh  Sa,bh
_ 63?6‘13’ _3a,qy 13aa.qy  8aa,.qy ? + 8ajsqy’ (18)
Sajbh  bh 10a,,bh a,b’h  alb’h

+ da,qy° _ 62,5249y’
b’h a, b’h

-f'(x)-g(y) =0

Because of equality of eq.(18) to zero, the summution of the terms depending x and the

summution of the terms depending y should be equal to separate constants. If c is
constant then;

AX) - (x)=¢ (19)

(a2 3
Where A(x) = 9a,,gx  4a;qx + 6a.gx _ 2a”3qx
10bh  Sa,bh  5bh b’h

from the equation (19);
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£y = [[AG0) - chx , 20)
Integrating this eq.

2 2 4
(9a,a,, —8a;, +12a,,a4)gx + a;,gx

Xi=
A 20a,,bh | 26°h

—-cx+te 2D

is found.

Substituting f{x) {Iaiue into eq.(17) and applying v=0 and % =( boundary conditions

at point x =/, y =0 (Fig. 1), the deflection function is found as follows;

__ 9a,,l%q . 2ail*q _ 3ael’q . 3a,,ql* . 9ap,lgx daislgx N 6agslgx
20bh  Saybh 5Sbh 2% 10k Sa; b 5bh
_ 2‘31113‘2’35 _ 9‘1;2‘??52 +2_2a126qx2 _ 3%6‘3’52 5 a“qx4 J0n® | Gunthedty
b3h 206k . Say,bh 5bh 26°h . 2k a,,bh

L Baasgxy 3ajqy* + 3ay,a759y” N 3anqy’ ~ 154269y _ 3a,,a669° 22)
2bh 10a,,bh  Salbh 4bh 2a,.bh 20a,,bh

_ 3“;29’352)’2 _ 4“12“165]30’3 + 2‘126qu3 + afz@’)ﬁ; _ 2“12“126‘9’}’4
b*h a,;b*h Pr . bk alb’h
_an®" | 416059Y" | Pndesdy’
b*h a b’k 2a,b°h

In order to determine deﬂéction;equation in symmetry axis of the beam, y=0 is
substituted into equation (22) and then simplifying it;

3q 8al ce aug(lt —4Px+ xY)

V= —iee| = 3a, +——=dag (x=1)" + 23
20bh( 23y, " (=0 2b°h @)
is found.

3. AN EXAMPLE

In order to obtain the values of deflections at the free ends of the beams for different
fiber direction (e.g. y=0), Eq.(14) for single load and Eq. (23) for distributed load are
used. The values L, b, h, g, and P are taken as 150 mm, 40 mm, 1 mm, 2N/mm and 300
N respectively (Fig. 1). Calculations are performed for 0°, 15°, 30°, 45°, 60°, 75° and
90° fiber directions. T300/976 Grafite-Epoxy material is used for numerical
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calculations. The properties of the material [7] and the values of the deflections are

given in Tablo 1 and in Tablo 2, respectively.

Tablo 1 The material properties of T300/976 Grafite-Epoxy

E; (GPa) E, (GPa) Giy (GPa) Vo
T300/976 Grafite-Epoxy 156 i3 7 0.23
Tablo 2. Deflections of beams at the free end (x=0, y=0)
0(°) 0 15 30 45 60 75 90
Single. Load (mm) 0.405 | 0.928 | 2.192 | 3.531 | 4.423 | 4.792 | 4.867
Distri. Load (mm) 0.246 | 0345 | 0.652 | 1.090 | 1.510 | 1.796 | 1.899
CONCLUSIONS

It can be seen from both eq.(14) and eq.(23), taking the elasticity modulus in fiber
direction or orthogonal to fiber direction equal to elasticity modulus of isotropic
material (i.e. E;=E or E;=E ), in case of point load acting at the tip of the orthotropic
cantilever beam, the deflection value found (Eq. 14) for the tip point (i.e. x=0, y=0) is
the same as the deflection takes place for isotropic material under the same loading.
However, in case of uniformly distributed loading condition, deflection value (Eq.23) at
the tip point is different (Tablo 3).

Tablo 3. Comparison of orthotropic and isotropic beams deflections(E,=F or E,=F)

Orthotropic Beam Isotropic Beam
Point Load Case PI? pg3
(Eq.14) T3E] T3E
Distributed load case 3g gl* ql*
3a,, —4a 0"+ R
(Eq.23) = J0p5 3 ~ a6 K1) 8E,1 REI

The free end deflection of the beam increases for angles ranging from 0° to 90° for both
load cases due to decreasing of stiffness (Tablo 2).
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