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Abstract

Second Order Elastic Constants (S.O.E.C) of NaCl-type crystals have been cal-
culated using the Woodcock potential. Short-range repulsive interactions have been
included up to second-nearest neighbors. This potential form represents the com-
posite form of the inverse power dependence and exponential dependence of the
repulsive energy on interionic distance. Some thermoelastic and thermodynamic
properties such as Anderson-Grüneisen parameters δT , and δS, Volume thermal
expansion coefficient β and Grüneisen gama γG have been calculated in terms of
calculated values of S.O.E.C and Third Order Elastic Constant ( T.O.E.C).
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1. Introduction

The quantum mechanical calculation of the repulsive energy of a pair of multielectron
atoms or ions is an extremely difficult and complicated task even for simple condensed
systems of closed shell ions such as NaCl-like alkali halides. Semiempiracal and phe-
nomenological potential forms have therefore been developed which represent the expo-
nential dependence on interionic distance such as the Born-Mayer exponential form, and
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the inverse power dependence as the Born-Lande inverse power form. Studies on the alkali
halides provide a critical test of different interionic potentials. Woodcock proposed [1] a
composite form for the repulsive interaction energy and demostrated its applicability in
alkali halide moleculs and crystals by calculating the binding energy and compressibility.
In the present paper we investigate the applicability of Woodcock potential by calculat-
ing S.O.E.C and some physical quantities such as Anderson-Grüneisen parameters δT ,
δS , volume thermal expansion coefficient β and Grüneisen gama γG have been calculated
in terms of S.O.E.C and T.O.E.C [2].

Theory and method of calculation are given in the following section 2.

2. Theory and Method of Calculation

For an ionic crystal, the effective pair potential ϕ (r) can be written as [3],

ϕ(r) = −αMe
2

r
+
B

rn
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ρ

)
− C

r6
− D

r8
, (1)

where r is the interionic distance. The first term on the right handside of (1) represents
the long-range electrostatic Madelung energy term, second term represents the short-
range overlap repulsive interaction, and the last two terms represent the Van Der Waals
dipole-dipole and dipole-quadropole interactions. We take n=4 and m=1 so that

ϕ(r) = −αMe
2

r
+
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r4
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r8
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This choice of pair potential is simple and preferable over others mainly because such
simple exponentials as in the overlap repulsive potential Eq.(2) also appear in the Heitler-
London calculations for the hydrogen molecule. Moreover, the factor r−4 takes proper
account of the polorization energy term [4]. The repulsive parameters are calculated from
the usual method based on the equation of state and ultrasonic data [5].

2.1. Elastic Constants

The derivative of the potential energy φ for central forces are most conveniently ex-
pressed in spherical coordinates. The transformation from rectangular to spherical coor-
dinates is given by [6] (

∂φ

∂α

)
r

= αP (3)(
∂2φ

∂α∂β

)
r

= δαβP + αβQ, (4)

where

P =
(

1
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)
; (5)
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P

(
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are mechanical coefficients of releated materials; and

δαβ =
{

1 for α = β
0 for α 6= β.

The equations for the elastic constants are then those as defined by Anderson [7]
where ∆ is the volume-per cell (ion pair).
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, (7)
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1
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(
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. (9)

S.O.E.C. have been obtained from transportation of cartesian coordinates to spherical
coordinates system and given in Table 1. Since forces are additive the derivative of the
potential in the equations of motion are additive, and the elastic constants can be broken
down into a sum;

(Cαβ,γλ ) = (Cαβ,γλ )e + (Cαβ,γλ )R. (10)

Table 1. S.O.E.C. have been obtained from transportation of cartesian coordinates to spherical

coordinates system.

NaCl-Structure
∆ CR11 2QRr4+2PRr2

∆ CR12 -2PRr2

∆ CR44 2PRr2

The reason these constants are broken down into two parts is that the sum motion
is taken to infinity for the e component (standing for the electrostatic or Coulombic
interaction), while the summation is taken only over nearest neighbors for R component
(R standing for repulsive). This separation corresponds to the separate parts of the lattice
potential arising between the k and k’ positions which is appropriate to define the energy
per unit cell:

φkk′ = −ArZkZk
′e2

rkk′
+MkV (r). (11)
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Where Mk is the coordination number around the k position. For the case of NaCl,
Mk=6. Ar is the madelung constant of the lattice, Zk and Zk′ are the valence number
and e, is the electronic charge and V(r) is the repulsive potential.

Denoting the potential above by the symbols R and e corresponding to the two terms
in Eq.(11), we write,

φ = φe + φR. (12)

Also denote the operators P and Q by the same symbols so that

PR =
1
r

(
∂φR

∂r

)
r

and QR =
[
1
r

∂

∂r

(
1
r

∂φR

∂r

)]
r

(13)

with the elastic constants (for example C11) related as

C11 = Ce11 +CR11. (14)

Repulsive parts of the elastic constant (for example CR11 ) can be expressed in terms
of PRand QR operators and are given in Table 1. It’s clearly seen from Equation (13)
that PRand QR can be written as a first and second derivative of the potential and these
forms are given in Table 2. The madelung constants can be defined two ways:s a constant
Ar corresponding to the nearest-neigbor distance r, or Aa corresponding to half distance
a of the unit cell. For comparison purposes, set Ar= Aa for NaCl and Aa =

√
3

3 Ar for
CsCl. Similarly, r = a for NaCl, and a =

√
3

3 r for CsCl.

Table 2. The elastic constant parameters in terms of the derivatives of the repulsive potential

[V(r)].

NaCl-Structure
∆ CR11 2r2d2V/dr2

∆ CR12 -2r(dV/dr)
∆ CR44 2r(dV/dr)

2.2. The Short-range component of the potential

We now express the operators P and Q in terms of the derivatives of the repulsive
potential with respect to r. It is readily seen that,

QR =
1
r2

d2V

dr2
− 1
r3

dV

dr
and (15)

PR =
1
r

dV

dr
. (16)

In tabular form, the results are given in Table 2.
There are two ways to proceed from this point. One way is to represent the operators

d2V/dr2 and dV/drat the equlibrium condition r = r0 as pure numbers and then evaluate
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the numbers from experiments on the elastic constants. The second way is to assume some
function through the operators. We will proceed with the elastic constants as function of
r.

Let us take the repulsive potential as

V (r) =
B

r4
e−

r
ρ , (17)

where B and ρ are potential parameters which have been calculated from Ref.[8]. Using
Equation (17) in Table 2, we have evaluated the repulsive term in the elastic constants
in terms of this potential in Table 3.

Table 3. The elastic constant parameters in terms of the Woodcock potential.

NaCl-Structure

CR11
1

2M
ArZ

2e2ρ
(4ρ+r)

(
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)
CR1 2

ArZ
2e2

r3M(4ρ+r) + 4ArZ
2e2ρ

r4M(4ρ+r)

CR44 − ArZ
2e2
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With the derivative of Equation (11) vanishing at equilibrium, r = r0. Thus
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r
ρ

r5
+
Be−

r
ρ

ρr4
=
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2e2

Mr2
(18)

and

PR = −Be
− r
ρ

ρr5
− 4Be−

r
ρ

r6
(19)

QR =
24Be−

r
ρ

ρr8
+

9Be−
r
ρ

ρr7
+
Be−

r
ρ

ρ2r6
. (20)

The elastic constants expressions can be obtained by combining the results shown
in Table 4 with those in Table 3. The full expressions for the elastic constants are (for
NaCl-structure)
Table 4. Values of lattice sum for the coulombic potential. The units of Cij are Z2e2/∆a where

∆ is the volume of the cell.

NaCl-Structure
Aa 1.74756
Ar 1.74756

Ce 11 -2.55604
Ce 12 0.11298
Ce 44 1.27802
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C11 =
1

2M
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2e2ρ

(4ρ+ r)

(
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ρ2r4

)
− 2.55604

Z2e2

∆0a0
(21)

C12 =
ArZ

2e2

r3M(4ρ+ r)
+

4ArZ2e2ρ

r4M(4ρ+ r)
+ 0.11298

Z2e2

∆0a0
(22)

C44 = − ArZ
2e2

r3M(4ρ+ r)
− 4ArZ2e2ρ

r4M(4ρ+ r)
+ 1.27802

Z2e2

∆0a0
. (23)

Calculated values of S.O.E.C and Experimental values [9] are given in Table 5.

Table 5. Calculated values of S.O.E.C and Experimental values [12].

C11 × 1011 C11 × 1011 C12 × 1011 C12 × 1011 C44 × 1011 C44 × 1011

dyn/cm2 dyn/cm2 [9] dyn/cm2 dyn/cm2 [9] dyn/cm2 dyn/cm2 [9]
This Work Experiment This Work Experiment This Work Experiment

LiF 11.95 11.04 5.04 4.43 5.04 6.36

LiCl 4.21 4.94 1.92 2.28 1.92 2.46

LiBr 3.54 3.94 1.47 1.87 1.47 1.93

LiI 2.84 2.85 1.05 1.40 1.05 1.35

NaF 8.50 9.45 2.88 2.12 2.88 2.82

NaCl 4.79 4.79 1.26 1.15 1.26 1.27

NaBr 4.23 4.01 1.05 1.09 1.05 0.99

NaI 3.71 3.03 1.05 0.88 1.05 0.74

KF 5.81 6.56 1.63 1.46 1.63 1.25

KCl 3.75 3.98 0.84 0.61 0.84 0.63

KBr 3.31 3.35 0.70 0.45 0.70 0.50

KI 2.69 2.67 0.54 0.40 0.54 0.36

RbF 5.06 5.53 1.32 1.40 1.32 0.93

RbCl 3.32 3.63 0.71 0.62 0.71 0.47

RbBr 2.94 3.15 0.59 0.49 0.59 0.38

RbI 2.48 2.54 0.46 0.40 0.46 0.27

2.3. Thermoelastic Quantities γG, δT , δS and β

It is possible to obtain expressions for thermoelastic quantities such as γG, δT , δS and
volume thermal expansion coefficient β in terms of S.O.E.C and T.O.E.C. This approach
has been applied by Rao [10] for metals and a non-metallic crystal. Useful expressions
are as follows [8]:
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δS = −BT
BS

[
2Tβγ +

C111 + 6C112 + 2C123

3(C11 + 2C12)

]
− 1
β

(
∂ lnBS
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)
V

(24)

δT = −C111 + 6C112 + 2C123

3(C11 + 2C12)
− 1
β

(
∂ lnBT
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V

(25)

β = − CV
2V (C11 + 2C12)2

[3 (C11 + 2C12) + (C111 + 6C112 + 2C123)], (26)

γG = −1
3
− V

2
P 1
P 2

(27)

where P1 and P2 are given in terms of the elastic constants as follows:

P 1 =
dP

dV
= − 1

3V
[C11 + 2C12] (28)

P 2 =
d2P

dV 2
=

1
9V 2

[3(C11 + 2C12)− (C111 + 6C112 + 2C123)]. (29)

Where BT , BSand CV refers to isothermal-adiabatic bulk modulus and specific heat at
constant volume, respectively. BT , BS , CV and 1

β

(
∂ lnBS
∂T

)
V

are taken from literature
[11]. Third order elastic constants are taken from [12]. Both experimental (taken from
ref.[13]) and calculated values of the thermoelastic Quantities γG, δT , δS and β in terms
of S.O.E.C and T.O.E.C. are given in Table 6.

Table 6. Thermoelastic Quantities γG , δT , δS and β in terms of S.O.E.C and T.O.E.C.

β β β β δS δS δS δS
(10−4K−1) (10−4K−1) (10−4 K−1) (10−4K−1) (10−4) (10−4) (10−4 ) (10−4)
This work Theory(1) Theory(2) Experiment This work Theory(1) Theory(2) Experiment

[14] [14] [13] [14] [14] [13]
LiF 0.84 0.86 1.03 0.99 2.32 4.70 5.27 3.56
LiCl 1.77 1.16 1.37 1.32 3.89 5.58 6.20 4.09
LiBr 1.95 1.25 1.48 1.50 4.18 5.93 6.57 4.12
LiI 1.82 1.47 1.83 1.80 2.32 5.45 6.23 4.06

NaF 0.86 1.14 1.37 0.96 2.24 4.52 5.13 3.75
NaCl 1.10 1.29 1.49 1.19 2.49 5.25 5.83 3.80
NaBr 1.30 1.40 1.63 1.26 3.44 5.53 6.15 4.11
NaI 0.81 1.55 1.85 1.37 2.44 5.46 6.14 4.13

KF 1.07 1.27 1.50 1.02 3.06 5.21 5.84 4.08
KCl 1.33 1.41 1.65 1.11 3.69 5.61 6.23 4.38
KBr 1.46 1.45 1.68 1.16 3.68 5.38 6.01 4.02
KI 1.73 1.56 1.81 1.23 4.08 5.18 5.84 3.93

RbF 1.32 1.27 1.48 0.94 4.33 5.77 6.38 4.97
RbCl 1.67 1.39 1.59 1.03 5.08 6.33 6.93 4.93
RbBr 1.57 1.47 1.69 1.08 4.57 6.14 6.76 4.72
RbI 1.72 1.52 1.75 1.23 4.66 6.24 6.87 4.47
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Table 6. (continue)

δT (10−4) δT (10−4 ) δT (10−4) δT (10−4) γG γG γG γG
This wor Theory (1) Theory (2) Experiment This wor Theory (1) Theory (2) Experiment

[14] [14] [13] [14] [14] [13]
LiF 4.74 2.38 2.95 6.00 1.52 1.47 1.75 1.63
LiCl 6.66 3.29 3.90 6.77 2.22 1.68 1.98 1.81
LiBr 7.19 3.59 4.23 7.01 2.34 1.75 2.07 1.94
LiI 6.40 2.91 3.69 7.32 2.11 1.59 1.98 2.19

NaF 4.24 2.78 3.39 5.77 1.36 1.50 1.81 1.51
NaCl 4.51 3.41 4.00 5.85 1.52 1.87 2.16 1.61
NaBr 5.45 3.72 4.34 6.23 1.83 1.84 2.16 1.64
NaI 4.51 3.68 4.37 6.43 1.33 1.80 2.14 1.71

KF 5.02 3.46 4.09 6.20 1.59 1.69 2.00 1.52
KCl 5.49 3.93 4.55 6.22 1.87 1.89 2.20 1.49
KBr 5.46 3.82 4.45 5.88 2.02 1.97 2.29 1.50
KI 5.89 3.74 4.40 5.76 2.34 1.99 2.32 1.53

RbF 5.96 4.40 5.01 6.80 1.92 1.83 2.14 1.40
RbCl 6.79 4.85 5.44 6.76 2.32 2.07 2.37 1.39
RbBr 6.32 4.66 5.28 6.60 2.15 2.05 2.36 1.42
RbI 6.61 4.66 5.29 6.52 2.34 2.15 2.46 1.56

3. Results and Discussion

In this work, the applicability of the Woodcock potential is considered for studying
the crystalline properties of alkali halides. This potential form represents the composite
form of the inverse power dependence and the exponential dependence of the repulsive
energy

Second order elastic constants are calculated using Woodcock potential and compared
with the experimental data and some other theoretical works. Some physical quantities
such as Anderson-Grüneisen parameters (δT , δS), volume thermal expantion coefficient
(β) and Grüneisen gamma (γG) are calculated in terms of S.O.E.C and T.O.E.C. Our
calculated values of volume thermal expansion coefficients of sixteen NaCl-structure alkali
halide crystals have been obtained more reasonable agreements with the experimental
data than the Theory (1) and Theory (2)[14].The obtained results from the structure of
LiF,LiI,NaF,NaCl,NaBr,KF,KCI and KBr are in good agreement than the Theory (1)
and Theory (2). However , Theory (1) and Theory (2) give more reasonable agreement
with the experimental data for the structures of LiCI,LiBr,NaI,KI and Rubidium halides.
From the structure of KBr,KI and Rubidium halides, the calculated values of δS gave
good results but the other sixteen NaCl-structures could not be obtained. From the
structure of LiCl,LiBr,KBr,KI,RbCl and RbI, the calculated values of the δT gave good
results than the Theory (1) and Theory (2). Moreover, good results from the structure of
LiI,NaF,NaCl,NaBr,KF and KCl were obtained for the Grüneisen gammas. We believe
that different forms of potentials should be tested in order to understand the exact nature
of the interionic interactions in the alkali halide systems.
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